1
|
Li G, Lv M, Yu H, Zhang H, Zhang D, Li Q, Wang L, Wu Y. Integration of physiology, microbiota and metabolomics reveals toxic response of zebrafish gut to co-exposure to polystyrene nanoplastics and arsenic. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107172. [PMID: 39603049 DOI: 10.1016/j.aquatox.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Both nanoplastic (NP) particles and arsenic (As) are widespread in aquatic environments and pose a combined risk of exposure to aquatic organisms. How the gut of aquatic organisms responds to combined risk of exposure is still unclear. In this study, zebrafish (Danio rerio) were subjected to three distinct As stress environments: only As group (10 μg/L), and As combined with different concentrations of polystyrene (PS) NPs (1 mg/L and 10 mg/L) groups for 21 days via semi-static waterborne exposure. The physiological responses to combined stress, the diversity of gut microorganisms, and the metabolomic response of the gut were investigated. The findings indicated that PSNPs were prevalent in the intestines of zebrafish in the co-exposed group. Furthermore, the administration of 1 mg/L and 10 mg/L of PSNPs in the co-exposed group was observed to elevate As levels in the intestines by 24.88% and 76.95%, respectively, in comparison to As treatment alone. Simultaneous exposure of the gut to PSNPs and As resulted in increased contents/activities of MDA, SOD, CAT, and GST, and a decrease in contents/activities of GSH and GPx, when compared to As exposure alone. Additionally, the combined exposure led to an elevated expression of the Cu/Zn-sod, Mn-sod, gpx, and cat genes. The combined treatment with NPs and As resulted in an increase in the abundance of Proteobacteria and Fusobacteriota at the phylum level, as well as a significant increase in the abundance of Cetobacterium, Rhodococcus, and Bacteroides at the genus level. Non-targeted metabolomics analyses suggest that metabolic pathways affected by co-exposure include glycerophospholipid metabolism, glycerolipid metabolism, ABC transporters and autophagy. The findings of this study are of considerable significance for the evaluation of the toxicological impact of co-existing pollutants.
Collapse
Affiliation(s)
- Guoxin Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Min Lv
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Haitao Yu
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Heng Zhang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Dandan Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingsong Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Lei Wang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yicheng Wu
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
2
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Unsal V, Cicek M, Aktepe N, Oner E. Morin attenuates arsenic-induced toxicity in 3T3 embryonic fibroblast cells by suppressing oxidative stress, inflammation, and apoptosis: In vitro and silico evaluations. Toxicol Res (Camb) 2024; 13:tfae113. [PMID: 39036522 PMCID: PMC11260228 DOI: 10.1093/toxres/tfae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
This study aims to investigate the curative effects of Morin, a flavonoid, against arsenic toxicity in 3T3 embryonic fibroblast cells and its effect on the molecular mechanisms of cells. The cytotoxicity and viability of the cells were measured by MTT and LDH tests. Arsenic (0.74 μM) was used to trigger toxicity and Morin (50 μM) was used for treatment. The levels of oxidative stress biomarkers and the activities of antioxidant enzymes were measured by spectrophotometric method, and inflammatory markers were measured by ELISA method. While mRNA expression levels of Bax, Bcl-2 levels, and Caspase-3 activity were measured by qRT-PCR technique, TUNEL staining was performed to detect DNA breaks and DAPI staining to visualize nuclear changes. Protein structures were retrieved from the protein data bank. OpenBabel and Autodock programs were used for the molecular docking study. Morin rescued the 3T3 embryonic fibroblast cells exposed to arsenic. However, Arsenic decreased the activities of antioxidant enzymes in cells and significantly increased oxidative stress, inflammation, and apoptosis. Morin treatment reduced oxidative damage and TNF-α and IL-1β levels. Arsenic-induced Caspase-3 mRNA expression level and Bax protein mRNA expression level were significantly increased, while Bcl-2 mRNA expression level was significantly decreased. While Caspase-3 mRNA expression level and Bax protein mRNA expression level decreased with morin treatment, Bcl-2 mRNA expression level increased significantly. Molecular docking study results showed good binding affinity of morin in SOD, GSH-Px, Bax, Bcl-2, Caspase-3, TNF-α, and IL-1β structures. Morin showed antioxidant, anti-inflammatory, and anti-apoptotic effects against Arsenic-induced cellular toxicity.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sütcü Imam University, Kahramanmaras, 46050, Türkiye
| | - Necmettin Aktepe
- Department of Nursing, Faculty of Health Sciences Mardin Artuklu University, Mardin, 47200, Türkiye
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye
| |
Collapse
|
4
|
Rivas-Santiago C, Gallegos-Bañuelos M, Trejo-Ramos I, Solís-Torres N, Quintana-Belmares R, Macías-Segura N, Gutiérrez-Bañuelos H, Troncoso-Vazquez L, Rivas-Santiago B, Gonzalez-Curiel I. Adverse Health Effects of the Long-Term Simultaneous Exposure to Arsenic and Particulate Matter in a Murine Model. J Toxicol 2024; 2024:5391316. [PMID: 38757141 PMCID: PMC11098611 DOI: 10.1155/2024/5391316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
PM2.5 and arsenic are two of the most hazardous substances for humans that coexist worldwide. Independently, they might cause multiple organ damage. However, the combined effect of PM2.5 and arsenic has not been studied. Here, we used an animal model of simultaneous exposure to arsenic and PM2.5. Adult Wistar rats were exposed to PM2.5, As, or PM2.5 + As and their corresponding control groups. After 7, 14, and 28 days of exposure, the animals were euthanized and serum, lungs, kidneys, and hearts were collected. Analysis performed showed high levels of lung inflammation in all experimental groups, with an additive effect in the coexposed group. Besides, we observed cartilaginous metaplasia in the hearts of all exposed animals. The levels of creatine kinase, CK-MB, and lactate dehydrogenase increased in experimental groups. Tissue alterations might be related to oxidative stress through increased GPx and NADPH oxidase activity. The findings of this study suggest that exposure to arsenic, PM2.5, or coexposure induces high levels of oxidative stress, which might be associated with lung inflammation and heart damage. These findings highlight the importance of reducing exposure to these pollutants to protect human health.
Collapse
Affiliation(s)
- Cesar Rivas-Santiago
- CONAHCYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | - Maria Gallegos-Bañuelos
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | - Irving Trejo-Ramos
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | - Nancy Solís-Torres
- Pharmacobiology, Chemistry Sciences School, Autonomous University of San Luis Potosi, San Luis Potosi 78210, Mexico
| | | | - Noé Macías-Segura
- Service and Department of Immunology, Faculty of Medicine and University Hospital, Autonomous University of Nuevo León, Nuevo León, 66450, Mexico
| | - Héctor Gutiérrez-Bañuelos
- Veterinary Medicine and Zootechnics School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| | | | - Bruno Rivas-Santiago
- Biomedical Research Unit-Zacatecas-IMSS, Mexican Social Security Institute, Zacatecas 98085, Mexico
| | - Irma Gonzalez-Curiel
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas 98085, Mexico
| |
Collapse
|
5
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Cheff DM, Skröder H, Akhtar E, Cheng Q, Hall MD, Raqib R, Kippler M, Vahter M, Arnér ES. Arsenic exposure and increased C-reactive protein are independently associated with lower erythrocyte glutathione peroxidase activity in Bangladeshi children. REDOX BIOCHEMISTRY AND CHEMISTRY 2023; 5-6:100015. [PMID: 37908807 PMCID: PMC10613583 DOI: 10.1016/j.rbc.2023.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Toxic metal contaminants present in food and water have widespread effects on health and disease. Chalcophiles, such as arsenic, cadmium, and mercury, show a high affinity to selenium and exposure to these metals could have a modulating effect on enzymes dependent on selenocysteine in their active sites. The aim of this study was to assess the influence of these metals on the activity of the selenoprotein glutathione peroxidase 1 (GPX1) in erythrocytes of 100 children residing in rural Bangladesh, where drinking water often contains arsenic. GPX1 expression, as measured using high-throughput immunoblotting, showed little correlation with GPX activity (rs = 0.02, p = 0.87) in blood samples. Toxic metals and selenium measured in erythrocytes using inductively coupled plasma mass spectrometry (ICP-MS) and C-reactive protein (CRP) measured in plasma, were all considered as effectors of this divergence in GPX enzymatic activity. Arsenic concentrations in erythrocytes were most influential for GPX1 activity (rs = -0.395, p < 0.0001), and CRP levels also negatively impacted GPX1 activity (rs = -0.443, p < 0.0001). These effects appear independent of each other as arsenic concentrations and CRP showed no correlation (rs = 0.124, p = 0.2204). Erythrocyte selenium, cadmium, and mercury did not show any correlation with GPX1 activity, nor with CRP or arsenic. Our findings suggest that childhood exposure to inorganic arsenic, as well as inflammation triggering the release of CRP, may negatively affect GPX1 activity in erythrocytes.
Collapse
Affiliation(s)
- Dorian M. Cheff
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Evana Akhtar
- International Center for Diarrheal Disease Research, GPO Box 128, Dhaka, 1000, Bangladesh
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
| | - Matthew D. Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Rubhana Raqib
- International Center for Diarrheal Disease Research, GPO Box 128, Dhaka, 1000, Bangladesh
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Elias S.J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
7
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
8
|
Liu J, Hermon T, Gao X, Dixon D, Xiao H. Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. ALL LIFE 2023; 16:2167869. [PMID: 37152101 PMCID: PMC10162781 DOI: 10.1080/26895293.2023.2167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is an enormous public health issue worldwide. Recent data suggest that chronic arsenic exposure is linked to the risk of developing type 1 and type 2 DM, albeit the underlying mechanisms are unclear. This review discusses the role of the immune system as a link to possibly explain some of the mechanisms of developing T1DM or T2DM associated with arsenic exposure in humans, animal models, and in vitro studies. The rationale for the hypothesis includes: (1) Arsenic is a well-recognized modulator of the immune system; (2) arsenic exposures are associated with increased risk of DM; and (3) dysregulation of the immune system is one of the hallmarks in the pathogenesis of both T1DM and T2DM. A better understanding of DM in association with immune dysregulation and arsenic exposures may help to understand how environmental exposures modulate the immune system and how these effects may impact the manifestation of disease.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Tonia Hermon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
9
|
Zhang Z, Pi R, Luo J, Liu J, Zhang A, Sun B. Association between arsenic exposure and inflammatory cytokines and C-reaction protein: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32352. [PMID: 36550845 PMCID: PMC9771207 DOI: 10.1097/md.0000000000032352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies have reported controversial results on levels of inflammatory cytokines in patients with arsenic exposure. This study aims to evaluate the associations between arsenic exposure and inflammatory cytokines and C-reaction protein (CRP). METHODS We searched the databases including PubMed, Embase, Web of Science, and China national knowledge infrastructure (CNKI) for studies reporting levels of cytokines and CRP in patients with arsenic exposure compared to the controls. The retrieval time was from January 2000 to September 2022. RESULTS 13 observational studies involving 1665 arsenic exposed and 1091 unexposed individuals were included. Among these studies, 6 from China, 4 from India, 2 from Bangladesh and 1 from Turkey. Our result showed that interleukin (IL)-6, IL-8, and IL-12 levels were significantly higher in arsenic-exposed individuals compared to the control group, IL-2 level was significantly lower, and Tumor necrosis factor-α, Interferon-γ, CRP, and IL-10 levels were not changed. After sensitivity analyses, tumor necrosis factor-α and Interferon-γ levels were significantly higher in arsenic-exposed individuals compared to the control group. High heterogeneity was detected in most studies. CONCLUSION Many cytokines (such as IL-6, IL-8, and IL-12) have altered in individuals with arsenic exposure, this indicates arsenic exposure could trigger the cell-mediated inflammatory response. Regular examining immune function (such as inflammatory cytokines) in individuals with the risk of arsenic exposure is important to human health.
Collapse
Affiliation(s)
- Zheyu Zhang
- College of Basic Medical, Guizhou Medical University, Guiyang city, Guizhou Province, China
| | - Ruozheng Pi
- College of Basic Medical, Guizhou Medical University, Guiyang city, Guizhou Province, China
| | - Jieya Luo
- College of Basic Medical, Guizhou Medical University, Guiyang city, Guizhou Province, China
| | - Ji Liu
- College of Basic Medical, Guizhou Medical University, Guiyang city, Guizhou Province, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Baofei Sun
- College of Basic Medical, Guizhou Medical University, Guiyang city, Guizhou Province, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang City, Guizhou Province, China
| |
Collapse
|
10
|
Abdollahzade N, Mihanfar A, Majidinia M. Molecular mechanisms underlying ameliorative impact of melatonin against age-dependent chronic arsenic toxicity in rats' brains. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1010-1024. [PMID: 35546266 DOI: 10.1002/jez.2603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of random molecular damage such as oxidative DNA damage and inflammation is extremely found to be involved in the aging process. Due to extreme energy requirements and high lipid levels, the brain is more susceptible to oxidative damage during aging especially under exposure to toxic elements such as arsenic. Therefore, this study was aimed to evaluate the ameliorative effects of melatonin, as a neurohormone, on the arsenic-induced behavioral abnormalities, and the underlying mechanisms. Forty-eight rats, as young and old aged groups were exposed to 5.55 g/kg body weight arsenic for 4 weeks and then 10 mg/kg melatonin for 2 weeks. Our results showed that arsenic led to anxiety-like behavioral abnormalities in rats. Increased oxidative stress-induced damage to DNA, lipids and proteins, decreased potential of antioxidant defense system, induced apoptosis, elevated inflammation, and alteration in the histology of cortical region of brains are observed in the rats exposed to arsenic. These effects were more prominent in aged rats in comparison to young rats. Melatonin successfully attenuates arsenic induced adverse effects on the brain in both age groups. In conclusion, our study shows that melatonin has significant ameliorative impact on age-dependent cytotoxicity of arsenic in rats' brains.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Thompson González N, Ong J, Luo L, MacKenzie D. Chronic Community Exposure to Environmental Metal Mixtures Is Associated with Selected Cytokines in the Navajo Birth Cohort Study (NBCS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14939. [PMID: 36429656 PMCID: PMC9690552 DOI: 10.3390/ijerph192214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Many tribal populations are characterized by health disparities, including higher rates of infection, metabolic syndrome, and cancer-all of which are mediated by the immune system. Members of the Navajo Nation have suffered chronic low-level exposure to metal mixtures from uranium mine wastes for decades. We suspect that such metal and metalloid exposures lead to adverse health effects via their modulation of immune system function. We examined the relationships between nine key metal and metalloid exposures (in blood and urine) with 11 circulating biomarkers (cytokines and CRP in serum) in 231 pregnant Navajo women participating in the Navajo Birth Cohort Study. Biomonitored levels of uranium and arsenic species were considerably higher in participants than NHANES averages. Each biomarker was associated with a unique set of exposures, and arsenic species were generally immunosuppressive (decreased cellular and humoral stimulating cytokines). Overall, our results suggest that environmental metal and metalloid exposures modulate immune status in pregnant Navajo women, which may impact long-term health outcomes in mothers and their children.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
- Academic Science Education and Research Training Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jennifer Ong
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Li Luo
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra MacKenzie
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Islam R, Zhao L, Wang Y, Lu-Yao G, Liu LZ. Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers (Basel) 2022; 14:4502. [PMID: 36139662 PMCID: PMC9496897 DOI: 10.3390/cancers14184502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic is a crucial environmental metalloid whose high toxicity levels negatively impact human health. It poses significant health concerns to millions of people in developed and developing countries such as the USA, Canada, Bangladesh, India, China, and Mexico by enhancing sensitivity to various types of diseases, including cancers. However, how arsenic causes changes in gene expression that results in heinous conditions remains elusive. One of the proposed essential mechanisms that still has seen limited research with regard to causing disease upon arsenic exposure is the dysregulation of epigenetic components. In this review, we have extensively summarized current discoveries in arsenic-induced epigenetic modifications in carcinogenesis and angiogenesis. Importantly, we highlight the possible mechanisms underlying epigenetic reprogramming through arsenic exposure that cause changes in cell signaling and dysfunctions of different epigenetic elements.
Collapse
Affiliation(s)
| | | | | | | | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Giles BH, Mann KK. Arsenic as an immunotoxicant. Toxicol Appl Pharmacol 2022; 454:116248. [PMID: 36122737 DOI: 10.1016/j.taap.2022.116248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
Arsenic is world-wide contaminant to which millions of people are exposed. The health consequences of arsenic exposure are varied, including cancer, cardiometabolic disease, and respiratory disorders. Arsenic is also toxic to the immune system, which may link many of the pathologies associated with arsenic exposure. The immune system can be classified into two interconnected arms: the innate and the adaptive immune responses. Herein, we discuss the effects of arsenic on key cell types within each of these arms, highlighting both in vitro and in vivo responses. These cells include macrophages, neutrophils, dendritic cells, and both B and T lymphocytes. Furthermore, we will explore data from human populations where altered immune status is implicated in disease and identify several data gaps where research is needed to complete our understanding of the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Gandhi D, Bhandari S, Mishra S, Tiwari RR, Rajasekaran S. Non-malignant respiratory illness associated with exposure to arsenic compounds in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103922. [PMID: 35779705 DOI: 10.1016/j.etap.2022.103922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As), a toxic metalloid, primarily originates from both natural and anthropogenic activities. Reports suggested that millions of people globally exposed to high levels of naturally occurring As compounds via inhalation and ingestion. There is evidence that As is a well-known lung carcinogen. However, there has been relatively little evidence suggesting its non-malignant lung effects. This review comprehensively summarises current experimental and clinical studies implicating the association of As exposure and the development of several non-malignant lung diseases. Experimental studies provided evidence that As exposure induces redox imbalance, apoptosis, inflammatory response, epithelial-to-mesenchymal transition (EMT), and affected normal lung development through alteration of the components of intracellular signaling cascades. In addition, we also discuss the sources and possible mechanisms of As influx and efflux in the lung. Finally, current experimental studies on treatment strategies using phytochemicals and our perspective on future research with As are also discussed.
Collapse
Affiliation(s)
- Deepa Gandhi
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sneha Bhandari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Sehal Mishra
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India
| | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental, Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
15
|
Li A, Mei Y, Zhao M, Xu J, Zhao J, Zhou Q, Ge X, Xu Q. Do urinary metals associate with the homeostasis of inflammatory mediators? Results from the perspective of inflammatory signaling in middle-aged and older adults. ENVIRONMENT INTERNATIONAL 2022; 163:107237. [PMID: 35429917 DOI: 10.1016/j.envint.2022.107237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We aimed to investigate whether urinary metal mixtures are associated with the homeostasis of inflammatory mediators in middle-aged and older adults. METHODS A four-visit repeated-measures study was conducted with 98 middle-aged and older adults from five communities in Beijing, China. Only one person was lost to follow-up at the third visit. Ultimately, 391 observations were included in the analysis. The urinary concentrations of 10 metals were measured at each visit using inductively coupled plasma mass spectrometry (ICP-MS) with a limit of detection (LOD) ranging from 0.002 to 0.173 µg/L, and the detection rates were all above 84%. Similarly, 14 serum inflammatory mediators were measured using a Beckman Coulter analyzer and the Bio-Plex MAGPIX system. A linear mixed model (LMM), LMM with least absolute shrinkage and selection operator regularization (LMMLASSO), and Bayesian kernel machine regression (BKMR) were adopted to explore the effects of urinary metal mixtures on inflammatory mediators. RESULTS In LMM, a two-fold increase in urinary cesium (Cs) and chromium (Cr) was statistically associated with -35.22% (95% confidence interval [CI]: -53.17, -10.40) changes in interleukin 6 (IL-6) and -11.13% (95 %CI: -20.67, -0.44) in IL-8. Urinary copper (Cu) and selenium (Se) was statistically associated with IL-6 (88.10%, 95%CI: 34.92, 162.24) and tumor necrosis factor-alpha (TNF-α) (22.32%, 95%CI: 3.28, 44.12), respectively. Similar results were observed for the LMMLASSO and BKMR. Furthermore, Cr, Cs, Cu, and Se were significantly associated with other inflammatory regulatory network mediators. For example, urinary Cs was statistically associated with endothelin-1, and Cr was statistically associated with endothelin-1 and intercellular adhesion molecule 1 (ICAM-1). Finally, the interaction effects of Cu with various metals on inflammatory mediators were observed. CONCLUSION Our findings suggest that Cr, Cs, Cu, and Se may disrupt the homeostasis of inflammatory mediators, providing insight into the potential pathophysiological mechanisms of metal mixtures and chronic diseases.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
16
|
Domingo-Relloso A, Bozack A, Kiihl S, Rodriguez-Hernandez Z, Rentero-Garrido P, Casasnovas JA, Leon-Latre M, Garcia-Barrera T, Gomez-Ariza JL, Moreno B, Cenarro A, de Marco G, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Navas-Acien A, Gamble M, Tellez-Plaza M. Arsenic exposure and human blood DNA methylation and hydroxymethylation profiles in two diverse populations from Bangladesh and Spain. ENVIRONMENTAL RESEARCH 2022; 204:112021. [PMID: 34516978 PMCID: PMC8734953 DOI: 10.1016/j.envres.2021.112021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Associations of arsenic (As) with the sum of 5-mC and 5-hmC levels have been reported; however, As exposure-related differences of the separated 5-mC and 5-hmC markers have rarely been studied. METHODS In this study, we evaluated the association of arsenic exposure biomarkers and 5-mC and 5-hmC in 30 healthy men (43-55 years) from the Aragon Workers Health Study (AWHS) (Spain) and 31 healthy men (31-50 years) from the Folic Acid and Creatinine Trial (FACT) (Bangladesh). We conducted 5-mC and 5-hmC profiling using Infinium MethylationEPIC arrays, on paired standard and modified (ox-BS in AWHS and TAB in FACT) bisulfite converted blood DNA samples. RESULTS The median for the sum of urine inorganic and methylated As species (ΣAs) (μg/L) was 12.5 for AWHS and 89.6 for FACT. The median of blood As (μg/L) was 8.8 for AWHS and 10.2 for FACT. At a statistical significance p-value cut-off of 0.01, the differentially methylated (DMP) and hydroxymethylated (DHP) positions were mostly located in different genomic sites. Several DMPs and DHPs were consistently found in AWHS and FACT both for urine ΣAs and blood models, being of special interest those attributed to the DIP2C gene. Three DMPs (annotated to CLEC12A) for AWHS and one DHP (annotated to NPLOC4) for FACT remained statistically significant after false discovery rate (FDR) correction. Pathways related to chronic diseases including cardiovascular, cancer and neurological were enriched. CONCLUSIONS While we identified common 5-hmC and 5-mC signatures in two populations exposed to varying levels of inorganic As, differences in As-related epigenetic sites across the study populations may additionally reflect low and high As-specific associations. This work contributes a deeper understanding of potential epigenetic dysregulations of As. However, further research is needed to confirm biological consequences associated with DIP2C epigenetic regulation and to investigate the role of 5-hmC and 5-mC separately in As-induced health disorders at different exposure levels.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Statistics and Operations Research, University of Valencia, Spain
| | - Anne Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Samara Kiihl
- Department of Statistics, State University of Campinas, Brazil
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, Biomedical Research Institute Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - J Antonio Casasnovas
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Montserrat Leon-Latre
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - J Luis Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - Belen Moreno
- Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Griselda de Marco
- Genomics Area, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO), Valencia, Spain
| | - Faruque Parvez
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Mary Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Jiang J, He S, Liu K, Yu K, Long P, Xiao Y, Liu Y, Yu Y, Wang H, Zhou L, Zhang X, He M, Guo H, Wu T, Yuan Y. Multiple plasma metals, genetic risk and serum complement C3, C4: A gene-metal interaction study. CHEMOSPHERE 2022; 291:132801. [PMID: 34752839 DOI: 10.1016/j.chemosphere.2021.132801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Exposure to metals and metalloids is widely related with human health, and could affect the function of immune system. The complement system links innate and adaptive immunity, and is critically involved in the pathogenesis of inflammatory and immune diseases. The third and fourth components of complement (C3, C4) play key roles in the complement system. However, few studies have examined the relations between multiple metals and complement levels. In this study, based on a total of 2977 participants from the Dongfeng-Tongji cohort, China, we investigated 17 plasma metals and serum C3, C4 levels, and calculated C3/C4-associated genetic risk scores (GRSs) using established single nucleotide polymorphisms. We further explored the potential gene-metal interactions on C3 and C4. After multivariable adjustment, an increment of 10-standard deviation increase in natural log-transformed exposure concentrations of plasma copper was associated with 0.549 (0.489, 0.608) (FDR <0.0001), and 1.146 (0.999, 1.294) (FDR <0.0001) higher natural log-transformed serum C3 and C4 levels, respectively. While each increment of 10-standard deviation of natural log-transformed zinc was associated with a difference of 0.083 (0.024, 0.143) (FDR = 0.049) and 0.007 (-0.138, 0.152) (FDR = 0.935) in log-transformed C3 and C4 levels, respectively. Participants with higher GRS had higher C3 and C4 levels. Furthermore, we found a significant interaction between arsenic exposure and C3-GRS in relation to C3 level (Pinteraction = 0.0096). Our results suggested that plasma arsenic would modify the association between C3 genetic predisposition and serum C3 level. We provide new insight into metals exposure on the human immune system. These findings require replication in future research.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiqi He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Ozturk M, Metin M, Altay V, Bhat RA, Ejaz M, Gul A, Unal BT, Hasanuzzaman M, Nibir L, Nahar K, Bukhari A, Dervash MA, Kawano T. Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling. Biol Trace Elem Res 2022; 200:988-1001. [PMID: 33864199 DOI: 10.1007/s12011-021-02719-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Arsenic is a well-known element because of its toxicity. Humans as well as plants and animals are negatively affected by its exposure. Some countries suffer from high levels of arsenic in their tap water and soils, which is considered a primary arsenic-linked risk factor for living beings. Humans generally get exposed to arsenic by contaminated drinking waters, resulting in many health problems, ranging from cancer to skin diseases. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. This issue emphasizes the importance of speciation of the metalloid elements in terms of impacts on health. When species get exposed to arsenic, it affects the cells altering their involvement. It can lead to abnormalities in inflammatory mechanisms and the immune system which contribute to the negative impacts generated on the body. The poisoning originating from arsenic gives rise to various biological signs on the body which can be useful for the diagnosis. It is important to find true biomarkers for the detection of arsenic poisoning. In view of its application in medicine and biology, studies on understanding the biological activity of arsenic have increased. In this review, we aim at summarizing the current state of knowledge of arsenic and the mechanism behind its toxicity including genotoxicity, oxidative insults, epigenomic changes, and alterations in cellular signaling.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Rouf Ahmad Bhat
- Department of Environmental Science, Sri Pratap College, Cluster University Srinagar, Srinagar, Kashmir, India
| | - Mahnoor Ejaz
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Faculty of Science and Arts, Dept. of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Lutfunnahar Nibir
- Upazilla Health Complex, Ministry of Health, Government of the People's, Homna, Comilla, Bangladesh
| | - Kamuran Nahar
- Dept. of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricul. University, Dhaka, Bangladesh
| | - Andleep Bukhari
- Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Moonisa Aslam Dervash
- Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
19
|
Kumar R, Chauhan D, Saini G, Kumar R, Kumar S, Sharma D, Sharma M, Kumar Bharti V, Kumar A, Ghosh A. Down-regulation of RdRp complex and activated immune response due to increased arsenic level leads to decreased corona virus replication. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100162. [PMID: 36090585 PMCID: PMC9444337 DOI: 10.1016/j.crmicr.2022.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Corona virus is pandemic and responsible for more than 5.6 million deaths. It was observed that its severity was reported in varied ways in different countries and even in different states of India. This variation was critically evaluated in the area with high contamination of Arsenic (As) to understand the arsenic toxicity and Covid epidemiology and associated health effects in the human population. It was reported that the area with low arsenic contamination has a very high incidence rate of Corona infection in the world. Even in the Indian scenario, high As-contaminated states like West Bengal, Jharkhand and Bihar, the incidence rate is 1.994%, 1.114% and 0.661%, respectively. In contrast, states with the least arsenic contamination have a very high corona incidence rate like 6.308, 17.289 and 4.351, respectively. It was evident that Arsenic inhibits the RdRp complex, which leads to the inhibition of viral genome replication. The PAMP associated pathway was activated by Arsenic and effectively bound with viral spike proteins leading to effective clearance of virus through activation of TNF alpha and IL-1. It finally leads to increased production of IgE, IgG and IGA. Arsenic also enhances inflammatory response against the virus through increased production of cytokine. The high arsenic level also induces apoptosis in viral infected cells through Bax/Bak pathway. It activates cytochrome-c and caspase-3 activity, inducing apoptosis in viral infected cells through PARP activation in the nucleus. These combined findings suggest that high arsenic contamination causes replication inhibition, activates an inflammatory response, increases antibody production, and finally leads to apoptosis through the mitochondrial pathway. People residing in arsenic hit areas are at a very low threat of corona infection.
Collapse
Affiliation(s)
- Ranjit Kumar
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
- Corresponding author.
| | - Disha Chauhan
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Geetika Saini
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Rakesh Kumar
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Sunil Kumar
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Dixit Sharma
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Munish Sharma
- Department of Plant Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Vijay Kumar Bharti
- DRDO-Defence Institute of High Altitude Research (DIHAR), UT Ladakh, India
| | - Arun Kumar
- Mahavir Cancer Institute and Research Centre, Patna, India
| | - Ashok Ghosh
- Mahavir Cancer Institute and Research Centre, Patna, India
| |
Collapse
|
20
|
Shi Q, Hu B, Yang C, Deng S, Cheng X, Wu J, Qi N. ATF3 inhibits arsenic-induced malignant transformation of human bronchial epithelial cells by attenuating inflammation. Toxicology 2021; 460:152890. [PMID: 34364923 DOI: 10.1016/j.tox.2021.152890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023]
Abstract
Arsenic is a naturally occurring metalloid strongly associated with the incidence of lung cancer. Understanding the mechanisms of arsenic-induced carcinogenesis favors the development of effective interventions to reduce the incidence and mortality of lung cancer. In this study, we investigated the role of activating transcription factor 3 (ATF3) in arsenic-induced transformation of human bronchial epithelial cells. ATF3 was upregulated during chronic exposure to 0.25 μM arsenic, and loss of ATF3 promoted arsenic-induced transformation. Moreover, arsenic-transformed ATF3 knockout (ATF3 KO-AsT) cells exhibited more aggressive characteristics, including acceleration in proliferation, resistance to chemotherapy and increase in migratory capacity. RNA-seq revealed that pathways involved in inflammation, cell cycle, EMT and oncogenesis were affected due to ATF3 deficiency during chronic arsenic exposure. Further experiments confirmed the overproduction of IL-6, IL-8 and TNFα as well as enhanced phosphorylation of AKT and STAT3 in ATF3 KO-AsT cells. Our results demonstrate that ATF3 upregulated by chronic low-dose arsenic exposure represses cell transformation and acquisition of malignant characteristics through inhibiting the production of proinflammatory cytokines and activation of downstream proteins AKT and STAT3, providing a new strategy for the prevention of carcinogen-induced lung cancer.
Collapse
Affiliation(s)
- Qiwen Shi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bei Hu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chen Yang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shufen Deng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Cheng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
21
|
Fatema K, Shoily SS, Ahsan T, Haidar Z, Sumit AF, Sajib AA. Effects of arsenic and heavy metals on metabolic pathways in cells of human origin: Similarities and differences. Toxicol Rep 2021; 8:1109-1120. [PMID: 34141598 PMCID: PMC8188178 DOI: 10.1016/j.toxrep.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
There are distinctive overlaps in different heavy metal affected metabolic pathways. Affected pathways vary according to the tissue origin and maturity of the cell. Arsenic appears to have relatively more pleiotropic effects on metabolic pathways. Some of the arsenic affected pathways are associated with diabetes.
Various anthropogenic and natural events over the years have gradually increased human exposure to various heavy metals. Several of these heavy metals including cadmium, mercury, nickel, chromium, and the metalloid arsenic among others, have created major public health concerns for their high level of toxicities. Identification of the general as well as the differentially affected cellular metabolic pathways will help understanding the molecular mechanism of different heavy metal-induced toxicities. In this study, we analyzed 25 paired (control vs. treated) transcriptomic datasets derived following treatment of various human cells with different heavy metals and metalloid (arsenic, cadmium, chromium, iron, mercury, nickel and vanadium) to identify the affected metabolic pathways. The effects of these metals on metabolic pathways depend not only on the metals per se, but also on the nature of the treated cells. Tissue of origin, therefore, must be considered while assessing the effects of any particular heavy metal or metalloid. Among the metals and metalloid, arsenic appears to have relatively more pleiotropic influences on cellular metabolic pathways including those known to have association with diabetes. Although only two stem cell derived datasets are included in the current study, effects of heavy metals on these cells appear to be different from other mature cells of similar tissue origin. This study provides useful information about different heavy metal affected pathways, which may be useful in further exploration using wet-lab based techniques.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Ahmed Faisal Sumit
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
22
|
Physiochemical characterization and toxicity assessment of colloidal mercuric formulation-'Sivanar amirtham'. Colloids Surf B Biointerfaces 2021; 200:111607. [PMID: 33578085 DOI: 10.1016/j.colsurfb.2021.111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022]
Abstract
The study aims to characterize and understand the toxicological effects of colloidal mercuric formulation. The physiochemical characterization was carried out using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Energy dispersive X-ray microanalysis system (EDS), Inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), Zeta potential, Brunauer-Emmett-Teller (BET) and electron microscopy. Based on the physiochemical characterizations, the pairwise relationship between the parameters such as size, surface area, surface charge, reactivity and band gap energy were described. The biological effects of the sample were studied by both in vitro and in vivo assays. The in vitro cytotoxicity assay confirmed that the colloidal mercuric formulation was effective against cancer cells (MCF-7) and less toxic to normal cells (Hek 293). The formulation was effective against MCF-7 with more than 85% of apoptotic and necrotic cells, positive for PI staining when treated with 100 μg/mL. The inflammatory response on the macrophage cell lines was studied. The colloidal mercuric formulation upregulated the expression of TGF-β, IL-6 and TNF-α, due to the presence of arsenic and other organic compounds such as piperine. The in vivo developmental toxicity was observed in Zebrafish hampered growth and survival in a dose and time dependent manner. The formulation was safe at lower concentration and exhibit a dose and time dependent toxicity. Based on the results obtained, it is confirmed that the selective toxicity towards MCF-7 cells is promising to develop an effective formulation for the treatment of cancer, provided more such proofs obtained from in vivo experiments.
Collapse
|
23
|
Zhou Q, Jin P, Liu J, Li S, Liu W, Xi S. HER2 overexpression triggers the IL-8 to promote arsenic-induced EMT and stem cell-like phenotypes in human bladder epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111693. [PMID: 33396024 DOI: 10.1016/j.ecoenv.2020.111693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is a natural chemical element that is strongly associated with bladder cancer. Understanding the underlying mechanisms behind the association between arsenic and bladder cancer as well as identifying effective preventive interventions will help reduce the incidence and mortality of this disease. The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties play key roles in cancer development and progression. Here, we reported that chronic exposure to arsenic resulted in EMT and increased levels of the CSC marker CD44 in human uroepithelial cells. Furthermore, IL-8 promoted a mesenchymal phenotype and upregulated CD44 by activating the ERK, AKT and STAT3 signaling. Phosphorylation of the human epidermal growth factor receptor 2 (HER2) was key for arsenic-induced IL-8 overexpression and depended on the simultaneous activation of the MAPK, JNK, PI3K/AKT and GSK3β signaling pathways. We also found that genistein inhibited arsenic-induced HER2 phosphorylation and downregulated its downstream signaling pathways, thereby inhibiting progression of EMT, and reducing CD44 expression levels. These results demonstrate that the HER2/IL-8 axis is related to the acquisition of an EMT phenotype and CSCs in arsenic-treated cells. The inhibitory effects of genistein on EMT and CSCs provide a new perspective for the intervention and potential chemotherapy against arsenic-induced bladder cancer.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Peiyu Jin
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Jieyu Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Sihao Li
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Weijue Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, PR China.
| |
Collapse
|
24
|
Islam MM, Takeyama N. Inorganic arsenic administration suppresses human neutrophil function in vitro. Hum Exp Toxicol 2020; 40:725-734. [PMID: 33063558 DOI: 10.1177/0960327120966040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenic, a major environmental toxicant and pollutant, is a global public health concern. Among its many adverse effects, arsenic is immunotoxic, but its effects on human neutrophil functions are not yet well-defined. In this study, we aimed to evaluate the in vitro effects of acute low-dose NaAsO2 exposure on human polymorphonuclear neutrophils (PMNs) for 12 h on the following innate defense mechanisms: formation of neutrophil extracellular traps (NETs), production of reactive oxygen species (ROS), and phagocytosis. Phorbol myristate acetate (PMA) was added to induce NETs formation, which was quantified by measuring cell-free extracellular DNA (cf-DNA), myeloperoxidase-conjugated (MPO)-DNA and neutrophil elastase-conjugated (NE)-DNA, and confirmed by immunofluorescence labeling and imaging. Extracellular bactericidal activity by NETs was evaluated by co-culturing Escherichia coli and PMNs in the presence of a phagocytic inhibitor. Levels of NETs in the culture medium after PMA stimulation was significantly lower in PMNs pre-exposed to arsenic than those not exposed to arsenic. Immunofluorescence staining and extracellular bactericidal activity by NETs revealed similar results. Phagocytosis and ROS production by PMNs were also significantly reduced by arsenic pre-exposure. Together, our findings provide new insights in arsenic immunotoxicity and suggest how it increases susceptibility to infectious diseases in humans.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, 12703Aichi Medical University, Nagakute, Aichi, Japan
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, 12703Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
25
|
Skalny AV, Lima TRR, Ke T, Zhou JC, Bornhorst J, Alekseenko SI, Aaseth J, Anesti O, Sarigiannis DA, Tsatsakis A, Aschner M, Tinkov AA. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol 2020; 146:111809. [PMID: 33069759 PMCID: PMC7563920 DOI: 10.1016/j.fct.2020.111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Thania Rios Rossi Lima
- São Paulo State University - UNESP, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, SP, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia; K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Ourania Anesti
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece
| | - Dimosthenis A Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece; University School of Advanced Studies IUSS, Pavia, Italy
| | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
26
|
He Z, Wang H, Yue L. Endothelial progenitor cells-secreted extracellular vesicles containing microRNA-93-5p confer protection against sepsis-induced acute kidney injury via the KDM6B/H3K27me3/TNF-α axis. Exp Cell Res 2020; 395:112173. [PMID: 32679234 DOI: 10.1016/j.yexcr.2020.112173] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
The pivotal pathogenetic role of microRNAs (miRs) in sepsis-induced acute kidney injury (AKI) has been demonstrated in mounting evidence. The functions of the target cells are regulated through the release of cells-encapsulated extracellular vesicles (Evs) into the extracellular space. The present study aims to elucidate the clinical significance as well as biological function of the endothelial progenitor cell (EPC)-derived Evs containing miR-93-5p in sepsis-induced AKI. We first established a cellular sepsis-induced AKI mouse model by treatment with lipopolysaccharide (LPS), and tested ectopic expression and depletion experiments in the model. Evs derived from miR-93-5p inhibitor-transfected EPCs (Evs/miR-93-5p inhibitor) were isolated, and co-cultured with HK2 cells to explore the effects of EPC-derived Evs overexpressing miR-93-5p on LPS-induced HK2 cell injury. The interaction between miR-93-5p and lysine (K)-specific demethylase 6B (KDM6B) was identified using dual-luciferase reporter assay, and ChIP was used to validate the relationship between KDM6B and tumor necrosis factor-α (TNF-α). Mice were made septic by cecal ligation and puncture (CLP), and then injected with Ev/miR-93-5p inhibitor to explore its functions in vivo. The results found that miR-93-5p and histone H3 Lys27 trimethylation (H3K27me3) were downregulated while KDM6B was upregulated in LPS-treated HK2 cells. EPC-derived Evs alleviated LPS-induced HK2 cell injury, while Ev/miR-93-5p inhibitor potentiated the cell injury in vitro. miR-93-5p was found to directly target KDM6B. Silencing KDM6B induced H3K27me3, inhibiting the activation of TNF-α, thereby weakening LPS-induced HK2 cell injury. EPC-derived Evs containing miR-93-5p attenuated multiple organ injury, vascular leakage, inflammation, and apoptosis in septic mice. In conclusion, the present study demonstrated that endothelial protection from EPC-derived Evs carrying miR-93-5p in sepsis-induced AKI, which was mediated by regulation KDM6BH/3K27me3/TNF-α axis.
Collapse
Affiliation(s)
- Zhonghua He
- Department of Infectious Disease, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Haixia Wang
- Dispensing Room, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Lingju Yue
- Department of Geriatrics, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China.
| |
Collapse
|
27
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
28
|
Peruru R, Usha Rani R, Thatiparthi J, Sampathi S, Dodoala S, Prasad K. Devil's claw ( Harpagophytum procumbens) ameliorates the neurobehavioral changes and neurotoxicity in female rats exposed to arsenic. Heliyon 2020; 6:e03921. [PMID: 32420487 PMCID: PMC7218267 DOI: 10.1016/j.heliyon.2020.e03921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/16/2019] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Over 200 million people are exposed to arsenic worldwide in their daily lives. Arsenic is a toxic ubiquitous metalloid distributed in the ground water. From the last few decades it is obtaining considerable attention for its severe neurotoxic properties. In this study the neuroprotective efficacy of devil's claw (DCW), a potent antioxidant has been investigated against arsenic induced neurotoxicity in female rats. Neurotoxicity was established by oral administration of 13 mg/kg sodium arsenite. The animals were divided into five groups (n = 6) including normal control, disease/arsenic control, standard treatment (Apocynin, 10 mg/kg), DCW treatment I (DCW, 200 mg/kg) and DCW treatment II (DCW, 400 mg/kg). Exploratory, anxiety and motor coordination related behavior of the animals was assessed using hole-board, forced swimming, beam walk and elevated plus maze tests. Findings revealed that DCW treatment ameliorated anxiety and motor in-coordination in the rats compared to the arsenic control group. In addition, arsenic induced a significant oxidative stress in arsenic only treated group, whereas co-administration with DCW the oxidative stress was reduced prominently. Arsenic control group produced gliosis and nuclear pyknosis of the brain cells which were prominently suppressed with the treatment of DCW for 21 days. The activity of DCW was in correlation with the concentration of harpagoside in the serum estimated by the HPLC method, supports that harpagoside was the active constituent responsible for neuroprotective effect. Further findings are required to understand the molecular mechanisms involved in neuroprotective effect of harpagoside and DCW.
Collapse
Affiliation(s)
- Rupasree Peruru
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | - R. Usha Rani
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | - Jhansyrani Thatiparthi
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | - Sunitha Sampathi
- National Institute of Pharmaceutical Education and Research-Hyderabad, India
| | - Sujatha Dodoala
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | - K.V.S.R.G. Prasad
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| |
Collapse
|
29
|
Harris SM, Jin Y, Loch-Caruso R, Padilla IY, Meeker JD, Bakulski KM. Identification of environmental chemicals targeting miscarriage genes and pathways using the comparative toxicogenomics database. ENVIRONMENTAL RESEARCH 2020; 184:109259. [PMID: 32143025 PMCID: PMC7103533 DOI: 10.1016/j.envres.2020.109259] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Miscarriage is a prevalent public health issue and many events occur before women are aware of their pregnancy, complicating research design. Thus, risk factors for miscarriage are critically understudied. Our goal was to identify environmental chemicals with a high number of interactions with miscarriage genes, based on known toxicogenomic responses. METHODS We used miscarriage (MeSH: D000022) and chemical gene lists from the Comparative Toxicogenomics Database in human, mouse, and rat. We assessed enrichment for gene ontology biological processes among the miscarriage genes. We prioritized chemicals (n = 25) found at Superfund sites or in the blood or urine pregnant women. For chemical-disease gene sets of sufficient size (n = 13 chemicals, n = 20 comparisons), chi-squared enrichment tests and proportional reporting ratios (PRR) were calculated. We cross-validated enrichment results. RESULTS Miscarriage was annotated with 121 genes and overrepresented in inflammatory response (q = 0.001), collagen metabolic process (q = 1 × 10-13), cell death (q = 0.02), and vasculature development (q = 0.005) pathways. The number of unique genes annotated to a chemical ranged from 2 (bromacil) to 5607 (atrazine). In humans, all chemicals tested were highly enriched for miscarriage gene overlap (all p < 0.001; parathion PRR = 7, cadmium PRR = 6.5, lead PRR = 3.9, arsenic PRR = 3.5, atrazine PRR = 2.8). In mice, highest enrichment (p < 0.001) was observed for naphthalene (PRR = 16.1), cadmium (PRR = 12.8), arsenic (PRR = 11.6), and carbon tetrachloride (PRR = 7.7). In rats, we observed highest enrichment (p < 0.001) for cadmium (PRR = 8.7), carbon tetrachloride (PRR = 8.3), and dieldrin (PRR = 5.3). Our findings were robust to 1000 permutations each of variable gene set sizes. CONCLUSION We observed chemical gene sets (parathion, cadmium, naphthalene, carbon tetrachloride, arsenic, lead, dieldrin, and atrazine) were highly enriched for miscarriage genes. Exposures to chemicals linked to miscarriage, and thus linked to decreased probability of live birth, may limit the inclusion of fetuses susceptible to adverse birth outcomes in epidemiology studies. Our findings have critical public health implications for successful pregnancies and the interpretation of adverse impacts of environmental chemical exposures on pregnancy.
Collapse
Affiliation(s)
- Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuan Jin
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ingrid Y Padilla
- Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, Puerto Rico
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Xia S, Sun Q, Zou Z, Liu Y, Fang X, Sun B, Wei S, Wang D, Zhang A, Liu Q. Ginkgo biloba extract attenuates the disruption of pro-and anti-inflammatory T-cell balance in peripheral blood of arsenicosis patients. Int J Biol Sci 2020; 16:483-494. [PMID: 32015684 PMCID: PMC6990893 DOI: 10.7150/ijbs.39351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
Endemic arsenicosis is a public health problem that affects thousands of people worldwide. However, the biological mechanism involved is not well characterized, and there is no specific treatment. Exposure to arsenic may be associated with immune-related problems. In the present work, we performed an investigation to determine whether the Th17/Treg balance was abnormal in peripheral blood mononuclear cells (PBMCs) of patients with arsenicosis caused by burning coal. Furthermore, we investigated the effect of Ginkgo biloba extract (GBE) on the Th17/Treg imbalance in patients with arsenicosis. In this trial, 81 arsenicosis patients and 37 controls were enrolled. The numbers of Th17 and Treg cells, as well as related transcription factors and serum cytokines, were determined at the beginning and end of the study. Patients with arsenicosis exhibited higher levels of Th17 cells, Th17-related cytokines (IL-17A and IL-6), and the transcription factor RORγt. There were lower levels of Treg cells, a Treg-related cytokine (IL-10), and the transcription factor Foxp3 as compared with controls. There was a positive correlation between the levels of Th17 cells and IL-17A and the levels of arsenic in hair. Arsenicosis patients were randomly assigned to a GBE treatment group or a placebo group. After 3 months of follow-up, 74 patients completed the study (39 cases in the GBE group and 35 in the placebo group). Administration of GBE to patient upregulated the numbers of Treg cells and the level of IL-10 and downregulated the numbers of Th17 cells and the levels of cytokines associated with Th17 cells. The mRNA levels of Foxp3 and RORγt were increased and decreased, respectively. These results indicated that exposure to arsenic is associated with immune-related problems. The present investigation describes a previously unknown mechanism showing that an imbalance of pro- and anti-inflammatory T cells is involved in the pathogenesis of arsenicosis and that a GBE exerts effects on arsenicosis through regulation of the pro- and anti-inflammatory T cell balance.
Collapse
Affiliation(s)
- Shiqing Xia
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qian Sun
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Xiaolin Fang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
32
|
Parvez F, Lauer FT, Factor-Litvak P, Liu X, Santella RM, Islam T, Eunus M, Alam N, Sarwar G, Rahman M, Ahsan H, Graziano J, Burchiel SW. Assessment of arsenic and polycyclic aromatic hydrocarbon (PAH) exposures on immune function among males in Bangladesh. PLoS One 2019; 14:e0216662. [PMID: 31095595 PMCID: PMC6522035 DOI: 10.1371/journal.pone.0216662] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Arsenic and polycyclic aromatic hydrocarbons (PAH) are environmental pollutants to which people around the world are exposed through water, food and air. In mouse and in vitro studies of human cells, both of these chemicals have been shown to modulate the immune system. In some experimental studies, a synergistic disruption of immune function was observed by a combined exposure to arsenic and PAH. However, a joint effect of arsenic and PAH on immune function has not been studied in humans. We have conducted an epidemiological investigation to examine effects of chronic arsenic and PAH exposures on immune function. We assessed T-cell proliferation (TCP) and cytokine production of anti-CD3/anti-CD28 stimulated lymphocytes in human peripheral blood mononuclear cells (HPBMC) among 197 healthy men enrolled to the Health Effects of Arsenic Longitudinal (HEALS) cohort in Bangladesh. By design, approximately half were active smokers and the rest were never smokers. Our analyses demonstrated that IL-1b, IL-2, IL-4 and IL-6 were significantly stimulated as a function of urinary arsenic levels in models adjusted for age, body mass index (BMI), smoking status and PAH-DNA adducts. After correcting for false detection rate (FDR), only IL-1b remained statistically significant. We found a U-shaped dose response relationship between urinary arsenic and IL-1b. On the other hand, PAH-DNA adducts were associated with an inhibition of TCP and appeared as an inverted U-shape curve. Dose response curves were non-monotonic for PAH-DNA adduct exposures and suggested that cytokine secretion of IFNg, IL-1b, IL-2, IL-10 and IL17A followed a complex pattern. In the majority of donors, there was a trend towards a decrease in cytokine associated with PAH-DNA adducts. We did not observe any interaction between urinary arsenic and PAH-DNA adducts on immune parameters. Our results indicate that long-term exposures to arsenic and PAH have independent, non-monotonic associations with TCP and cytokine production.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Fredine T. Lauer
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, United States of America
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Tariqul Islam
- University of Chicago Field Research Office, Bangladesh
| | | | - Nur Alam
- University of Chicago Field Research Office, Bangladesh
| | - Golam Sarwar
- University of Chicago Field Research Office, Bangladesh
| | | | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, IL, United States of America
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Scott W. Burchiel
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, United States of America
- * E-mail:
| |
Collapse
|
33
|
Chronic arsenic exposure in drinking water interferes with the balances of T lymphocyte subpopulations as well as stimulates the functions of dendritic cells in vivo. Int Immunopharmacol 2019; 71:115-131. [PMID: 30889423 DOI: 10.1016/j.intimp.2019.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
The immunomodulatory properties of arsenic are nowadays supposed be associated with pathological injuries of this toxicant and the details have not been clarified. Our objective was to explore inflammation, differentiation of diverse T cell subsets, as well as the phenotypic molecules and functions of dendritic cells (DCs) by chronic arsenic exposure in vivo. We exposed different concentrations of arsenic (0, 0.1, 1 and 10 mg/L) in drinking water for 6 and 12 months in C57BL/6 mice. We first confirmed that low levels of arsenic induced excess inflammation evidenced by accumulation of macrophages and lymphocytes in bronchoalveolar lavage fluid (BALF), secretion of pro-inflammatory cytokine IL-1β in BALF and serum, as well as histological analysis. Flow cytometry analysis revealed that arsenic disturbed CD4/CD8 T-cell ratio in isolated pneumonocytes and splenocytes, as well as enhanced IFN-γ and reduced IL-4 in spleen. The mRNA expressions of transcription factors (T-bet, GATA3, ROR-γt) and cytokines (IFN-γ, IL-4, IL-10, IL-23, IL-22) showed the imbalanced Th1/Th2/Th17 differentiation in arsenic exposed lung and spleen. We further testified that arsenic enhanced the percentages of CD11c+ DCs, and promoted the expressions of antigen presentation molecule MHC II and cytokine IL-12, co-stimulatory molecules (CD86, CD80), and chemokine receptors (CCR7, CCR5) in vivo. Moreover, arsenic activated the expressions of immune-related MAPKs and NF-κB. Taken together, our study here demonstrated that chronic arsenic exposure could disrupt the immune homeostasis in vivo possibly by interfering with the differentiation of Th1/Th2/Th17 subsets as well as the function of DCs.
Collapse
|
34
|
Fallah M, Moghble N, Javadi I, Bahadoran H, Shahriary A. Effect of Curcumin and N-Acetylcysteine on Brain Histology and Inflammatory Factors (MMP-2, 9 and TNF-α) in Rats Exposed to Arsenic. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Arsenic is a toxic element that widely widespread in environment. Inflammation is now considered as one of the major mechanisms implicated in arsenic poisoning. Curcumin (Cur) and N-acetylcysteine (NAC) are potential antioxidants that protect cells against inflammation. This study aimed to compare the protective effect of Cur and NAC on brain histology and inflammatory factors, including matrix metalloproteinases-2, -9 (MMP-2, 9) and tumor necrosis factor-α (TNF-α) in rats exposed to single dose of arsenic. Methods: Rats were exposed to single dose of arsenic (20mg/kg, by gavage) for 30 days and then treated with 300mg/kg NAC (by gavage) and 100mg/kg Cur (by gavage), individually. Serum level of TNF-α was measured using specific ELISA kits. MMP2 and MMP9 contents were measured using Gelatin Zymography method. Brain samples were collected for histopathological and morphological examinations. Results: Arsenic treatment induced white matter lesions and cellular damages at hippocampal CA1 area of the brain. The number of hippocampal CA1 pyramidal cells was significantly declined in arsenic exposed rats (p<0.05). Treatment with NAC and Cur improved these abnormalities. The mean levels of MMP2, MMP9 and TNF-α inflammatory biomarkers were slightly declined after treatment with NAC and Cur (p>0.05). Conclusion: NAC and Cur play an important role in protecting the hippocampal CA1 cells injury induced by arsenic.
Collapse
Affiliation(s)
- Mostafa Fallah
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Najmeh Moghble
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Iraj Javadi
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Hossein Bahadoran
- Department of Anatomy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Zhou Q, Xi S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018; 99:78-88. [PMID: 30223072 DOI: 10.1016/j.yrtph.2018.09.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Long-term exposure to arsenic (inorganic arsenic) is a world-wide environmental health concern. Arsenic is classified as the Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Epidemiological studies have established a strong association between inorganic arsenic (iAs) exposure in drinking water and an increased incidence of cancer including bladder, liver, lung, prostate, and skin cancer. iAs also increases the risk of other diseases such as cardiovascular disease, hypertension and diabetes. The molecular mechanisms of carcinogenesis of iAs remain poorly defined, several mechanisms have been proposed, including genotoxicity, altered cell proliferation, oxidative stress, changes to the epigenome, disturbances of signal transduction pathways, cytotoxicity and regenerative proliferation. In this article, we will summarize current knowledge on the mechanisms of arsenic carcinogenesis and focus on integrating all these issues to garner a broader perspective.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
36
|
Liu J, Zhao H, Wang Y, Shao Y, Li J, Xing M. Alterations of antioxidant indexes and inflammatory cytokine expression aggravated hepatocellular apoptosis through mitochondrial and death receptor-dependent pathways in Gallus gallus exposed to arsenic and copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15462-15473. [PMID: 29569195 DOI: 10.1007/s11356-018-1757-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, we sought to investigate the effects of sub-chronic exposure of arsenic (As) and copper (Cu) on oxidative stress, inflammatory response, and mitochondria and death receptor apoptosis pathways in chicken liver. Seventy-two 1-day-old male Hy-line chickens were treated with basal diet, 30 mg/kg arsenic trioxide (As2O3), or/and 300 mg/kg copper sulfate (CuSO4) for 4, 8, and 12 weeks. Study revealed that exposure to As or/and Cu undermined the antioxidant function and increased lipid peroxidation. Worse yet, liver cell swollen, vacuolar degeneration, and inflammatory cell infiltration were accompanied by an increase of the nuclear factor-κB (NF-κB) and its downstream inflammation-related genes after exposure to As or/and Cu. Furthermore, mitochondria swollen and chromatin condensation were found in As and Cu groups, and hepatocyte nuclear membrane rupture and markedly increased (P < 0.01) apoptosis index were observed in As combined with Cu group. Meanwhile, the transcription and protein expression levels of Bcl-2-associated X protein (Bax), p53, cytochrome c (Cyt c), and caspase-3, 8, 9 were upregulated and B cell lymphoma-2 (Bcl-2) was downregulated in As, Cu, and As + Cu groups in the liver tissues (P < 0.05, P < 0.01). Our results indicated that exposure to As or/and Cu could lead to oxidative stress, inflammatory response, and tissue damage and aggravate hepatocellular apoptosis through mitochondrial and death receptor-dependent pathways in chicken liver. And As and Cu showed a possible synergistic relationship in liver damage.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yizhi Shao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jinglun Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
37
|
Dani SU, Walter GF. Chronic arsenic intoxication diagnostic score (CAsIDS). J Appl Toxicol 2017; 38:122-144. [DOI: 10.1002/jat.3512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research; Acangau Foundation; Paracatu MG Brazil
- Department of General Internal Medicine; St. Gallen Cantonal Hospital; Switzerland
- PizolCare Praxis Wartau; Trübbach Switzerland
| | | |
Collapse
|