1
|
Xiong W, Liu B, Lu H, Liu X. Two novel bacteriophages isolated from the environment that can help control activated sludge foaming. Folia Microbiol (Praha) 2024; 69:1013-1027. [PMID: 38363443 DOI: 10.1007/s12223-024-01145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Nocardia spp., which belongs to one of the Nocardio-form filamentous bacteria, is usually surface hydrophobic and when overproduced attaches to the surface of bubbles under the action of surfactants, allowing the stable presence of foam on the surface of aeration tanks, leading to the occurrence of sludge-foaming events. Two novel phages, P69 and KYD2, were isolated from the environment, and their hosts were Nocardia transvalensis and Nocardia carnea, respectively. These two phages are Siphophages-like with long tails. An aeration tank pilot plant was constructed in the laboratory to simulate sludge foaming, and these two strains of phage were applied. Compared with the reactor not dosed with phage, the application of phage could reduce the host level in the reactor, resulting in the highest decrease in turbidity by more than 68% and sludge volume index by more than 25%. The time for surface foam disappearance was 9 h earlier than that of the control group (the group with the same concentration of Nocardia carnea but no bacteriophage applied), significantly improving water quality. The phage can effectively inhibit the propagation of Nocardia in the actual sludge-foaming event, control the sludge foaming, and improve the effluent quality. It provides a novel and relatively economical solution for controlling sludge foaming in sewage treatment plants in the future, shows that the phages have potential application value in the prevention and control of Nocardia, and provides another way to control the sludge-foaming event caused by the excessive reproduction of Nocardia in the future.
Collapse
Affiliation(s)
- Wenbin Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Han Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China.
| |
Collapse
|
2
|
Turnau K, Pajdak-Stós A, Korzh Y, Domka A, Bień-Kostycz P, Fiałkowska E. Biological control of predatory fungi inhabiting activated sludge in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120572. [PMID: 38493643 DOI: 10.1016/j.jenvman.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The unfavorable phenomenon of activated sludge bulking that occurs in sewage treatment plants (WWTPs) is caused by the over-proliferation of filamentous bacteria that should be limited by the Lecane rotifers that feed on them; however, predatory, rotiferovorous fungi that often inhabit WWTPs pose a real threat to these organisms. To solve this problem, we investigated the interaction of the fungus Clonostachys rosea, which is a known Biological Control Agent (BCA) and the predacious Zoophagus sp. in simplified laboratory culture conditions. The presence of C. rosea in the cultures reduced the number of active traps, thus translating into a much smaller number of rotifers being caught. The mycelium of C. rosea was labeled with a red fluorescent protein (RFP). The life cycle of C. rosea that were attacking Zoophagus sp. (hunting for rotifers) is described. C. rosea spores germinate into single-celled forms and penetrate the interior of the Zoophagus mycelium where they feed on the cytoplasm. Then is the mycelium produced abundantly and forms conidiophores. This type of life strategy has not been known before. The obtained results demonstrated the potential of C. rosea as a BCA that can be used to protect rotifers in the event of an infection of activated sludge by the predatory fungi that threaten the rotifer population.
Collapse
Affiliation(s)
- Katarzyna Turnau
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Yuliia Korzh
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland; Institute of Microbiology and Virology named after D.K. Zabolotny National, Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Agnieszka Domka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland
| | - Patrycja Bień-Kostycz
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Pajdak-Stós A, Fiałkowska E, Hajdyła F, Fiałkowski W. The potential of Lecane rotifers in microplastics removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165662. [PMID: 37478930 DOI: 10.1016/j.scitotenv.2023.165662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Dealing with hard-to-degrade plastics pollution of terrestrial and aquatic environments is one of the most urgent problems of the modern world. The smallest fraction (<5 mm) called micro-plastics (MP) has been found everywhere from ice in Greenland, streams, rivers, soil and even in the human placenta. The goal of our research was to assess the ability of rotifers Lecane inermis to remove micro-plastics suspended in the water column. In the experiments we investigated specific interactions between MP, biofilm and rotifers specialized in feeding on biofilm. We hypothesized that MP adhere to the biofilm and after ingestion by rotifers could be extracted from the water in the form of compact conglomerates excreted with fecal pellets. In these experiments, we demonstrated that: (i) the rotifers preferentially ingest microplastics embedded in biofilm, (ii) the presence of microplastics does not affect growth and fecundity of rotifers, and (iii) that MP aggregation is significantly improved by the presence of biofilm, additionally enhanced in the presence of rotifers. Our findings will help to understand the role of micro-grazers, such as L. inermis feeding on biofilm, in the fate of MP in nature. In the longer term, our results could help to develop biotechnological tools for MP removal from the aquatic environment.
Collapse
Affiliation(s)
- Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| | - Filip Hajdyła
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Wojciech Fiałkowski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Syamimi Zaidi N, Syafiuddin A, Sillanpää M, Burhanuddin Bahrodin M, Zhang Zhan L, Ratnasari A, Kadier A, Aamer Mehmood M, Boopathy R. Insights into the potential application of magnetic field in controlling sludge bulking and foaming: A review. BIORESOURCE TECHNOLOGY 2022; 358:127416. [PMID: 35660656 DOI: 10.1016/j.biortech.2022.127416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The formation of bulking and foaming in biological wastewater treatment could cause a series of operational issues with biomass and effluent quality, ultimately affect the treatment performance of the system. The essential parameters influencing the growth of bulking and foaming bacteria are comprehensively summarised in this paper. Existing bulking and foaming control approached are critically reviewed and addressed, as well as their drawbacks and limitations. Despite the abundance of information and implementation, a complete control technique for limiting filamentous sludge bulking and foaming remains insufficient. Magnetic field application is emphasised as a viable control strategy in this regard. The present review study provides new insight of this application by comparing the use of magnetic fields to conventional treatments. Future outlooks on the use of magnetic fields to prevent BFB proliferation were also highlighted.
Collapse
Affiliation(s)
- Nur Syamimi Zaidi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia; Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Achmad Syafiuddin
- Environmental Health Division, Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, Miami, USA
| | - Muhammad Burhanuddin Bahrodin
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Loh Zhang Zhan
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Anisa Ratnasari
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
5
|
Fiałkowska E, Fiałkowski W, Wilson CG, Pajdak-Stós A. Effects of polyaluminum chloride (PAX-18) on the relationship between predatory fungi and Lecane rotifers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17671-17681. [PMID: 34674125 PMCID: PMC8873159 DOI: 10.1007/s11356-021-16952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
PAX-18 (polyaluminum chloride) is frequently used in WWTPs (wastewater treatment plants) to overcome sludge bulking. An alternative biological method is the usage of Lecane rotifers, which can be endangered by predacious fungi. We investigated the influence of different PAX-18 concentrations on the relationship between Lecane inermis and predacious fungi (Zoophagus and Lecophagus) differing in feeding mode. High PAX concentration (6 mg Al3+ L-1) strongly limited the number of the rotifers, which in low concentration (1.2 mg Al3+ L-1), after an initial decline, increased, but significantly slower than in control. Under the simultaneous influence of Lecophagus and PAX, rotifers were driven almost extinct at the high concentration, but survived at the lower concentration and increased in the control. When treated with Zoophagus, only one or two rotifers survived in treatments and control. High concentrations of PAX significantly restricted the growth of fungi, whereas in low concentrations and control conditions, their length increased, with Zoophagus growing much quicker than Lecophagus. Zoophagus was significantly more efficient in trapping rotifers regardless of PAX concentration. The trapping ability of mycelium following extended exposure to PAX was strongly limited at high concentrations, in comparison to control. Conidia of Zoophagus turned out to be considerably more resistant to PAX-18 and starvation than Lecophagus conidia.
Collapse
Affiliation(s)
- Edyta Fiałkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Wojciech Fiałkowski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Christopher G Wilson
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
6
|
Yang C, Lim W, Song G. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109103. [PMID: 34129918 DOI: 10.1016/j.cbpc.2021.109103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
Excessively used pesticides in agricultural areas are spilled into aquatic environments, wherein they are suspended or sedimented. Owing to climate change, herbicides are the fastest growing sector of the pesticide industry and are detected in surface water, groundwater, and sediments near agricultural areas. In freshwater, organisms, including mussels, snails, frogs, and fish, are exposed to various types and concentrations of herbicides. Invertebrates are sensitive to herbicide exposure because their defense systems are incomplete. At the top of the food chain in freshwater ecosystems, fish show high bioaccumulation of herbicides. Herbicide exposure causes reproductive toxicity and population declines in freshwater organisms and further contamination of fish used for consumption poses a risk to human health. In addition, it is important to understand how environmental factors are physiologically processed and assess their impacts on reproductive parameters, such as gonadosomatic index and steroid hormone levels. Zebrafish is a good model for examining the effects of herbicides such as atrazine and glyphosate on embryonic development in freshwater fish. This review describes the occurrence and role of herbicides in freshwater environments and their potential implications for the reproduction and embryonic development of freshwater organisms.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Correa-Galeote D, Roibás A, Mosquera-Corral A, Juárez-Jiménez B, González-López J, Rodelas B. Salinity is the major driver of the global eukaryotic community structure in fish-canning wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112623. [PMID: 33901822 DOI: 10.1016/j.jenvman.2021.112623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Fish-canning wastewater is characterized frequently by a high content of salt (NaCl), making its treatment particularly difficult; however, the knowledge of the effect of NaCl on eukaryotic communities is very limited. In the present study, the global diversity of eukaryotes in activated sludges (AS) from 4 different wastewater treatment plants (WWTPs) treating fish-canning effluents varying in salinity (0.47, 1.36, 1.72 and 12.76 g NaCl/L) was determined by sequencing partial 18S rRNA genes using Illumina MiSeq. A greater diversity than previously reported was observed in the AS community, which comprised 37 and 330 phylum-like and genera-like groups, respectively. In this sense, the more abundant genus-like groups (average relative abundance (RA) > 5%) were Adineta (6.80%), Lecane (16.80%), Dictyostelium (7.36%), Unclassified_Fungi7 (6.94%), Procryptobia (5.13) and Oocystis (5.07%). The eukaryotic communities shared a common core of 25 phylum-like clades (95% of total sequences); therefore, a narrow selection of the eukaryotic populations was found, despite the differences in the abiotic characteristics of fish-canning effluents and reactor operational conditions inflicted. The differences in NaCl concentration were the main factor that influenced the structure of the eukaryotic community, modulating the RAs of the different phylum-like clades of the common core. Higher levels of salt increased the RAs of Ascomycota, Chlorophyta, Choanoflagellata, Cryptophyta, Mollusca, Nematoda, Other Protists and Unclassified Fungi. Among the different eukaryotic genera here found, the RA of Oocystis (Chlorophyta) was intimately correlated to increasing NaCl concentrations and it is proposed as a bioindicator of the global eukaryotic community of fish-canning WWTPs.
Collapse
Affiliation(s)
- David Correa-Galeote
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain.
| | - Alba Roibás
- Universidade de Santiago de Compostela. Escuela de Ingeniería. Dpto. de Ingeniería Química, Spain
| | - Anuska Mosquera-Corral
- Universidade de Santiago de Compostela. Escuela de Ingeniería. Dpto. de Ingeniería Química, Spain
| | - Belén Juárez-Jiménez
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| | - Jesús González-López
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| | - Belén Rodelas
- Universidad de Granada. Facultad de Farmacia. Dpto. de Microbiología, Spain; Universidad de Granada. Instituto del Agua. Sección Microbiología y Tecnologías Ambientales, Spain
| |
Collapse
|
8
|
Wright L, Katouli M, Kurtböke Dİ. Isolation and Characterization of Nocardiae Associated with Foaming Coastal Marine Waters. Pathogens 2021; 10:579. [PMID: 34068658 PMCID: PMC8151412 DOI: 10.3390/pathogens10050579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Nocardiosis is an infectious disease caused by Nocardia species that occurs worldwide, albeit more prevalently in tropical/subtropical regions. It can appear as either acute, subacute or as a chronic infection mostly with those with a compromised/weakened immune system. Inhalation of spores and or mycelium fragments is the main transmission route for developing pulmonary nocardiosis. In contrast, cutaneous nocardiosis usually occurs via direct contact. In the subtropical region of the Sunshine Coast in Australia foaming events with thick and persistent and orange-brown color foam have been observed during summer seasons in the near shore marine environments. This study reports the existence of nocardiae in these near shore marine environments by the use of a novel isolation method which used the gas requirements of nocardiae as a selective battery. A total of 32 nocardiae were isolated with the use of this novel method and subsequently conducted molecular identification methods confirmed that the isolates belonged to the genus Nocardia. Twenty-one isolates out of the 32 were closely related to N. nova strains MGA115 and one was related to CBU 09/875, in addition when compared with human pathogenic nocardiae twenty of the isolates were found to be related to N. nova strain JCM 6044. Isolates displayed varied resistance against some of the antibiotics tested when interpretation threshold recommended the Comite de L'Antibiogramme de la Societe Francaise de Microbiologie were used. The highest level of resistance against cefotaxime (n = 27) and ceftriaxone (n = 24). Some of the isolates (n = 6) that displayed resistance to selected antibiotics also possessed potential human pathogenic characteristics such as adherence and translocation through human long epithelial cells as well as displaying phage resistance (n = 26). They might thus present a potential public health risk if frequently encountered through exposure to aerosols generated by the foam as well as direct contact through a wound. Preventative measures to control the growth of nocardiae in such environments such as the control of pollutants, might prevent potential infections that might be caused by these bacteria in humans as well as in marine animals.
Collapse
Affiliation(s)
| | | | - D. İpek Kurtböke
- Genecology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (L.W.); (M.K.)
| |
Collapse
|
9
|
Sigona C, Bardi A, Modeo L, Mori G, Potekhin A, Verni F, Munz G, Petroni G. Role of bacterivorous organisms on fungal-based systems for natural tannin degradation. Heliyon 2020; 6:e03604. [PMID: 32258507 PMCID: PMC7118291 DOI: 10.1016/j.heliyon.2020.e03604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/04/2019] [Accepted: 03/11/2020] [Indexed: 11/29/2022] Open
Abstract
Tannery wastewater presents high concentrations of organic load and pollutant recalcitrant molecules (e.g. tannins), which reduce the efficiency of biological treatment processes. Recent studies showed that several fungal species and strains are effective in the degradation of tannins. However, high bacterial load can negatively affect fungal growth, reducing system stability and degradation performances. The aim of the present study was to evaluate the effects of the introduction of bacterivorous grazers (ciliates and/or rotifers) in batch scale experiments using fungi to remove Tara tannin, i.e. to check the potential synergistic effect between fungi and bacterivorous grazers in the degradation of recalcitrant compounds. In this context, the ciliated grazers Paramecium calkinsi, Tetrahymena sp., Pseudovorticella sp., and the rotifer Lecane inermis, preliminary selected according to their ability to grow in a solution prepared with Tara tannin, were separately tested. Activated sludge, including a complex mixture of native grazers, was used as experimental control. The following parameters were monitored: bacterial load, number of grazers/mL and Soluble Chemical Oxygen Demand (SCOD). Colony Forming Unit (CFU)/grazers ratio was also calculated. Particular attention was paid to: i) bacterial load reduction and ii) enhancement of recalcitrant compounds degradation, and we observed that in all experimental conditions where grazers occurred bacterial load was significantly reduced and the system achieved a higher SCOD removal in a shorter time. Our findings provide useful insights for the stabilization of fungal-based systems in non-sterile conditions.
Collapse
Affiliation(s)
- Cristiana Sigona
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Alessandra Bardi
- Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139, Florence, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Gualtiero Mori
- CER2CO (Centro Ricerca Reflui Conciari), Via Arginale Ovest 81, 56028, San Romano-San Miniato, Pisa, Italy
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint-Petersburg State University, 7/9 University Embankment, 199034, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139, Florence, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| |
Collapse
|
10
|
Fan NS, Qi R, Huang BC, Jin RC, Yang M. Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control: A review. CHEMOSPHERE 2020; 244:125371. [PMID: 31835053 DOI: 10.1016/j.chemosphere.2019.125371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Candidatus Microthrix parvicella has been frequently detected as the dominant filamentous bacteria in bulking sludge and thus seriously affects the stable operation of activated sludge processes. The extremely low growth rate of Ca. M. parvicella and its sensitivity to environmental variations greatly limit the development of effective techniques to control filamentous bulking. Based on previous investigations, a variety of restrictive substrates, operating and culture conditions, environmental factors and other potential inhibitors have varying degrees of impact on the growth of this microorganism. This review systematically summarizes the key factors affecting Ca. M. parvicella growth with a focus on the influencing mechanism. Recent filamentous bulking control strategies are also critically reviewed and discussed. Additionally, research needs for the next few years are proposed with the aim of establishing effective and specific control strategies for filamentous sludge bulking.
Collapse
Affiliation(s)
- Nian-Si Fan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Qi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Min Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Gu Y, Lin D, Fei X, Chen Y, Wang C, Yang Q, Tang Y. Labeling of Microthrix parvicella in situ: A novel FRET probe based on bisoctyl rhodamine B. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:263-271. [PMID: 30703709 DOI: 10.1016/j.saa.2019.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Filamentous bacteria, particularly Microthrix parvicella, are mainly responsible for bulking or foaming of activated sludge. Based on the affinity of M. parvicella to the hydrophobic characteristics of long-chain fatty acids, a novel bisoctyl rhodamine B (BORB) and a novel fluorescence resonance energy transfer (FRET) complex probe were prepared herein to study their properties. When the FRET probe was used in in situ activated sludge, M. parvicella was clearly labeled at 20 nmol/L, which was a reduction of 50 times compared to that of the BORB (1 μmol/L) alone and 500 times compared to the carbazole-quinoline probe reported previously. Compared with fluorescence in situ hybridization, M. parvicella could be clearly labeled using BORB and the FRET probe in situ without requiring complicated pretreatments (i.e., shock and broken process, fixed sample, digestion, and lysozyme treatment). This study discusses the facile approach developed for labeling M. parvicella in early warning expansion, thereby inhibiting and controlling sludge bulking in situ.
Collapse
Affiliation(s)
- Yingchun Gu
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Dayong Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuening Fei
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yongqiang Chen
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Cuihong Wang
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Qi Yang
- School of Science, Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin 300384, China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China.
| |
Collapse
|
12
|
Fiałkowska E, Pajdak-Stós A. Temperature-Dependence of Predator-Prey Dynamics in Interactions Between the Predatory Fungus Lecophagus sp. and Its Prey L. inermis Rotifers. MICROBIAL ECOLOGY 2018; 75:400-406. [PMID: 28963577 PMCID: PMC5742607 DOI: 10.1007/s00248-017-1060-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Temperature is considered an important factor that influences the bottom-up and top-down control in water habitats. We examined the influence of temperature on specific predatory-prey dynamics in the following two-level trophic system: the predatory fungus Lecophagus sp. and its prey Lecane inermis rotifers, both of which originated from activated sludge obtained from a wastewater treatment plant (WWTP). The experiments investigating the ability of conidia to trap rotifers and the growth of fungal mycelium were performed in a temperature range that is similar to that in WWTPs in temperate climate. At 20 °C, 80% of the conidia trapped the prey during the first 24 h, whereas at 8 °C, no conidium was successful. The mycelium growth rate was the highest at 20 °C (r = 1.44) during the first 48 h but decreased during the following 24 h (r = 0.98), suggesting the quickest use of resources. At a medium temperature of 15 °C, the tendency was opposite, and the r value was lower during the first 48 h. At 8 °C, the growth rate was very low and remained at the same level even though numerous active rotifers were potentially available for the fungus. The temperature also influences the production of new conidia; on the 7th day, new conidia were observed in 96% of the wells at 20 °C, but no new conidia were observed at 8°C. These results show that the prey (rotifers)-predator (Lecophagus) dynamics in WWTPs is temperature-dependent, and a temperature of 8 °C is a strongly limiting factor for the fungus. Moderate temperatures ensure the most stable coexistence of the fungus and its prey, whereas the highest temperature can promote the prevalence of the predator.
Collapse
Affiliation(s)
- Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|