1
|
Tu M, Chen L, Gu J, Mao C, Ren Y, Wang H, Xu G. Decomplexation of Pb-EDTA by electron beam irradiation technology: efficiency and mechanism. RSC Adv 2024; 14:38815-38826. [PMID: 39654921 PMCID: PMC11626710 DOI: 10.1039/d4ra04993d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
As a common heavy metal complex in industrial wastewater, Pb-EDTA has garnered much attention due to its detrimental impact on both human health and the ecological environment. The degradation of heavy metal complexes by traditional methods requires subsequent treatment to recover heavy metals. This article attempts to find an effective method to simultaneously degrade both organic matter and heavy metal pollutants. Experimental results indicate that 1 mM Pb-EDTA can be effectively removed at 10 kGy with a degradation efficiency of 91.62%. Most lead ions were still in a stable complex state, with a removal rate of 24.42% (10 kGy). When the absorbed dose increased to 80 kGy, the degradation efficiency of Pb-EDTA was 95.24%. At this time, the removal rate of Pb2+ reached 68.82%. Through radical scavenging experiments and further mechanism analysis, it was demonstrated that electron beam irradiation primarily generates ·OH radicals, disrupting the structure of Pb-EDTA, gradually decarboxylating, and ultimately generating formic acid, acetic acid, and NO3 -. The released metal ions were reduced by eaq - and ·H to obtain lead monomers. Residual toxicity analysis indicates that the toxicity of degradation products generated by electron beam irradiation is significantly reduced. Experimental results showed that electron beam irradiation can effectively degrade Pb-EDTA and recover lead ions simultaneously.
Collapse
Affiliation(s)
- Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
- Shanghai, University, Shanghai Institute Applied Radiation 20 Chengzhong Road Shanghai 200444 PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
- Shanghai, University, Shanghai Institute Applied Radiation 20 Chengzhong Road Shanghai 200444 PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education Shanghai, 200444 PR China
- Shanghai, University, Shanghai Institute Applied Radiation 20 Chengzhong Road Shanghai 200444 PR China
| |
Collapse
|
2
|
Olasupo A, Corbin DR, Shiflett MB. Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133830. [PMID: 38387180 DOI: 10.1016/j.jhazmat.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The daunting effects of persistent organic pollutants on humans, animals, and the environment cannot be overemphasized. Their fate, persistence, long-range transport, and bioavailability have made them an environmental stressor of concern which has attracted the interest of the research community. Concerted efforts have been made by relevant organizations utilizing legislative laws to ban their production and get rid of them completely for the sake of public health. However, they have remained refractive in different compartments of the environment. Their bioavailability is majorly a function of different anthropogenic activities. Landfilling and incineration are among the earliest classical means of environmental remediation of waste; however, they are not sustainable due to the seepage of contaminants in landfills, the release of toxic gases into the atmosphere and energy requirements during incineration. Other advanced waste destruction technologies have been explored for the degradation of these recalcitrant pollutants; although, some are efficient, but are limited by high amounts of energy consumption, the use of organic solvents and hazardous chemicals, high capital and operational cost, and lack of public trust. Thus, this study has systematically reviewed different contaminant degradation technologies, their efficiency, and feasibility. Finally, based on techno-economic feasibility, non-invasiveness, efficiency, and environmental friendliness; radiation technology can be considered a viable alternative for the environmental remediation of contaminants in all environmental matrices at bench-, pilot-, and industrial-scale.
Collapse
Affiliation(s)
- Ayo Olasupo
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - David R Corbin
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - Mark B Shiflett
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States.
| |
Collapse
|
3
|
Ji Y, Wang C, He L, Chen X, Wang J, Zhang X, Du Q. Comparison of ozone-based AOPs on the removal of organic matter from the secondary biochemical effluent of coking wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:1943-1955. [PMID: 36511617 DOI: 10.1080/09593330.2022.2158759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Advanced oxidation processes (AOPs) based on ozone are gaining continuously growing popularity in wastewater treatment. This study explored the treatment of coking wastewater using a combination of ozonation (O3), ultraviolet (UV), and hydrogen peroxide (H2O2) process expressed by % chemical oxygen demand (COD) removal, % total organic carbon (TOC), % UV254, % fluorescence intensity removal and its electrical energy consumption. The obtained results demonstrated that, the combination of O3, UV, and H2O2 which is denoted by O3/UV/H2O2 in this study achieved great success in COD removal (92.08%), TOC removal (78.25%), and reduction of fluorescence intensity (99.82%). Compared with the O3 and O3/UV processes, O3/UV/H2O2 improved the COD removal by approximately 54-69% and 38-51%, respectively. In addition, the energy consumption was reduced by 53-67%. The TOC removal rate in the effluent ranged 71% and 83%, while the UV254 removal rate was up to 90%. The fluorescence spectroscopy showed that the O3/UV/H2O2 combination process reduced the fluorescence intensity by almost 97% within 10 min. Furthermore, the total polycyclic aromatic hydrocarbons (PAHs) concentration in the effluent was less than 10μg/L (removal efficiency > 80%) and the most toxic benzo(a)pyrene (BaP) was less than 0.03 μg/L (0.018μg/L). In addition, the energy consumption of the O3/UV/H2O2 process was 53-67% lower than those of O3 and O3/UV processes. Furthermore, the energy consumption was 80.26 kWh m-3 after 60 min of reaction time when the COD (69.3 mg/L) met the standard discharge. Finally, the O3/UV/H2O2 process could be an effective method for improving the mineralisation of refractory organic matter.
Collapse
Affiliation(s)
- Yuxian Ji
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Lei He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Xiaoya Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| | - Xian Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
- Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Qingbang Du
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, People's Republic of China
| |
Collapse
|
4
|
Manetti M, Tomei MC. Anaerobic removal of contaminants of emerging concern in municipal wastewater: Eco-toxicological risk evaluation and strategic selection of optimal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168895. [PMID: 38042180 DOI: 10.1016/j.scitotenv.2023.168895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
In the last decades, the interest for anaerobic process as a mainstream treatment of municipal wastewater increased due to the development of high-rate anaerobic bioreactors able to achieve removal kinetics comparable to the aerobic ones. Moreover, they have the additional advantages of energy production, nutrient recovery and reduced excess sludge yield, which are interesting features in the frame of sustainability wastewater treatment goals. These appealing factors increased the research demand to evaluate the potential of the anaerobic removal for contaminants of emerging concern (CECs) in municipal wastewater. However, despite the growing interest for the subject, literature is still fragmentary and reviews are mainly focused on specific technologies and target compounds or groups of compounds. We propose this review with the main objectives of presenting the state of knowledge, the performances of anaerobic systems for CECs' removal and, more important, to give the reader guidelines for optimal treatment selection. In the first part, a general overview of the investigated technologies at different scale, with a special focus on the recently proposed enhancements, is presented. Collected data are analysed to select the target CECs and the analysis results employed to define the optimal technological solution for their removal. A first novelty element of the paper is the original procedure for contaminant selection consisting of a risk assessment tool for CECs, based on their frequency of detection, concentration and potential for biosorption in wastewater treatment plants. Data of selected target CECs are combined with compound and technology performance data to implement a flowchart tool to evaluate the optimal treatment strategy, which constitute another, even more important, novelty element of this study.
Collapse
Affiliation(s)
- Marco Manetti
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| |
Collapse
|
5
|
Daraei H, Mittal A, Toolabian K, Mittal J, Mariyam A. Study on the biodegradability improvement of 2,4 dinitrophenol in wastewater using advanced oxidation/reduction process with UV/SO 3/ZnO. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22273-22283. [PMID: 36282389 DOI: 10.1007/s11356-022-23231-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
2,4-Dinitrophenol (2,4-DNP) is a toxic compound that is widely used in many industrial and agricultural processes. This compound has low biodegradability in the environment due to its aromatic structure, and it is unsuccessfully eliminated by other chemical methods. Therefore, in this study, an integrated oxidation and reduction method was used to remove 2,4-DNP from the aqueous medium, in order to simultaneously use the benefits of oxidizing and reducing radicals in 2,4-DNP degradation. 2,4-DNP degradation was modeled by response surface methodology (RSM) and central composite design (CCD). According to the results obtained from RSM, the optimal values for the studied parameters were obtained at pH = 8.9, time = 25 min, ZnO dose = 0.78 g/L, SO3 = 1.89 mmolL-1 and 2,4-DNP concentration = 5 mg/L. Also, the removal efficiency with the integrated process was 3 to 4 times higher than the advanced oxidation or advanced reduction processes alone. Analysis of the data showed that at the time of the study, 2,4-DNP had been converted to linear hydrocarbons, and increased periods of time were required for complete mineralization. A decrease in the first-order model rate constant (kobs) and an increase in 2,4-DNP degradation rate (robs) were observed at higher DNP concentrations.
Collapse
Affiliation(s)
- Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alok Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 003, India
| | - Kimia Toolabian
- Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Jyoti Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 003, India
| | - Asna Mariyam
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 003, India
| |
Collapse
|
6
|
Kotowska U, Karpińska J, Kiejza D, Ratkiewicz A, Piekutin J, Makarova K, Olchowik-Grabarek E. Oxidation of contaminants of emerging concern by combination of peracetic acid with iron ions and various types of light radiation – optimization, kinetics, removal efficiency and mechanism investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Ponomarev A, Kholodkova E, Bludenko A. Radiolytic decolouration of aqueous solutions of food dyes. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hamadeen HM, Elkhatib EA. New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms. ENVIRONMENTAL RESEARCH 2022; 210:112929. [PMID: 35167852 DOI: 10.1016/j.envres.2022.112929] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Developing green inexpensive and effective adsorbents is critically needed for elimination of antibiotics from contaminated water. The current study assessed the nanostructured activated biochar (nPPAB) derived from pomegranate peels (PP) as a promising sorbent for efficient removal of the antibiotic ciprofloxacin (CIP). The results affirm that the second order and Langmuir models fit well to adsorption kinetics and equilibrium data respectively. The nPPAB adsorption capacity of Langmuir (qmax) for CIP was 142.86 mg g-1 which is 26.85 times greater than that of bulk PP. Hydrogen bonding, π-π interaction, hydrophobic and electrostatic interactions are the dominant mechanisms of CIP adsorption by nPPAB. The efficiency of nPPAB for CIP removal from real wastewater using batch and packed-bed reactor were 89.94 and 84.74% respectively. This study clearly demonstrated the substantial capacity of nPPAB as an ecofriendly, feasible, and in-expensive adsorbent for successful elimination of CIP from wastewater.
Collapse
Affiliation(s)
- Hala M Hamadeen
- Department of Soil and Water Sciences, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Elsayed A Elkhatib
- Department of Soil and Water Sciences, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
9
|
Heterogeneous Photodegradation for the Abatement of Recalcitrant COD in Synthetic Tanning Wastewater. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tannery wastewater is considered one of the most contaminated and problematic wastes since it consists of considerable amounts of organic and inorganic compounds. These contaminants result in high chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS). In this work, the heterogeneous photodegradation of recalcitrant COD in wastewater from the tanning industry was investigated, in particular the recalcitrant COD due to the presence of vegetable tannins extracted from mimosa and chestnut and from synthetic tannins based on 4,4′ dihydroxy phenyl sulfone. TiO2 Aeroxide P-25 was employed to study the photodegradation of model molecules in batch conditions under different parameters, namely initial concentration of COD, temperature, and catalyst dose. The maximum COD abatement reached was 60%. Additionally, preliminary kinetic investigation was conducted to derive the main kinetic parameters that can be useful for process scale-up. It was found to be independent of the temperature value but linearly dependent on both catalyst loading and the initial COD value.
Collapse
|
10
|
Mainardis M, Cecconet D, Moretti A, Callegari A, Goi D, Freguia S, Capodaglio AG. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118755. [PMID: 34971741 DOI: 10.1016/j.envpol.2021.118755] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Water shortages are an issue of growing worldwide concern. Irrigated agriculture accounts for about 70% of total freshwater withdrawals globally, therefore alternatives to use of conventional sources need to be investigated. This paper critically reviews the application of treated wastewater for agricultural fertigation (i.e., water and nutrient recovery) considering different perspectives: legislation, agronomic characteristics, social acceptability, sustainability of treatment technologies. Critical issues that still need further investigation for a wider application of fertigation practices include accumulation of emerging contaminants in soils, microbiological and public health implications, and stakeholders' acceptance. A techno-economic methodological approach for assessing the sustainability of treated wastewater reuse in agriculture is subsequently proposed herein, which considers different possible local conditions (cultivated crops and effluent characteristics). The results showed that tailoring effluent characteristics to the desired nutrient composition could enhance the process economic sustainability; however, water savings have a major economic impact than fertilizers' savings, partly due to limited P reuse efficiency. The developed methodology is based on a practical approach and may be generalized to most agricultural conditions, to evaluate and encourage safe and efficient agricultural wastewater reuse practices.
Collapse
Affiliation(s)
- Matia Mainardis
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via Del Cotonificio 108, 33100, Udine, Italy.
| | - Daniele Cecconet
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| | - Alessandro Moretti
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via Del Cotonificio 108, 33100, Udine, Italy
| | - Arianna Callegari
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| | - Daniele Goi
- Department Polytechnic of Engineering and Architecture (DPIA), University of Udine, Via Del Cotonificio 108, 33100, Udine, Italy
| | - Stefano Freguia
- Department of Chemical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Victoria, 3010, Australia
| | - Andrea G Capodaglio
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100, Pavia, Italy
| |
Collapse
|
11
|
Negrete-Bolagay D, Zamora-Ledezma C, Chuya-Sumba C, De Sousa FB, Whitehead D, Alexis F, Guerrero VH. Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113737. [PMID: 34536739 DOI: 10.1016/j.jenvman.2021.113737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Persistent Organic Pollutants (POPs) have become a very serious issue for the environment because of their toxicity, resistance to conventional degradation mechanisms, and capacity to bioconcentrate, bioaccumulate and biomagnify. In this review article, the safety, regulatory, and remediation aspects of POPs including aromatic, chlorinated, pesticides, brominated, and fluorinated compounds, are discussed. Industrial and agricultural activities are identified as the main sources of these harmful chemicals, which are released to air, soil and water, impacting on social and economic development of society at a global scale. The main types of POPs are presented, illustrating their effects on wildlife and human beings, as well as the ways in which they contaminate the food chain. Some of the most promising and innovative technologies developed for the removal of POPs from water are discussed, contrasting their advantages and disadvantages with those of more conventional treatment processes. The promising methods presented in this work include bioremediation, advanced oxidation, ionizing radiation, and nanotechnology. Finally, some alternatives to define more efficient approaches to overcome the impacts that POPs cause in the hydric sources are pointed out. These alternatives include the formulation of policies, regulations and custom-made legislation for controlling the use of these pollutants.
Collapse
Affiliation(s)
- Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Research Group, UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain.
| | - Cristina Chuya-Sumba
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares, Physics and Chemistry Institute, Federal University of Itajubá, 37500-903, Itajubá, Brazil.
| | - Daniel Whitehead
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Victor H Guerrero
- Department of Materials, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, 170525, Ecuador.
| |
Collapse
|
12
|
Cecconet D, Sturini M, Malavasi L, Capodaglio AG. Graphitic Carbon Nitride as a Sustainable Photocatalyst Material for Pollutants Removal. State-of-the Art, Preliminary Tests and Application Perspectives. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7368. [PMID: 34885523 PMCID: PMC8658503 DOI: 10.3390/ma14237368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Photocatalysis is an attractive strategy for emerging pollutants remediation. Research towards the development of new, efficient and effective catalytic materials with high activity under wide irradiation spectra is a highly active sector in material science. Various semiconductor materials have been employed as photocatalysts, including TiO2, SrTiO3, CdS, BiVO4, Ta3N5, TaON, Ag3PO4, and g-C3N4. The latter is a metal-free, low cost polymer, providing high adsorption and catalytic properties, shown to be promising for photocatalysis applications under visible light. Furthermore, g-C3N4 composites are among the most promising advanced photocatalytical materials that can be produced by green synthesis processes. In this paper, the state-of-the-art of g-C3N4 applications is reviewed, and application perspectives are discussed. Photocatalysis tests with g-C3N4 under Xenon irradiation were performed to gather first-hand information to improve photoreactor design. Xenon light spectrum appears to be a suitable radiation source to replace direct sunlight in engineered pollutants removal processes catalyzed by g-C3N4, in lieu of other currently used heterogeneous photocatalysis processes (e.g., TiO2-UV). LED sources are also very promising due to higher energy efficiency and customizable, catalyzer-specific irradiation spectra.
Collapse
Affiliation(s)
- Daniele Cecconet
- Department of Civil Engineering & Architecture, University of Pavia, 27100 Pavia, Italy;
| | - Michela Sturini
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (L.M.)
| | - Lorenzo Malavasi
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (L.M.)
| | - Andrea G. Capodaglio
- Department of Civil Engineering & Architecture, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
13
|
Zhu F, Pan J, Zou Q, Wu M, Wang H, Xu G. Electron beam irradiation of typical sulfonamide antibiotics in the aquatic environment: Kinetics, removal mechanisms, degradation products and toxicity assessment. CHEMOSPHERE 2021; 274:129713. [PMID: 33545585 DOI: 10.1016/j.chemosphere.2021.129713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Due to their widespread use and harmful effects on aquatic environment, sulfonamide antibiotics (SAs) have become an emerging pollutant of great concern around the world. In this study, we investigated the degradation process and mechanism of sulfamerazine (SMR), sulfadiazine (SDZ), and sulfapyridine (SPD) by electron-beam irradiation (EBI). The results showed that the three SAs were well suited to the pseudo-first-order reaction kinetics, and they could be almost completely removed with high efficiency (5 kGy). Among the environmental factors, pH (3.0) and O2 atmosphere can further enhance the removal of the sulfonamides (SAs), while NO2- has the most pronounced degrading inhibitory effects among the many ions, these results illustrate that hydroxyl radicals play a dominant role. Compared with SMR and SDZ, the degree of mineralization of lower molecular weight SPD is obvious (45%). LC-MS and DFT calculations indicate that the concentrations of degradation products of the three SAs show a tendency to increase and then decrease, demonstrating that EBI can achieve efficient removal and further mineralization of SAs. Meanwhile, the results of the common product 4-Aminophenol produced during the degradation process further indicate that HO is the predominant reactive oxygen species (ROS). In addition, acute toxicity experiments with luminescent bacteria and predictions of ECOSAR procedures proved the toxic effects greatly decreased after the degradation. This study provides new ideas for achieving efficient and profound removal of emerging pollutants from the aquatic environment.
Collapse
Affiliation(s)
- Feng Zhu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| | - Jiali Pan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Qi Zou
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| | - Hongyong Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China; Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road, Shanghai, 200444, China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
14
|
Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. J Fungi (Basel) 2021; 7:jof7050395. [PMID: 34069444 PMCID: PMC8159112 DOI: 10.3390/jof7050395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023] Open
Abstract
Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications. In this paper, the available publications are reviewed-some of them report efficiency of more than 90%, sometimes almost 100%. The mechanisms of action, advantages, efficacy, limitations, and undesirable effects are reviewed and discussed. The first foretastes of plasma and electron beam application in the industry are in the developing stages, while pulsed light has not been employed in large-scale application yet.
Collapse
|
15
|
Kholodkova EM, Imatdinova DN, Ponomarev AV. Electron-Beam Decolorization of Nitrogen-Containing Food Colorants in Aqueous Solutions. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143920030078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Critical Perspective on Advanced Treatment Processes for Water and Wastewater: AOPs, ARPs, and AORPs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134549] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging contaminants’ presence in water, wastewater, and aquatic environments has been widely reported. Their environmental and health-related effects, and the increasing tendency towards wastewater reuse require technology that could remove to a greater degree, or even mineralize, all these contaminants. Currently, the most commonly used process technologies for their removal are advanced oxidation processes (AOPs); however, recent advances have highlighted other advanced treatment processes (ATPs) as possible alternatives, such as advanced reduction processes (ARPs) and advanced oxidation-reduction processes (AORPs). Although they are not yet widely diffused, they may remove contaminants that are not readily treatable by AOPs, or offer better performance than the former. This paper presents an overview of some of the most common or promising ATPs for the removal of contaminants from water and wastewater, and their application, with discussion of their limitations and merits. Issues about technologies’ costs and future perspectives in the water sector are discussed.
Collapse
|
17
|
Meeroff DE, Bloetscher F, Shaha B. Economics of wastewater/biosolids treatment by electron beam technology. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. SUSTAINABILITY 2019. [DOI: 10.3390/su12010266] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Urban water systems and, in particular, wastewater treatment facilities are among the major energy consumers at municipal level worldwide. Estimates indicate that on average these facilities alone may require about 1% to 3% of the total electric energy output of a country, representing a significant fraction of municipal energy bills. Specific power consumption of state-of-the-art facilities should range between 20 and 45 kWh per population-equivalent served, per year, even though older plants may have even higher demands. This figure does not include wastewater conveyance (pumping) and residues post-processing. On the other hand, wastewater and its byproducts contain energy in different forms: chemical, thermal and potential. Until very recently, the only form of energy recovery from most facilities consisted of anaerobic post-digestion of process residuals (waste sludge), by which chemical energy methane is obtained as biogas, in amounts generally sufficient to cover about half of plant requirements. Implementation of new technologies may allow more efficient strategies of energy savings and recovery from sewage treatment. Besides wastewater valorization by exploitation of its chemical and thermal energy contents, closure of the wastewater cycle by recovery of the energy content of process residuals could allow significant additional energy recovery and increased greenhouse emissions abatement.
Collapse
|
19
|
Photo-degradation of dexamethasone phosphate using UV/Iodide process: Kinetics, intermediates, and transformation pathways. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
20
|
Contaminants of Emerging Concern Removal by High-Energy Oxidation-Reduction Processes: State of the Art. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The presence of ‘emerging contaminants’, i.e., chemicals yet without a regulatory status and poorly understood impact on human health and environment, in wastewater and aquatic environments is widely reported. No established technology, to date, can simultaneously and completely remove all these contaminants, even though some Advanced Oxidation Processes (AOPs,) have demonstrated capacity for some degradation of these compounds. High-energy, radiolytic processing of water matrices using various sources: electron beam (EB), ɣ-rays or non-thermal plasma (NTP) have shown excellent results in many applications, although these remain at the moment isolated examples and scarcely known. High-energy irradiation constitutes an additive-free process that uses short-lived, highly reactive radicals (both oxidating and reducing) generated by water radiolysis, which can instantaneously decompose organic pollutants. Several studies have demonstrated its effectiveness, as a stand-alone process or combined with others, in the rapid decomposition (up to complete mineralization) of organic compounds in pure and complex solutions, and in the removal or inactivation of microorganisms and parasites, without production of leftover residual compounds in solution. High-energy oxidation processes (a.k.a. Advanced Oxidation & Reduction Processes—AORPs) could have a primary role in future strategies addressing emerging contaminants.
Collapse
|
21
|
Photo-catalytic degradation of Trichlorophenol with UV/sulfite/ZnO process, simultaneous usage of homogeneous reductive and heterogeneous oxidative agents generator as a new approach of Advanced Oxidation/Reduction Processes (AO/RPs). J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Capodaglio AG, Bojanowska-Czajka A, Trojanowicz M. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27704-27723. [PMID: 29667062 DOI: 10.1007/s11356-018-1913-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.
Collapse
Affiliation(s)
- Andrea G Capodaglio
- Department of Civil Engineering and Architecture, Via Ferrata 3, 27100, Pavia, Italy.
| | | | - Marek Trojanowicz
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| |
Collapse
|
23
|
Tseng CS, Wu T, Lin YW. Facile Synthesis and Characterization of Ag₃PO₄ Microparticles for Degradation of Organic Dyestuffs under White-Light Light-Emitting-Diode Irradiation. MATERIALS 2018; 11:ma11050708. [PMID: 29710872 PMCID: PMC5978085 DOI: 10.3390/ma11050708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/31/2023]
Abstract
This study demonstrated facile synthesis of silver phosphate (Ag3PO4) photocatalysts for the degradation of organic contaminants. Ag3PO4 microparticles from different concentrations of precursor, AgNO3, were produced and characterized by scanning electron microscopy, powder X-ray diffraction, and UV–visible diffuse reflectance spectroscopy. Degradation rates of methylene blue (MB) and phenol were measured in the presence of microparticles under low-power white-light light-emitting-diode (LED) irradiation and the reaction rate followed pseudo-first-order kinetics. The prepared Ag3PO4 microparticles displayed considerably high photocatalytic activity (>99.8% degradation within 10 min). This can be attributed to the microparticles’ large surface area, the low recombination rate of electron–hole pairs and the higher charge separation efficiency. The practicality of the Ag3PO4 microparticles was validated by the degradation of MB, methyl red, acid blue 1 and rhodamine B under sunlight in environmental water samples, demonstrating the benefit of the high photocatalytic activity from Ag3PO4 microparticles.
Collapse
Affiliation(s)
- Chi-Shun Tseng
- Department of Chemistry, National Changhua University of Education, Changhua City 500, Taiwan.
| | - Tsunghsueh Wu
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818-3099, USA.
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua City 500, Taiwan.
| |
Collapse
|
24
|
Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply. SEPARATIONS 2017. [DOI: 10.3390/separations4040032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|