1
|
Song X, Jin J, Li H, Wang F, Liu J, Wang X, Huang X, Chai C, Song N, Zong H. Kaolinite reduced Cd accumulation in peanut and remediate soil contaminated with both microplastics and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115580. [PMID: 37864965 DOI: 10.1016/j.ecoenv.2023.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Microplastics (MPs) increase the effective state of heavy metals (HMs) in soil and seriously threaten the yield and quality of peanuts (Arachis Hypogea L.). Kaolinite (KL) has the potential to ameliorate MP- and HM- contaminated soils, but the mechanism of action between them is not well understood. Therefore, 60-day experiments were conducted, where KL (1 %, 2 %) and MPs (0.1 %, 1 %) were individually or jointly mixed into soils with different cadmium (Cd) concentrations (0.5, 2.5, and 5.0 mg·kg-1) to cultivate peanuts in a greenhouse. Finally, soil-bioavailable Cd, peanut dry weight, peanut Cd concentrations, the pH, cation exchange capacity (CEC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were determined. It was shown that MPs negatively affected the peanut dry weight and increased the content of soil-bioavailable Cd and Cd concentration in peanut. In the MP- and Cd-contaminated soils, KL mitigated the negative influence of MPs by increasing the dry weight of peanuts by 8.40 %-40.59 %, decreasing the soil-bioavailable Cd by 23.70-35.74 %, and significantly decreasing peanut Cd concentrations by 9.65-30.86 %. The presence of MPs decreased soil pH (7.69-7.87) and the CEC (20.96-23.95 cmol·L-1) and increased the soil DOC (1.84-2.26 mg·kg-1). KL significantly increased soil pH (7.79-8.03) and the CEC (24.96-28.28 cmol·L-1) and mitigated the adverse influence of MPs on the pH and CEC of Cd-contaminated soils. A regression path analysis (RPA) evidenced that KL decreased Cd accumulation in plants by changing the properties of soil contaminated with MPs and Cd. The research results revealed the mechanism of KL on peanut growth and Cd absorption in MP- and Cd-contaminated soil. The results of this study provide a foundation to improve the quality of MP- and HM-contaminated soils and realize safe peanut production.
Collapse
Affiliation(s)
- Xin Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jianpeng Jin
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyun Li
- Jingtanggang Branch of Technology Center of Shijiazhuang Customs District, Shijiazhuang 050011, PR China
| | - Fangli Wang
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xuexia Wang
- Institute of plant nutrition and resources, Beijing Agricultural Forestry Academy Sciences, Beijing 100097, PR China
| | - Xiaoli Huang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Haiying Zong
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
2
|
Liu J, Feng X, Qiu G, Li H, Wang Y, Chen X, Fu Q, Guo B. Inhibition Roles of Calcium in Cadmium Uptake and Translocation in Rice: A Review. Int J Mol Sci 2023; 24:11587. [PMID: 37511349 PMCID: PMC10380254 DOI: 10.3390/ijms241411587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cadmium (Cd) contamination in rice grains is posing a significant threat to global food security. To restrict the transport of Cd in the soil-rice system, an efficient way is to use the ionomics strategy. Since calcium (Ca) and Cd have similar ionic radii, their uptake and translocation may be linked in multiple aspects in rice. However, the underlying antagonistic mechanisms are still not fully understood. Therefore, we first summarized the current knowledge on the physiological and molecular footprints of Cd translocation in plants and then explored the potential antagonistic points between Ca and Cd in rice, including exchange adsorption on roots, plant cell-wall composition, co-transporter gene expression, and transpiration inhibition. This review provides suggestions for Ca/Cd interaction studies on rice and introduces ionomics research as a means of better controlling the accumulation of Cd in plants.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaoyu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Qinglin Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| |
Collapse
|
3
|
Zhao Y, Shi Y, Wang Z, Qian G. Enhancement of humic acid on plant growth in a Cd-contaminated matrix: performance, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5677-5687. [PMID: 35982387 DOI: 10.1007/s11356-022-22586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Phytoremediation of heavy metal-contaminated sites has been widely used. Nonetheless, the destruction of chloroplasts and plant growth enzymes by heavy metals leads to a low germination rate and high mortality of plants. To address these issues, an experiment was conducted in which plants were grown with (SHC) and without humic acid (SC) in actual Cd-contaminated soil from the site of an industrial pollution source. The results showed that the average germination rates of SC and SHC samples were 94.17% and 98.33%, respectively, and the plant heights were approximately 5 and 7 cm after 42 days of planting, respectively. It was discovered that humic acid (HA) enhanced plant growth by increasing urease and invertase content of the soil. The Shannon index and Venn diagram revealed that SHC had the richer population diversity. High-throughput analysis demonstrated that HA increased the content of plant growth-promoting bacteria in the soil from 5.01 to 34.27%. The experimental results revealed that HA increased microbial activity and diversity, thereby providing a favorable environment for plants to thrive. This study develops an effective method to enhance the phytoremediation performance of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yang Shi
- Department of Environment Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, 110819, China
- Shenyang Environmental Technology Assessment Center, Shenyang, 110170, China
| | - Zhi Wang
- Shenyang Environmental Technology Assessment Center, Shenyang, 110170, China
| | - Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, 999078, China.
| |
Collapse
|
4
|
Cheng X, Cao X, Tan C, Liu L, Bai J, Liang Y, Cai R. Effects of four endophytic bacteria on cadmium speciation and remediation efficiency of Sedum plumbizincicola in farmland soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89557-89569. [PMID: 35852747 DOI: 10.1007/s11356-022-21711-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution in farmland soils severely affects agricultural production safety, thereby threatening human health. Sedum plumbizincicola is a Cd and Zn hyperaccumulator commonly used for the phytoremediation of Cd-contaminated soil. This study was aimed to improve the remediation effect of S. plumbizincicola on Cd-contaminated farmland soil and provide a theoretical basis for the enhancement of endophytic bacteria in the repair of Cd-contaminated soil with S. plumbizincicola. Four kinds of endophytic bacteria, namely Buttiauxella, Pedobacter, Aeromonas eucrenophila, and Ralstonia pickettii, were used, and soil culture experiments and pot experiments were conducted to explore the effects of endophytic bacteria on soil Cd speciation and phytoremediation efficiency of Cd-contaminated farmland soils. Under the experimental conditions, after inoculation with endophytic bacteria, the soil pH was effectively reduced, content of weak acid-extracted Cd and oxidizable Cd increased, and content of reducible Cd and residual Cd decreased. Soil Cd activity was increased, and the availability coefficient of soil Cd increased by 1.15 to 6.41 units compared with that of the control (CK2). Compared with CK2, the biomass of S. plumbizincicola significantly increased by 23.23-55.12%; Cd content in shoots and roots of S. plumbizincicola increased by 29.63-46.01% and 11.42-84.47%, respectively; and bioconcentration factor was 2.13 to 2.72 times that of CK2. The Cd removal rate of S. plumbizincicola monocropping was 48.25%. When S. plumbizincicola was planted with inoculating endophytic bacteria, the Cd removal rate in the soil reached 61.18-71.49%, which was significantly higher than that of CK2 (p < 0.05). The treatment with endophytic bacteria activated soil Cd, promoted the growth of S. plumbizincicola, increased its Cd content, and enhanced the phytoremediation of Cd-contaminated farmland soil. Therefore, endophytic bacteria can be used to improve the remediation efficiency of S. plumbizincicola in Cd-contaminated farmland soils.
Collapse
Affiliation(s)
- Xueyu Cheng
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, People's Republic of China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Lulu Liu
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jia Bai
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yufeng Liang
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Runzhong Cai
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| |
Collapse
|
5
|
Gao G, Xie S, Zheng S, Xu Y, Sun Y. Two-step modification (sodium dodecylbenzene sulfonate composites acid-base) of sepiolite (SDBS/ABsep) and its performance for remediation of Cd contaminated water and soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128760. [PMID: 35358811 DOI: 10.1016/j.jhazmat.2022.128760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
To enhance the remediation capability of cadmium (Cd) polluted water and soil, our approach involved two-step modification of sepiolite (Sep) through acid-base compound treatment and sodium dodecylbenzene sulfonate (referring as SDBS/ABsep), and then the batch adsorption and soil culture experiments were conducted to investigate its immobilization potential and mechanisms of Cd. The findings revealed that the SDBS/ABsep had a rougher surface and higher porosity, and the maximum adsorption capacity of Cd2+ onto SDBS/ABsep was 241.39 mg g-1, which was 5.32 times higher than that on Sep. It conformed to the pseudo-second-order kinetic and Redlich-Paterson isotherm models. SDBS/ABsep exhibited a high efficiency for immobilization-induced remediation of Cd polluted soils. Upon the addition of different concentrations of SDBS/ABsep, DTPA-Cd content decreased by 17.41-47.33% compared with the control groups, and the ratio of residual fraction-Cd increased from 4.67% in unamended soil to 14.05% in the presence of 4% SDBS/ABsep. SEM-EDS, TEM, FTIR, XRD, and XPS analyses indicated that the interaction mechanisms between SDBS/ABsep and Cd included the electrostatic force, precipitation, ion exchange, and complexation of sulfonic acid groups. Therefore, SDBS/ABsep can be used as a promising effective passivation agent for remediation of Cd contaminated soil and water.
Collapse
Affiliation(s)
- Ge Gao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sha Xie
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing 100125, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
6
|
Gao B, Chen Q, Liu K, Li F, Fang L, Zhu Z, Tran MT, Peng J. Biogeochemical Fe(II) generators as a new strategy for limiting Cd uptake by rice and its implication for agricultural sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153306. [PMID: 35077783 DOI: 10.1016/j.scitotenv.2022.153306] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This work has developed a new strategy of biogeochemical Fe(II) generators for activating microbial Fe(II) generation to immobilize Cd in soils through protons scavenging and coprecipitation. A new biochar modified magnetite (FeBC15) has been fabricated through a top-down method, with which microbial respiration can be stimulated in paddy soil. The FeBC15 exhibits a higher adsorption capacity for Cd than pristine magnetite (1.7 times). The results show that the available Cd can be reduced by 14.4% after adding FeBC15 compared to the control. More importantly, FeBC15 particles promote the conversion of MgCl2 - Cd to stable crystalline Fe/Al bound Cd under the incubation period. The enhanced pH and Fe(II) leads to a comparably lower Cd availability in soils than in pristine soils, which are supported by the enhanced relative abundance of Geobacter and Clostridium with the FeBC15 treatment (i.e. up to 7.44-7.68 × 109 copies/g soil). The Diffusive Gradients in Thin-films (DGT) study indicates that FeBC15 can lower the replenish capacity of soils (i.e. KdL values of 0.2-3.6 mL/g) to soil pore waters and limit root absorption. Pot experiments demonstrate that this strategy can alleviate the rice Cd content by 38.4% (< 0.2 mg/kg). This work paves a new pathway for reducing Cd uptake in rice, enabling sustainable remediation of paddy soil.
Collapse
Affiliation(s)
- Baolin Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Zhenlong Zhu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Minh Tien Tran
- Soils and Fertilizers Research Institute (SFRI), Dong Ngac, Tu Liem, Hanoi, Viet Nam
| | - Jiming Peng
- China National Hybrid Rice R&D Center, Hunan Hybrid Rice Research Center, Changsha 410125, China
| |
Collapse
|
7
|
Liu H, Zhang T, Tong Y, Zhu Q, Huang D, Zeng X. Effect of humic and calcareous substance amendments on the availability of cadmium in paddy soil and its accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113186. [PMID: 35030525 DOI: 10.1016/j.ecoenv.2022.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Humic substances (HS) are widely known as important components in soil and significantly affect the mobility of metals due to their large surface area and abundant organic functional groups. Calcareous substances (CSs) are also commonly used as robust and cost-effective amendments for increasing the pH of acidic soils and decreasing the mobility of metals in soils. In this study, we developed a new remediation scheme for cadmium (Cd)-contaminated soil remediation by coupling HS and CS. The results showed that regardless of the addition of fulvic acid (FA), all the CS-containing treatments significantly increased the soil pH by 0.32-0.60, and the concentration of bioavailable Cd decreased in the moderately (field experiment soil, maximum 62%) and highly (pot experiment soil, maximum 57%) Cd-contaminated soils. The Cd content in rice (Oryza sativa L.) tissues significantly decreased after all the treatments. The bioaccumulation factors (BAFs) decreased by over 50% in the roots, stems, leaves and husks in all treatments, while the translocation factors (TFs) only significantly decreased in the highly contaminated soil. Among all treatments, the two HS+CS treatments (FA+CaCO3 and FA+CaO) had the greatest effect on decreasing the concentration of bioavailable Cd in soil and Cd in brown rice grains. The suggested mechanism for the effectiveness of coupled HS and CS was that CS first mitigated the pH and precipitated Cd, followed by a complexation effect between HS and Cd. Although the Cd in rice grains in both cases was higher than the standard limit, HS+CS remediation can be advocated as a robust, simple and cost-effective scheme for Cd remediation if the additive dose is slightly increased, as this approach can simultaneously improve the pH of acidic soil and adsorb Cd in soil.
Collapse
Affiliation(s)
- Hao Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Tuo Zhang
- Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Yan'an Tong
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qihong Zhu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xibai Zeng
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
8
|
Farooqi ZUR, Murtaza G, Bibi S, Sabir M, Owens G, Ahmad I, Zeeshan N. Immobilization of cadmium in soil-plant system through soil and foliar applied silicon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1193-1204. [PMID: 34995161 DOI: 10.1080/15226514.2021.2024133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We conducted a pot experiment to evaluate the potential for soil- and foliar-applied silicon (Si), alone and in combination, to a Cd-contaminated soil in order to evaluate the effects on such amendments on the Cd translocation from soil to wheat root, shoot and grains. Five treatments were used, T1) control with no external factor added, T2 received only Cd, while T3-T5 treatments received Cd in combination with soil, foliar and soil plus foliar applied Si. Except control (T1), soil was contaminated with Cd at 10 mg kg-1 in all the treatments and 1% solution of Si as an amendment was used for soil and/or foliar application or their combination. Overall, while Si application improved both plant growth and yield in Cd-contaminated soil. Control and combined soil- and foliar-applied Si in Cd contaminated treatments showed equally positive (2.5%) increase in plant height over Cd contaminated treatment. Grain yield was also highest in the treatment receiving Cd plus soil-applied Si (29%) followed by control (26%). It was concluded that Si can alleviate Cd toxicity in wheat irrespective of whether the Si was soil-applied or applied via a foliar method, but soil applied Si proved the best in this regard.Novelty statement Immobilization of metals i.e., cadmium (Cd) with soil-applied amendments like biomaterials and organic manure to decrease Cd concentration in plants have already been widely investigated. Silicon (Si) is a cheap in-organic and readily available element in the nature and also used for the same purpose. It can be applied both in soil as well as by foliar and soil + foliar application to decrease the metals concentration in soil and plants. However, comparative effectiveness of these three methods have not been checked simultaneously. In this study, we have studied the comparative effectiveness of Si application to soil, foliar and their combination (soil + foliar) to decrease Cd concentration during wheat crop.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, Australia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University, Vehari, Pakistan
| | - Nukshab Zeeshan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Wang W, Song W, Zhou T, Wang Z, Christie P, Wu L. Soil Metal Immobilization in Agricultural Land Contaminated with Cadmium and Lead: A Case Study of Effectiveness Evaluation in Lanping, Southwest China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1227-1235. [PMID: 34080037 DOI: 10.1007/s00128-021-03267-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The growth of edible crops on land that is highly polluted with potentially toxic elements is prohibited in many developed countries, but the growth of fiber or energy crops may be permitted. Here, we have evaluated metal immobilization in a maize field polluted with cadmium (Cd) and lead (Pb) to determine the thresholds of soil CaCl2-extractable Cd and Pb and to assess management options designed to maximize food safety. Based on geographical and statistical methods we found that when the soil pH was increased from 5.24 to 6.24, the soil CaCl2-extractable Cd and Pb values decreased by 47.8 and 74.7%, respectively. Soil CaCl2-extractable Pb concentrations need to be < 2.14 mg kg-1 in order to comply with the Chinese maximum permissible grain Pb concentration (< 0.2 mg kg-1). Immobilization increased the percentage of samples that were below permissible levels from 77.4% to 96.2% (grain Cd) and 90.6% to 96.2% (grain Pb) during the period 2017 to 2019. To avoid excessive or inadequacy immobilization, the spatial distribution of correlation coefficients of soil pH, CaCl2-extractable or grain Cd/Pb may be helpful in the precise management of immobilization for long-term remediation.
Collapse
Affiliation(s)
- Wenyong Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wei Song
- Jiangsu Firefly Environmental Science and Technology Co. Ltd, Nanjing, 210008, China
| | - Tong Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaoyang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
10
|
He LL, Huang DY, Zhang Q, Zhu HH, Xu C, Li B, Zhu QH. Meta-analysis of the effects of liming on soil pH and cadmium accumulation in crops. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112621. [PMID: 34388655 DOI: 10.1016/j.ecoenv.2021.112621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Increasing cadmium (Cd) contamination in agricultural fields has resulted in a higher risk of Cd accumulation in the food chain. Lime addition can mitigate soil acidification and reduce Cd accumulation in crops cultured in Cd-contaminated soil. To determine key factors controlling the outcomes of liming in reducing Cd accumulation and enhancing soil pH, we performed a meta-analysis using previously published data from field and pot experiments. The results indicated that the liming showed positive effect sizes on the soil pH but negative effect sizes on Cd accumulation in crops, indicating the addition of different lime materials could enhance soil pH and reduce Cd accumulation in crops. The effect sizes of liming on soil pH under pot experimental conditions were higher than that under field experimental conditions, however, the effect sizes of application types and amount of limes on soil pH did not significantly differ between their individual different levels. Under a low background value of soil pH, SOM, CEC and clay, the addition of limes showed a significantly higher effect size on soil pH when compared to their individual higher soil background value, suggesting that the lower background values of soil pH, SOM, CEC and clay might facilitate the outcomes of liming to enhance soil pH. The experiment patterns, crop types and lime application amounts showed a limit effect on the outcomes of liming to reduce the shoot and grain Cd concentrations in crops. The lime types only showed a significant effect size on the shoot Cd accumulation but not on the grain Cd accumulation, in which the CaCO3 had the highest effect size (absolute value, the same below) followed by Ca(OH)2 and CaO. The low soil background values of total Cd concentration and CEC content, but a high soil SOM background content might facilitate the outcomes of liming to reduce the shoot Cd concentration in crops. However, only the background value of soil clay content showed a significantly negative effect size on the grain Cd accumulation, where a high soil clay content had a higher effect size than a low soil clay content. These findings provide useful knowledge about the effects of experiment patterns, crop types, soil conditions, lime types and lime addition amounts on the efficiency of liming in enhancing soil pH and decrease crop Cd concentration.
Collapse
Affiliation(s)
- Lu-Lu He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dao-You Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chao Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bo Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing 100081, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
11
|
Jia M, Yu J, Li Z, Wu L, Christie P. Effects of biochar on the migration and transformation of metal species in a highly acid soil contaminated with multiple metals and leached with solutions of different pH. CHEMOSPHERE 2021; 278:130344. [PMID: 33813340 DOI: 10.1016/j.chemosphere.2021.130344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
A number of recent studies have been conducted on soil metal immobilization by biochars but there is little information on the migration and transformation of metal species in soils contaminated with multiple metals as affected by biochar and acid rain. Here, a column study investigated the effects of biochar derived from maize straw pyrolyzed at 600 °C on metal (Cu, Pb, Zn and Cd) mobility in a highly acid soil during leaching with simulated acid rain. All four metals examined were released at early stages of the leaching process and the percentages of the metals leached followed the sequence Zn > Cd > Cu > Pb. Acid rain with high acidity resulted in larger amounts of metals leached, particularly at the later stages of leaching. This enhancement of leaching by highly acidic leaching solutions was eliminated by amendment with biochar. However, the effects of biochar on metal mobility depended on metal species, with significant immobilization of soil Cu, Zn and Pb (>90%, 26% and 72%, respectively) but with no effect on soil Cd. Overall, simulated acid rain enhanced soil metal mobility and biochar reduced soil metal mobility and also alleviated the effects of acid rain. More emphasis is needed on metal speciation in the use of biochars for soil metal immobilization in areas with acid rain. The use of biochars in phytoremediation may decrease the toxicity of soil metals to the hyperaccumulator plant.
Collapse
Affiliation(s)
- Mingyun Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jinping Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
12
|
The Effects of Waste Cement on the Bioavailability, Mobility, and Leaching of Cadmium in Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168885. [PMID: 34444633 PMCID: PMC8393406 DOI: 10.3390/ijerph18168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
Abstract
Waste cement is a construction and demolition waste produced from old buildings' demolition and transformation. In recent years, the recycling of recycled concrete is limited to the use of recycled aggregate, and the research on the utilization of waste cement in waste concrete is scarce. This study explored the effective application of waste cement for the adsorption of cadmium (Cd2+) from an aqueous solution and the bioavailability and immobility of Cd2+ in soil. Results showed that the maximum adsorption capacities of ordinary Portland cement(OPC) paste, fly ash cement (FAC) paste, and zeolite cement (ZEC) paste for Cd2+ were calculated to be 10.97, 9.47, 4.63 mg·g-1, respectively. The possible mechanisms for Cd2+ adsorption in the solution by waste cement mainly involve precipitation by forming insoluble Cd2+ compounds in alkaline conditions, and ion exchange for Cd2+ with the exchangeable calcium ions in waste cement, which were confirmed by XRD and SEM. Results from diethylene triaminepentaacetic acid (DTPA) extraction and toxicity characteristic leaching procedure (TCLP) implied reduction of the Cd2+ mobility. DTPA-extractable Cd2+ decreased by 52, 48 and 46%, respectively, by adding 1% OPC, FAC and ZEC. TCLP-extractable Cd2+ decreased by 89.0, 80.3, and 56.0% after 1% OPC, FAC, and ZEC treatment, respectively. BCR analyses indicate that OPC, FAC, and ZEC applications increased the percentage of Cd2+ in residual fraction and induced a high reduction in the acid-soluble Cd2+ proportion. The leaching column test further confirmed a reduction in Cd2+ mobility by waste cement treated under continuous leaching of simulated acid rain (SAR). Therefore, waste cement exhibited a significant enhancement in the immobilization of Cd2+ under simulated acid rain (SAR) leaching. In summary, the application of alkaline waste cement could substantially remove Cd2+ from wastewater and reduce Cd2+ mobility and bioavailability in contaminated soil.
Collapse
|
13
|
Immobilization of Cadmium by Molecular Sieve and Wollastonite Is Soil pH and Organic Matter Dependent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105128. [PMID: 34066097 PMCID: PMC8150881 DOI: 10.3390/ijerph18105128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/10/2023]
Abstract
The excessive cadmium (Cd) concentration in agricultural products has become a major public concern in China in recent years. In this study, two amendments, 4A molecular sieve (MS) and wollastonite (WS), were evaluated for their potential passivation in reducing Cd uptake by amaranth (Amaranthus tricolor L.) in six soils with different properties. Results showed that the responses of amaranth biomass to these amendments were soil-property-dependent. The effects of MS and WS on soil available Cd were in turn dependent on soil and amendment properties. The application of WS and MS at a dose of 660 mg·kg−1 Si produced the optimum effect on inhibiting Cd accumulation in amaranth shoots (36% and 34%, respectively) and did not affect crop yield. This was predominantly attributed to the marked increase in pH and exogenous Ca or Na, which facilitated the adsorption, precipitation, and complexation of Cd in soils. The immobilization effects of WS and MS were dependent on soil properties, where soil organic matter may have played an important role. In conclusion, MS and WS possess great potential for the remediation of Cd-contaminated acidic soils.
Collapse
|
14
|
Tan X, Wei W, Xu C, Meng Y, Bai W, Yang W, Lin A. Manganese-modified biochar for highly efficient sorption of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9126-9134. [PMID: 31916167 DOI: 10.1007/s11356-019-07059-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In this study, corn stalk was modified by manganese (Mn) before (MBC1) and after (MBC2) pyrolysis at different temperatures (400~600 °C) under anaerobic conditions for Cd sorption in both water and soil. Batch experiments in aqueous solution were conducted to evaluate the optimum sorption capability by biochar with and without manganese-modified. Both types of manganese modification can improve the sorption capacity of Cd(II) on biochar, which is superior to the corresponding pristine biochar without modification, especially, pyrolyzed at 500 °C with 5:1 modification ratio. Under the optimal preparation conditions, the sorption percentage on MBC2 was 11.01% higher than that of MBC1. The maximum sorption capacity of MBC2 was 191.94 mg g-1 calculated by isotherm model. The performance of MBC2 was also verified in soil stabilization experiments in Cd-contaminated soil. We can conclude from the results of BCR extraction that all the application rates of MBC2 (1%, 2%, and 3%) can reduce the mild acid-soluble fraction Cd. The reducible, oxidizable, and residual fraction Cd showed an upward trend, thus controlling the migration, transformation, and enrichment of Cd in soil. The characteristic analysis showed biochar has more irregular fold and more particle-aggregated surface after modification. The main components of these aggregated particles are manganese oxides (MnOx) with high sorption capacity, such as the MnOx crystal structure loaded on MBC2 is a mixed structure of δ-MnO2 and MnO. However, these particles may block the biochar pores, or some of the pores may collapse at high temperatures during the modification process. The specific surface area was reduced, even if the sorption effect of MBC was strongly enhanced. Meanwhile, under the action of the secondary pyrolysis of MBC2 modification process, the MBC2 has a higher degree of aromatization with more potential active sorption sites for Cd. The study concluded that the MBC2 could be a promising amendment for Cd in both water and soil real field applications.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wenxia Wei
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Environmental Protection Research Institute of Light Industry, Beijing, 100089, People's Republic of China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yue Meng
- Beijing Management Division of North Grand Canal, Beijing, 101100, People's Republic of China
| | - Wenrong Bai
- Beijing Management Division of North Grand Canal, Beijing, 101100, People's Republic of China
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, People's Republic of China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, 100012, Hebei, People's Republic of China.
| |
Collapse
|
15
|
Shi L, Guo Z, Peng C, Xiao X, Feng W, Huang B, Ran H. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:425-434. [PMID: 30639868 DOI: 10.1016/j.ecoenv.2019.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The effects of the continuous amendments with lime (L), lime mixed with organic manure (LO), or phosphate fertilizer (LP) on the soil bacterial community, soil available cadmium (Cd) content, and Cd accumulation in rice planted in a Cd contaminated paddy soil were determined through a four-season field experiment. The results showed that with continuous application of amendments during the four seasons, the soil pH increased significantly compared with the control, while the soil available Cd content significantly decreased by 12.9-18.2%, 13.1-17.3% and 0.09-23.2% under the L, LO, or LP treatments, and the Cd content of rice was significantly reduced by 28.5-56.2%, 37.6-53.4%, and 31.2-44.6%, respectively. The rice Cd content in each season at amendment treatments was lower than the National Food Safety Standard of China (maximum level of Cd in grains is 0.2 mg/kg). The diversity and richness of soil bacteria significantly increased after the continuous amendments in soil for four-season cropping. Soil pH and available Cd content were important factors for soil bacterial community. Lime mixed with phosphate fertilizer or organic manure had been characterized by a significant increase of Proteobacteria, Nitrospirae, and Chloroflexi and a decrease of Acidobacteria based on an Illumina Miseq sequencing analysis. The results indicate that the continuous application of lime mixed with organic manure or phosphate fertilizer is a very important measure to ensure the quality safety of rice and improve soil quality in a Cd-contaminated paddy.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bo Huang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hongzhen Ran
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|