1
|
Cortés-Castillo M, Encinas A, Aizpuru A, Arriaga S. Effect of applying a magnetic field on the biofiltration of hexane over long-term operation period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34671-2. [PMID: 39172336 DOI: 10.1007/s11356-024-34671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
The present study reports on the effect of magnetic field (MF) intensity on the biofiltration of hexane vapors. MF ranging from 0 to 30 mT (millitesla) was used to evaluate the biofiltration of hexane for 191 days under a fixed inlet load of 40 g m-3 h-1. A homogeneous MF generated by Helmholtz coils was used. The performance of the reactors was evaluated in terms of removal efficiency (RE), elimination capacity (EC), biomass content, and exopolysaccharide (EPS) production. Maximal removal efficiencies of 25%, 36%, and 40% were found for the control (H0), 10 mT (H10), and 30 mT (H30) reactors, corresponding to ECs of 14.2, 15, and 18 g m-3 h-1, respectively. In the last period (days 94 to 162), H10 and H30 showed 40% of RE improvement compared with Ho. Also, the removal occurred all along the bioreactor height for biofilters exposed to MF. Reactors achieved a total biomass content of 152, 180, and 147 mg VS (volatile solids) g-1 dry perlite for H0, H10, and H30, correspondingly, associated with EPS production of 30, 30, and 40 mg EPS g-1 VS. The main components of EPS affected by the MF were carbohydrates and glucuronic acid; proteins were slightly affected. Experiments with MF pulses of 4 and 2 h confirmed that MF exposure improved the removal efficiency of hexane, and after the pulse, removal enhancement was maintained for 5 days. Thus, the MF application by pulses could be an economically and friendly technology to improve the RE of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Mónica Cortés-Castillo
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Armando Encinas
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Aitor Aizpuru
- Universidad del Mar, Campus Puerto Ángel, Ciudad Universitaria S/N, Colonia Puerto Ángel, C.P. 70902, San Pedro Pochutla, Oaxaca, México
| | - Sonia Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, (IPICYT), Camino a La Presa San José 2055, Colonia Lomas 4Ta Sección, C.P. 78216, San Luis Potosí, S.L.P., México.
| |
Collapse
|
2
|
Wang YC, Han MF, Jia TP, Hu XR, Zhu HQ, Tong Z, Lin YT, Wang C, Liu DZ, Peng YZ, Wang G, Meng J, Zhai ZX, Zhang Y, Deng JG, Hsi HC. Emissions, measurement, and control of odor in livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145735. [PMID: 33640544 DOI: 10.1016/j.scitotenv.2021.145735] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Odor emissions from intensive livestock farms have attracted increased attention due to their adverse impacts on the environment and human health. Nevertheless, a systematic summary regarding the characteristics, sampling detection, and control technology for odor emissions from livestock farms is currently lacking. This paper compares the development of odor standards in different countries and summarizes the odor emission characteristics of livestock farms. Ammonia, the most common odor substance, can reach as high as 4100 ppm in the compost area. Sampling methods for point and area source odor emissions are introduced in this paper, and odor analysis methods are compared. Olfactometers, odorometers, and the triangle odor bag method are usually used to measure odor concentration. Odor control technologies are divided into three categories: physical (activated carbon adsorption, masking, and dilution diffusion), chemical (plant extract spraying, wet scrubbing, combustion, non-thermal plasma, and photocatalytic oxidation), and biological (biofiltration, biotrickling, and bioscrubbing). Each technology is elucidated, and the performance in the removal of different pollutants is summarized. The application scopes, costs, operational stability, and secondary pollution of the technologies are compared. The generation of secondary pollution and long-term operation stability are issues that should be considered in future technological development. Lastly, a case analysis for engineering application is conducted.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ti-Pei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Huai-Qun Zhu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - De-Zhao Liu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Gen Wang
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Jie Meng
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Zeng-Xiu Zhai
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Yan Zhang
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
3
|
Flores-Barbosa AB, Aizpuru A, Quijano G, Arriaga S. Evaluation of bioaerosols by flow cytometry and removal performance in a biofilter treating toluene/ethyl acetate vapors. CHEMOSPHERE 2020; 251:126404. [PMID: 32169711 DOI: 10.1016/j.chemosphere.2020.126404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 05/20/2023]
Abstract
The removal efficiency (RE) and bioaerosol emission of a perlite biofilter treating vapors of toluene (T) and/or ethyl acetate (EA) were assessed, under different operating conditions, during 171 days. Under the first stages of operation, a mixture of EA and T was treated, with equivalent inlet loads (ILs) of each compound (ranging from 26 to 84 g m-3 h-1), achieving a 100% RE of EA, and a maximum elimination capacity (EC) of T of 58.7 g m-3 h-1. An inhibition of T removal was noted in presence of EA, as T was treated subsequently to EA, along biofilter depth. A 17 days starvation period induced no global deterioration of performance regarding EA removal, but a 50% lower RE of T. Suspension of one contaminant, with interspersed feeding of only one component of the mixture, caused a permanent drop of the RE of EA (to 87.3%), after a T only feeding of 41 days. Flow cytometry (FC) was applied for quantification of bioaerosols, allowing for differentiation between viable, dead and damaged cells. During the overall biofilter operation, bioaerosol emission was not statistically different from bioaerosol retention. However, the biofilter significantly emitted bioaerosols (mostly viable cells) during start-up and IL increase, whereas a global retention of dead cells was observed during the interspersed feeding of one contaminant. Bioaerosols measured by FC (107 Cells m-3) were three orders of magnitude greater than with plate counting dishes, indicating that FC does not underestimate bioaerosols as culture dependent techniques.
Collapse
Affiliation(s)
- Ana Betsabé Flores-Barbosa
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, CP 78216, San Luis Potosí, Mexico
| | - Aitor Aizpuru
- Universidad del Mar, Campus Puerto Ángel, San Pedro Pochutla, 70902, Oaxaca, Mexico
| | - Guillermo Quijano
- Universidad Nacional Autónoma de Mexico, Unidad Academica Juriquilla, Instituto de Ingeniería, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, Mexico
| | - Sonia Arriaga
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, CP 78216, San Luis Potosí, Mexico.
| |
Collapse
|
4
|
García-Pérez T, Hernández-Jiménez S, Revah S. Operational parameters in H 2S biofiltration under extreme acid conditions: performance, biomass control, and CO 2 consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4502-4508. [PMID: 31755066 DOI: 10.1007/s11356-019-06789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
This paper reports the treatment of gaseous hydrogen sulfide, H2S, in a biotrickling filter (BTF) under extreme acidic pH conditions (≈ 1.2). The effect of adding thiosulfate (Na2S2O3.5H2O) to promote biomass growth, feeding low concentrations of ozone to control excess biomass, and the carbon dioxide, CO2, consumption by the chemolithoautotrophic consortium were evaluated. The results showed a global removal efficiency over 98.0% with loads of H2S > 50 g m-3 h-1 (at 639 ppmv) and a linear relation between H2S elimination capacity with the CO2 consumption rate of around 0.1 gCO2/gH2S. Supplementing sulfur in the medium with 2 g L-1 thiosulfate resulted in negative effect performance. Respirometry tests proved that the consortium could not utilize this sulfur form at this pH. Additionally, continuous and intermittent O3 feeding to the BTF in gaseous concentrations of 98 ± 5.4 mg m-3 caused a slight decreased in the performance but the biomass activity in the BTF was only slightly affected allowing a quick performance recovery once O3 addition was suspended.
Collapse
Affiliation(s)
- Teresa García-Pérez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana - Cuajimalpa, Prolongación Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05348, Cd. de México, México
| | - Sergio Hernández-Jiménez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana - Cuajimalpa, Prolongación Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05348, Cd. de México, México
| | - Sergio Revah
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana - Cuajimalpa, Prolongación Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05348, Cd. de México, México.
| |
Collapse
|