1
|
Garau M, Lo Cascio M, Vasileiadis S, Sizmur T, Nieddu M, Pinna MV, Sirca C, Spano D, Roggero PP, Garau G, Castaldi P. Using biochar for environmental recovery and boosting the yield of valuable non-food crops: The case of hemp in a soil contaminated by potentially toxic elements (PTEs). Heliyon 2024; 10:e28050. [PMID: 38509955 PMCID: PMC10951655 DOI: 10.1016/j.heliyon.2024.e28050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Hemp (Cannabis sativa L.) is known to tolerate high concentrations of soil contaminants which however can limit its biomass yield. On the other hand, organic-based amendments such as biochar can immobilize soil contaminants and assist hemp growth in soils contaminated by potentially toxic elements (PTEs), allowing for environmental recovery and income generation, e.g. due to green energy production from plant biomass. The aim of this study was therefore to evaluate the suitability of a softwood-derived biochar to enhance hemp growth and promote the assisted phytoremediation of a PTE-contaminated soil (i.e., Sb 2175 mg kg-1; Zn 3149 mg kg-1; Pb 403 mg kg-1; and Cd 12 mg kg-1). Adding 3% (w/w) biochar to soil favoured the reduction of soluble and exchangeable PTEs, decreased soil dehydrogenase activity (by ∼2.08-fold), and increased alkaline phosphomonoesterase and urease activities, basal respiration and soil microbial carbon (by ∼1.18-, 1.22-, 1.22-, and 1.66-fold, respectively). Biochar increased the abundance of selected soil culturable microorganisms, while amplicon sequencing analysis showed a positive biochar impact on α-diversity and the induction of structural changes on soil bacterial community structure. Biochar did not affect root growth of hemp but significantly increased its aboveground biomass by ∼1.67-fold for shoots, and by ∼2-fold for both seed number and weight. Biochar increased the PTEs phytostabilisation potential of hemp with respect to Cd, Pb and Zn, and also stimulated hemp phytoextracting capacity with respect to Sb. Overall, the results showed that biochar can boost hemp yield and its phytoremediation effectiveness in soils contaminated by PTEs providing valuable biomass that can generate profit in economic, environmental and sustainability terms.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Mauro Lo Cascio
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | | | - Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Costantino Sirca
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | - Donatella Spano
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- CMCC – Euro-Mediterranean Center on Climate Change Foundation, IAFES Division, Via de Nicola 9, 07100, Sassari, Italy
| | - Pier Paolo Roggero
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
- Nucleo Ricerca Desertificazione, University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
Álvarez-Ayuso E, Murciego A. Assessment of industrial by-products as amendments to stabilize antimony mine wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118218. [PMID: 37247551 DOI: 10.1016/j.jenvman.2023.118218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
The spread of antimony from mine wastes to the environment represents a matter of great concern due to its adverse effects on impacted ecosystems. There is an urgent need for developing and adopting sustainable and inexpensive measures to deal with this type of wastes. In this study the Sb leaching behavior of mine waste rocks and mine tailings derived from the exploitation of Sb ore deposits was characterized using standard batch leaching tests (TCLP and EN-12457-4) and column leaching essays. Accordingly, these mine wastes were characterized as toxic (>0.6 mg Sb L-1) and not acceptable at hazardous waste landfills (>5 mg Sb kg-1), showing also an ongoing Sb release under prolonged leaching conditions. Two industrial by-products were evaluated as amendments to stabilize them, namely deferrisation sludge (DFS) and a by-product derived from the treatment of aluminum salt slags (BP-Al). Mine wastes were amended with different doses (0-25%) of DFS or BP-Al and the performance of these treatments was evaluated employing also batch and column leaching procedures. The effectiveness of DFS to immobilize Sb was much higher than that exhibited by BP-Al. Thus, treatments with 25% BP-Al showed Sb immobilization levels of approximately 33-53%, whereas treatments with 5 and 25% DFS already attained Sb immobilization levels up to approximately 80-90 and 90-99%, respectively. Mine tailings amended with 5% DFS and mine waste rocks amended with 25% DFS decreased their leachable Sb contents below the limit for non-hazardous waste landfill acceptance (<0.7 mg Sb kg-1). Likewise, these DFS treatments were able to revert their toxic characterization. Moreover, the 25% DFS treatment showed to be a long-lasting stabilizing system, efficient at least during a leaching period equivalent to 10-year rainfall with a great Sb leaching reduction (close to 98%). After this long-term leaching process, DFS-treated mine wastes kept their non-hazardous and non-toxic characterization. The amorphous Fe (oxyhydr)oxides composing DFS were responsible for the important Sb removal capacity showed by this by-product. Thus, when DFS was applied to mine wastes mobile Sb was importantly fixed as non-desorbable Sb, showing also a considerable Sb removal capacity in presence of strong competing anions such as phosphate. The application of DFS as amendment presents a great potential to be used as a sustainable long-term stabilizing system of Sb mine wastes.
Collapse
Affiliation(s)
- E Álvarez-Ayuso
- Department of Environmental Geochemistry. IRNASA (CSIC). C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| | - A Murciego
- Department of Geology. Salamanca University. Plza. de Los Caídos s/n, 37008, Salamanca, Spain
| |
Collapse
|
3
|
Garau M, Sizmur T, Coole S, Castaldi P, Garau G. Impact of Eisenia fetida earthworms and biochar on potentially toxic element mobility and health of a contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151255. [PMID: 34710424 DOI: 10.1016/j.scitotenv.2021.151255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the influence of Eisenia fetida (Savigny), added to an acidic soil contaminated with potentially toxic elements (PTEs; As, Sb, Cd, Pb, Zn) and amended with a softwood-derived biochar (2 and 5% w/w), on the mobility of PTEs and soil health (i.e. nutrient availability, enzyme activity and soil basal respiration). The PTEs bioaccumulation by E. fetida and the acute ecotoxicity effects of the amended soils were also evaluated. The interaction between earthworms and biochar led to a significant increase in soil pH, organic matter, dissolved organic carbon content, cation exchange capacity, and exchangeable Ca compared to the untreated soil. Moreover, the water-soluble and readily exchangeable PTE fraction decreased (with the exception of Sb) between 1.2- and 3.0-fold in the presence of biochar and earthworms. Earthworms, biochar, and their combination, led to a reduction of phosphomonoesterase activity which in soils amended with biochar and earthworms decreased between 2.2- and 2.5-fold with respect to the untreated soil. On the other hand, biochar and earthworms also enhanced soil basal respiration and protease activity. Although the survival rate and the weight loss of E. fetida did not change significantly with the addition of 2% biochar, adding the highest biochar percentage (5%) resulted in a survival rate that was ~2-fold lower and a weight loss that was 2.5-fold higher than the other treatments. The PTE bioaccumulation factors for E. fetida, which were less than 1 for all elements (except Cd), followed the order Cd > As>Zn > Cu > Pb > Sb and were further decreased by biochar addition. Overall, these results highlight that E. fetida and biochar, especially at 2% rate, could be used for the restoration of soil functionality in PTE-polluted environments, reducing at the same time the environmental risks posed by PTEs, at least in the short time.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Sean Coole
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy.
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
4
|
Cui X, Wang J, Wang X, Khan MB, Lu M, Khan KY, Song Y, He Z, Yang X, Yan B, Chen G. Biochar from constructed wetland biomass waste: A review of its potential and challenges. CHEMOSPHERE 2022; 287:132259. [PMID: 34543904 DOI: 10.1016/j.chemosphere.2021.132259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetland is considered a promising approach for water remediation due to its high efficiency, low operation costs, and ecological benefits, but the large amounts of wetland plant biomass need to be properly harvested and utilized. Recently, wetland plant derived biochar has drawn extensive attention owing to its application potential. This paper provides an updated review on the production and characteristics of wetland plant derived biochar, and its utilization in soil improvement, carbon sequestration, environmental remediation, and energy production. In comparison to hydrothermal carbonization and gasification, pyrolysis is a more common technique to convert wetland plant to biochar. Characteristics of wetland plant biochars varied with plant species, growth environment of plant, and preparation conditions. Wetland plant biochar could be a qualified soil amendment owing to its abundant nutrients. Notably, wetland plant biochar exhibited considerable sorption capacity for various inorganic and organic contaminants. However, the potentially toxic substances (e.g. heavy metal and polycyclic aromatic hydrocarbons) retained in wetland plant biochar should be noticed before large-scale application. To overcome the drawbacks from the scattered distribution, limited productivity, and seasonal operation of constructed wetlands, the economic feasibility of wetland plant biochar production system could be improved via using mobile pyrolysis unit, utilizing local waste heat, and exploiting all the byproducts. Future challenges in the production and application of wetland plant derived biochar include the continuous supply of feedstock and proper handling of potentially hazardous components in the biochar.
Collapse
Affiliation(s)
- Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Jiangtao Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xutong Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Muhammad Bilal Khan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min Lu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kiran Yasmin Khan
- Ministry of Education Key Laboratory of Advanced Process Control for Light Industry, Jiangnan University, Wuxi, 214122, China
| | - Yingjin Song
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Zhenli He
- Soil and Water Science Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Science, Tibet University, Lhasa, 850012, Tibet Autonomous Region, China.
| |
Collapse
|
5
|
Ghosh D, Maiti SK. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:559-576. [PMID: 33174450 DOI: 10.1080/15226514.2020.1840510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mining activities causes heavy metal pollution and adversely affect the ecological safety and human well-being. Phytoremediation-biochar synergy can effectively remediate mine spoils contaminated with heavy metals (HM). A review which focuses exclusively on the application of biochar assisted phytoremediation in HM contaminated mine spoil is lacking. Mechanisms of metal immobilization by biochar, potential plants and contaminated biomass disposal methods has also been reviewed. Availability of biochar feedstock and production conditions, optimization of application rate, application techniques, selection of suitable hyperaccumulators and cost optimization of bulk biochar production are the key to a successful biochar-based HM remediation of mine tailings and coalmine spoil. Presently, herbs and shrubs are mostly used as phytoremediators, use of woody trees would encourage a long-term metal sequestration which would reduce the cost of biomass disposal. Also, use of non-edible plants would prevent the plants from entering the food chain. For a holistic biochar-phytoremediation technique, incineration and pyrolysis can effectively dispose contaminated biomass. From the economical viewpoint, the environment cost-benefit analysis should be considered before considering the feasibility of a technology.HighlightsMass scale in-situ biochar production and economics are keys issues.Biochar assisted phytoremediation for HM contaminated mine spoils.Long term studies using woody biomass needs attention.Disposal of contaminated biomass by pyrolysis method.
Collapse
Affiliation(s)
- Dipita Ghosh
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, India Jharkhand
| |
Collapse
|
6
|
Gu J, Yao J, Duran R, Sunahara G, Zhou X. Alteration of mixture toxicity in nonferrous metal mine tailings treated by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110511. [PMID: 32275241 DOI: 10.1016/j.jenvman.2020.110511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Nonferrous metal mining activities produce enormous amounts of tailings that contain high concentrations of toxic chemicals threatening human health and the environment. This risk could be alleviated using remediation agents such as biochar, as proposed by others. However, contradictory evidence indicates that biochar can increase or sometimes decrease bioavailable concentrations depending on the selection of metal(loid)s in mine tailings. Here three biochars derived from different raw stocks were used to treat mine tailings samples. Chemical analyses indicated that all biochars favored the stabilization of Cd, Cr, Cu, Pb, and Zn, as well as the mobilization of As and Sb. The barley root elongation bioassay showed that the tailings toxicity was only partially diminished (up to 55.8%) or even elevated (up to 20.7%) by biochar treatment. Similar results were also observed from microbial enzyme assays (increased up to 28.3% or decreased up to 24.0%). Further analyses showed that these toxic effects correlated well with the relative toxicity index (R2 = 0.66 to 0.88). Toxicity testing coupled with the use of a toxicity prediction model presented here suggested that the release of As and Sb from tailings compromised the favorable effects of biochar treatment on toxic cationic metals. Such information is of paramount importance when taking countermeasures for improving bioremediation technologies.
Collapse
Affiliation(s)
- Jihai Gu
- School of Water Resource and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Xiaoqi Zhou
- School of Water Resource and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
7
|
Xu Q, Xu K. Statistical Analysis and Prediction of Fatal Accidents in the Metallurgical Industry in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113790. [PMID: 32471060 PMCID: PMC7312879 DOI: 10.3390/ijerph17113790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
The metallurgical industry is a significant component of the national economy. The main purpose of this study was to establish a composite risk analysis method for fatal accidents in the metallurgical industry. We collected 152 fatal accidents in the Chinese metallurgical industry from 2001 to 2018, including 141 major accidents, 10 severe accidents, and 1 extraordinarily severe accident, together resulting in 731 deaths. Different from traffic or chemical industry accidents, most of the accidents in the metallurgical industry are poisoning and asphyxiation accidents, which account for 40% of the total number of fatal accidents. As the original statistical data of fatal accidents in the metallurgical industry have irregular fluctuations, the traditional prediction methods, such as linear or quadratic regression models, cannot be used to predict their future characteristics. To overcome this issue, the grey interval predicting method and the GM(1,1) model of grey system theory are introduced to predict the future characteristics of fatal accidents in the metallurgical industry. Different from a fault tree analysis or event tree analysis, the bow tie model integrates the basic causes, possible consequences, and corresponding safety measures of an accident in a transparent diagram. In this study, the bow tie model was used to identify the causes and consequences of fatal accidents in the metallurgical industry; then, corresponding safety measures were adopted to reduce the risk.
Collapse
Affiliation(s)
- Qingwei Xu
- College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence:
| | - Kaili Xu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;
| |
Collapse
|
8
|
Gu J, Sunahara G, Duran R, Yao J, Cui Y, Tang C, Li H, Mihucz VG. Sb(III)-resistance mechanisms of a novel bacterium from non-ferrous metal tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109773. [PMID: 31614300 DOI: 10.1016/j.ecoenv.2019.109773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Understanding the mechanism(s) of microbial resistance to antimony (Sb) is critical in the bioremediation of Sb polluted environments. Here a novel bacterium (Acinetobacter sp. JH7) isolated from mine tailings decreased the Microtox toxicity of a Sb(III)-containing medium. DNA sequencing and physiological testing were employed for the identification and characterization of strain JH7. Following a batch experiment, Fourier transform infrared spectroscopy (FTIR) and antimony speciation analyses determined the adsorption and oxidation of antimony. Analyses of Sb(III) distribution revealed that extracellular polymeric substances and cell walls inhibited Sb(III) entry into JH7 cells. FTIR studies indicated that key functional groups including -OH, C-N, and C-O likely participated in Sb(III) biosorption. Isothermal and kinetic studies revealed that Sb(III) sorption to viable JH7 cells fitted the Langmuir model (R2 = 0.99) and could be described by pseudo-second order kinetics (R2 = 0.99). Furthermore, the increase of anti-oxidative enzymatic activity of JH7 enhanced the intracellular detoxification of Sb(III), which would indirectly contribute to the Sb(III) resistance ability of strain JH7. Our results indicate that biosorption and ROS oxidation of Sb(III) were likely responsible for the decreased toxicity of Sb. The greater understanding how Acinetobacter sp. JH7 lowers the environmental Sb(III) toxicity could provide a basis for future research and subsequent development of technologies for the remediation of Sb contaminated sites.
Collapse
Affiliation(s)
- Jihai Gu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Geoffrey Sunahara
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| | - Yongqiang Cui
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - CengCeng Tang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Hongquan Li
- Department of Basic Medicine, Hebei University, Baoding, 071002, People's Republic of China.
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, ELTE-Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| |
Collapse
|