1
|
Behrendt F, Gottschaldt M, Schubert US. Surface functionalized cryogels - characterization methods, recent progress in preparation and application. MATERIALS HORIZONS 2024; 11:4600-4637. [PMID: 39021096 DOI: 10.1039/d4mh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cryogels are polymeric materials with a sponge-like microstructure and have attracted significant attention in recent decades. Research has focused on their composition, fabrication techniques, characterization methods as well as potential or existing fields of applications. The use of functional precursors or functionalizing ligands enables the preparation of cryogels with desired properties such as biocompatibility or responsivity. They can also exhibit adsorptive properties or can be used for catalytical purposes. Although a very brief overview about several functional (macro-)monomers and functionalizing ligands has been provided by previous reviewers for certain cryogel applications, so far there has been no particular focus on the evaluation of the functionalization success and the characterization methods used. This review will provide a comprehensive overview of different characterization methods most recently used for the evaluation of cryogel functionalization. Furthermore, new functional (macro-)monomers and subsequent cryogel functionalization strategies are discussed, based on synthetic polymers, biopolymers and a combination of both. This review highlights the importance of the functionalization aspect in cryogel research in order to produce materials with tailored properties for certain applications.
Collapse
Affiliation(s)
- Florian Behrendt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Abbe Center of Photonics (ACP), Albert-Einstein-Straße 6, 07743 Jena, Germany
| |
Collapse
|
2
|
El-Kholy SA. Environmentally Benign Freeze-dried Biopolymer-Based Cryogels for Textile Wastewater Treatments: A review. Int J Biol Macromol 2024; 276:133931. [PMID: 39032896 DOI: 10.1016/j.ijbiomac.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants which seriously impact human health and the entire ecosystem. Developing effective materials for potential removal of the water contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers and applied as adsorbents for the purification of textile drainage. We displayed an overview of: the existing contaminants in textile effluents (dyes and heavy metals), their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is also discussed. Finally, the bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.
Collapse
Affiliation(s)
- Samar A El-Kholy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koom 32511, Egypt.
| |
Collapse
|
3
|
Bagdat S, Tokay F, Demirci S, Yilmaz S, Sahiner N. Removal of Cd(II), Co(II), Cr(III), Ni(II), Pb(II) and Zn(II) ions from wastewater using polyethyleneimine (PEI) cryogels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117002. [PMID: 36527951 DOI: 10.1016/j.jenvman.2022.117002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The removal of the target analytes, Cd(II), Co(II), Cr(III), Ni(II), Pb(II), and Zn(II) from contaminated waters was achieved using super porous polyethyleneimine (PEI) cryogels as adsorbent. The optimum values of the sample pH and contact time were determined as 4.0 and 90 min, respectively, for the removal of the analytes. The adsorption capacities of the sorbent were between 19.88 and 24.39 mgg-1 from 10 mL of 50 mgL-1 target metal ion solutions. The sorption kinetics of metal ions were fitted with the pseudo-second-order model. The adsorption isotherms of the target analytes into PEI cryogel were well-fitted to the Langmuir isotherm model as expected from the material homogeneity. The selectivity of the PEI cryogel in the presence of Na+, Ca2+, Mg2+, NO3-, K+ and Cl- ions even at high concentrations was tested, and the tolerance limits were satisfactory enough, e.g., the adsorption of the target analytes was even not affected in the presence of 2000 mgL-1 Ca2+, K+, Na+, Cl- and 5000 mgL-1 NO3- ions. The PEI cryogels were successfully utilized in different industrial wastewater samples that were spiked with a known amount of analytes. The removal of the analytes from wastewater samples was in the following ranges 91.94-99.86% for Cd(II), 89.59-99.89% for Co(II), 80.35-99.76% for Cr(III), 92.02-99.84% for Ni(II), 83.28-99.86% for Pb(II), and 82.94-98.24% for Zn(II), respectively. The presented novel removal strategy offers a selective, efficient, and easy application for target metal ions from industrial wastewater samples.
Collapse
Affiliation(s)
- Sema Bagdat
- Balıkesir University, Faculty of Science, Chemistry Department, 10145, Balıkesir, Turkey
| | - Feyzullah Tokay
- Balıkesir University, Faculty of Science, Chemistry Department, 10145, Balıkesir, Turkey
| | - Sahin Demirci
- Canakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Terzioglu Campus, Canakkale, 17100, Turkey; Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Selehattin Yilmaz
- Canakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Terzioglu Campus, Canakkale, 17100, Turkey
| | - Nurettin Sahiner
- Canakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Terzioglu Campus, Canakkale, 17100, Turkey; Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey; Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
4
|
Copolymerization of anthranilic acid and o-phenylenediamine by a free radical in the presence of nanoparticles of copper hexacyanoferrates for the removal of cesium ions in aqueous solutions. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractCore–shell nanocomposite of copper hexacyanoferrate copolymer of anthranilic acid with o-phenylenediamine (CHCF-poly-AA-co-OPD)) was synthesized and used as ion exchanger for the removal of cesium ions from wastewater. The nanocomposite was prepared by implantation of CHCF nanoparticles into the copolymer of poly(AA-co-OPD) during the polymerization process. By transmission electron microscope, scanning electron microscope and Brunauer–Emmett–Teller, the surface morphology and the porous structure were investigated. The physicochemical characterization of the prepared core–shell nanocomposite was carried out by FT-IR spectroscopy, XRD and thermogravimetric analysis. As a function in pH, metal ion concentration, shaking time and temperature, the capacity of the CSNC toward cesium ions and the behaviors of the process were studied. The results illustrated that the maximum capacity was recorded 1.35 mmol g−1 at pH 11, 10 mmol L−1 Cs+ and 25 °C. Also, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D–R) isotherms models were studied, in which the data were well fitted with Langmuir model, suggesting that the uptake of Cs+ was monolayer and homogeneous. Also, the adsorption kinetics data were fitted well to pseudo-second-order model. Thermodynamic parameters were calculated in the temperature from 25 to 60 °C, and the data revealed that Cs+ sorption was endothermic, spontaneous and more favorable at higher temperature. Up to 92% desorption of Cs+ was completed with 2 M KCl.
Collapse
|
5
|
Tosun Satir I, Ozdemir N, Donmez Gungunes C. Bone meal and chitosan biocomposite: a new biosorbent for the removal of Victoria Blue R from wastewater. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2021.1957850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilknur Tosun Satir
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Corum, Turkey
| | - Naim Ozdemir
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Corum, Turkey
| | - Cigdem Donmez Gungunes
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hitit University, Corum, Turkey
| |
Collapse
|
6
|
Köse K, Tüysüz M, Aksüt D, Uzun L. Modification of cyclodextrin and use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:182-209. [PMID: 34212318 DOI: 10.1007/s11356-021-15005-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 05/27/2023]
Abstract
Water pollution, which has become a global problem in parallel with environmental pollution, is a problem that needs to be solved urgently, considering the gradual depletion of water resources. The inadequacy of the water treatment methods and the materials used somehow directed the researchers to look for dual character structures such as biocompatible and biodegradable β-cyclodextrin (β-CD). β-CD, which is normally insoluble in water, is used in demanding wastewater applications by being modified with the help of different agents to be water soluble or transformed into polymeric adsorbents as a result of co-polymerization via cross-linkers. In this way, in addition to the host-guest interactions offered by β-CD, secondary forces arising from these interactions provide advantages in terms of regeneration and reusability. However, the adsorption efficiency and synthesis steps need to be improved. Based on the current studies presented in this review, in which cross-linkers and modification methods are also mentioned, suggestions for novel synthesis methods of new-generation β-CD-based materials, criticisms, and recent methods of removal of micropollutants such as heavy metals, industrial dyes, harmful biomolecules, and pharmaceutics wastes are mentioned.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, 19040, Çorum, Turkey.
| | - Miraç Tüysüz
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Davut Aksüt
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Rekos K, Kampouraki ZC, Panou C, Baspanelou A, Triantafyllidis K, Deliyanni E. Adsorption of DBT and 4,6-DMDBTon nanoporous activated carbons: the role of surface chemistry and the solvent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59050-59062. [PMID: 32270454 DOI: 10.1007/s11356-020-08242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) from solutions in hexane and hexadecane respectively as well as in acetonitrile for both thiophenic compounds was investigated with sorbents of three activated carbons and their oxidized counterparts. The raw sorbents were of different surface acidity. Oxygen surface groups created after oxidation increased the adsorption of thiophenic compounds via polar interactions.
Collapse
Affiliation(s)
- Kyriazis Rekos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Zoi-Christina Kampouraki
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Chrisowalantou Panou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Alexandra Baspanelou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Konstantinos Triantafyllidis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
8
|
Maaloul N, Oulego P, Rendueles M, Ghorbal A, Díaz M. Enhanced Cu(II) adsorption using sodium trimetaphosphate-modified cellulose beads: equilibrium, kinetics, adsorption mechanisms, and reusability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46523-46539. [PMID: 32696406 DOI: 10.1007/s11356-020-10158-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The current study is focused on the simple synthesis of two novel biosorbent beads: BASB/STMP and CNFB/STMP, derived respectively from bleached almond shell (BAS) and cellulose nanofiber from almond shell (CNF) by means of chemical crosslinking with sodium trimetaphosphate (STMP). These biosorbents were thoroughly characterized in terms of structure (FTIR), texture (N2 adsorption-desorption), thermal behavior (TGA/DTG), morphology (SEM), and surface properties (XPS). The adsorption kinetics of Cu(II) ions onto BASB/STMP and CNFB/STMP materials proved the chemisorption interaction between Cu(II) ions and the STMP functionalized beads. The BASB/STMP equilibrium data were successfully described by the Redlich-Peterson model and the CNFB/STMP data by the Sips model which disclosed maximum adsorption capacities of 141.44 mg g-1 and 147.90 mg g-1, respectively. Furthermore, the BASB/STMP bioadsorbent offers easy regeneration and better reusability with high efficiency (> 83%). This study sheds light on the preparation of low-cost adsorbents for wastewater treatment in order to improve the competitiveness and eco-friendliness of agrowaste-based processes.
Collapse
Affiliation(s)
- Najeh Maaloul
- Applied Thermodynamic Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Achraf Ghorbal
- Applied Thermodynamic Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071, Oviedo, Spain.
| |
Collapse
|
9
|
Erol K, Arslan Akveran G, Köse K, Ali Köse D. Reducing lactose content of milk from livestock and humans via lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-i-aspartic acid) cryogels. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Lactase, which can cause lactose intolerance in its deficiency, is a vital enzyme concerning digestion. To overcome lactose intolerance for patients with digestion problem depending of this kind of issue, lactose in food should be removed. In this study, lactose imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-aspartic acid), poly(HEMA-MAsp), cryogels were synthesized to reduce the amount of lactose content of milk samples. Occurrence of desired bounds, structural integrity, and surface characteristics were analyzed via Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), micro computed tomography (CT), and confocal microscope methods. Water retention characteristic were tested in solution with different electrolytic nature. Adsorption parameters were optimized in an aqueous medium. The adsorption performance of imprinted cryogels was studied in milk samples obtained from cow, sheep, goat, buffalo, and from human volunteers at different intervals after birth. Amount of lactose adsorbed in aqueous media and milk sample from humans were 322 (56.7%) and 179.5 (5.94%) mg lactose/g polymer, respectively. Selectivity studies revealed an approximately 8-fold increase in adsorption rate of molecularly imprinted cryogels as compared to that of nonimprinted cryogels. In addition, competitive adsorption was conducted using lactose-imprinted cryogels in aqueous media containing lactose, glucose, and galactose molecules resulting in adsorption rates of 220.56, 57.87, and 61.65 mg biomolecule/g polymer, respectively.
Collapse
Affiliation(s)
- Kadir Erol
- Department of Property Protection and Safety , Osmancık Ö. D. Vocational School, Hitit University , Çorum , Turkey
| | - Gönül Arslan Akveran
- Department of Food Processing , Alaca Avni Çelik Vocational School, Hitit University , Çorum , Turkey
| | - Kazım Köse
- Department of Joint Courses , Hitit University , Çorum 19030 , Turkey
| | - Dursun Ali Köse
- Department of Chemistry , Faculty of Science and Arts, Hitit University , Çorum , Turkey
| |
Collapse
|
10
|
Designing gelatin-based swellable hydrogels system for controlled delivery of salbutamol sulphate: characterization and toxicity evaluation. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03629-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Kireç O, Alacabey İ, Erol K, Alkan H. Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Sub-microparticles have many applications in different fields today. In this study, it is aimed to develop hydrophobic microparticles as an alternative to existing methods and to determine the 17β-estradiol adsorption performance of this adsorbent to purify the 17β-estradiol hormone which is found as an endocrine disruptor in environmental waters with high capacity and low cost. In this study, l-phenylalanine containing Poly(HEMA-MAPA) microparticles were synthesized by microemulsion polymerization and used as adsorbent. Microparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) methods. The size of the Poly(HEMA-MAPA) microparticles used was measured as 120–200 nm. Specific surface area and elemental analysis studies were also conducted. While the surface area of the particles was found to be a very high value of 1890 m2/g, the amount of incorporation of MAPA into the polymeric structure was calculated as 0.43 mmol/g. Adsorption studies were carried out in the batch system under different ambient conditions (17β-estradiol concentration, temperature, ionic intensity). The adsorption capacity of Poly(HEMA-MAPA) microparticles was calculated to be 98.4 mg/g. Isotherm models for adsorption interaction were investigated deeply, and it was determined that the adsorption mechanism is suitable for Langmuir isotherm.
Collapse
Affiliation(s)
- Osman Kireç
- Department of Chemistry, Faculty of Science , Dicle University , 21280 Diyarbakır , Turkey
| | - İhsan Alacabey
- Vocational School of Health Services , Mardin Artuklu University , 47200 Mardin , Turkey
| | - Kadir Erol
- Hitit University , Vocational School of Health Services , Department of Medical Services and Techniques , Çorum , Turkey
| | - Hüseyin Alkan
- Department of Biochemistry, Faculty of Pharmacy , Dicle University , 21280 Diyarbakır , Turkey
| |
Collapse
|
12
|
Ihlenburg RBJ, Lehnen AC, Koetz J, Taubert A. Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions. Polymers (Basel) 2021; 13:E208. [PMID: 33435604 PMCID: PMC7826763 DOI: 10.3390/polym13020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.
Collapse
Affiliation(s)
| | | | | | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 26, D-14476 Potsdam, Germany; (R.B.J.I.); (A.-C.L.); (J.K.)
| |
Collapse
|
13
|
Erol K, Tatar D, Veyisoğlu A, Tokatlı A. Antimicrobial magnetic poly(GMA) microparticles: synthesis, characterization and lysozyme immobilization. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2020-0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Micron-sized magnetic particles currently find a wide range of applications in many areas including biotechnology, biochemistry, colloid sciences and medicine. In this study, magnetic poly(glycidyl methacrylate) microparticles were synthesized by providing a polymerization around Fe(II)-Ni(II) magnetic double salt. Adsorption of lysozyme protein from aqueous systems was studied with these particles. Adsorption studies were performed with changing pH values, variable amount of adsorbent, different interaction times and lysozyme amounts. The adsorption capacity of the particles was investigated, and a value of about 95.6 mg lysozyme/g microparticle was obtained. The enzyme activity of the immobilized lysozyme was examined and found to be more stable and reusable compared to the free enzyme. The immobilized enzyme still showed 80% activity after five runs and managed to maintain 78% of its initial activity at the end of 60 days. Besides, in the antimicrobial analysis study for six different microorganisms, the minimum inhibitory concentration value of lysozyme immobilized particles was calculated as 125 μg/mL like free lysozyme. Finally, the adsorption interaction was found to be compatible with the Langmuir isotherm model. Accordingly, it can be said that magnetic poly(GMA) microparticles are suitable materials for lysozyme immobilization and immobilized lysozyme can be used in biotechnological studies.
Collapse
Affiliation(s)
- Kadir Erol
- Department of Medical Services and Techniques , Vocational School of Health Services, Hitit University , Çorum , Turkey
| | - Demet Tatar
- Department of Medical Services and Techniques , Osmancık Ömer Derindere Vocational School, Hitit University , Çorum , Turkey
| | - Aysel Veyisoğlu
- Department of Medical Services and Techniques , Vocational School of Health Services, Sinop University , Sinop , Turkey
| | - Ali Tokatlı
- Department of Biology , Faculty of Art and Science, Ondokuz Mayıs University , Samsun , Turkey
| |
Collapse
|
14
|
Liu Q, Han R, Qu L, Ren B. Enhanced adsorption of copper ions by phosphoric acid-modified Paeonia ostii seed coats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43906-43916. [PMID: 32740849 DOI: 10.1007/s11356-020-10296-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Novel adsorbent, phosphoric acid-modified Paeonia ostii seed coats (PA-PSC) were successfully prepared by low-temperature pyrolysis to effectively remove Cu(II) from aqueous solution. The results revealed that equilibrium adsorption capacity (qe) of PA-PSC for Cu(II) was notably enhanced up to 4-folds compared with the raw PSC. FT-IR and XPS analyses suggested that the adsorption of Cu(II) by PA-PSC was primarily ascribed to electrostatic forces and complexing effects. Besides, equilibrium and kinetic studies demonstrated that Freundlich and pseudo-second-order models were the actually fairly good approximations of Cu(II) adsorption. Thermodynamic analysis revealed that the adsorption of Cu(II) onto PA-PSC was a chemical, endothermic, and spontaneous process. Lastly, reusability study further confirmed the applicability of PA-PSC as a promising adsorbent for removing Cu(II) from aqueous solution.
Collapse
Affiliation(s)
- Qiong Liu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, People's Republic of China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Runping Han
- School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lingbo Qu
- School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Baozeng Ren
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
15
|
Hassan AF. Synthesis of carbon nano-onion embedded metal-organic frameworks as an efficient adsorbent for cadmium ions: kinetic and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24099-24111. [PMID: 31228069 DOI: 10.1007/s11356-019-05581-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Carbon nano-onions (CNOs), metal-organic frameworks (MOF-199), and carbon nano-onion embedded metal-organic frameworks (CMOF-199) were synthesized from garlic peels as a green source of carbon atoms while MOF-199 was prepared by solvothermal interaction between 1,3,5-benzenetricarboxylic acid and copper nitrate trihydrate. All the prepared solid materials were characterized by nitrogen adsorption/desorption isotherm, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), point of zero charge (pHPZC), and Fourier transform infrared spectroscopy (FTIR). Adsorption of cadmium ions from aqueous solution was investigated onto all prepared solid materials considering different application conditions such as adsorbent dosage, pH, contact time, initial concentration of Cd+2, and temperature. Adsorption of Cd+2 was investigated by Langmuir, Freundlich, Temkin, and Dubinin-Radhushkevich adsorption isotherm models. Maximum adsorption capacity (113.3 mg g-1) was achieved by CMOF-199 at 40 °C. The adsorption of Cd+2 obeys pseudo-second-order kinetic model. Thermodynamic studies confirmed that the adsorption process is spontaneous, favorable, endothermic, and physisorption. Adsorption results proved that carbon nano-onion embedded metal-organic frameworks are promising solid adsorbents for cadmium ion adsorption.
Collapse
Affiliation(s)
- Asaad F Hassan
- Department of Chemistry, Faculty of Science, University of Damanhour, Damanhour, Egypt.
| |
Collapse
|