1
|
Sulaiman MA, Kumari A. Unveiling the Rising Threat of Cadmium Pollution and Alarming Health Risks Associated with the Consumption of 15 Commercially Important Fish Species in the Middle Stretch of River Ganga, at Patna, India. Biol Trace Elem Res 2025; 203:422-441. [PMID: 38607526 DOI: 10.1007/s12011-024-04164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Among environmental contaminants, the rising level of cadmium in freshwater ecosystems is one of the most significant global concerns. The study addresses the current pollution status of cadmium in the middle stretch of River Ganga and explores the potential hazard associated with the consumption of 15 commercially important fish species by the inhabitants. Together 72 water and sediment samples were analyzed from the four representative sampling sites of River Ganga after the surveillance of major anthropogenic stressors. The concentration of cadmium ranges from 0.003 to 0.011 mg/l and 0.2 to 3.48 mg/kg in water and sediment respectively in 2022. The average concentration of cadmium was recorded to be the highest in Channa punctatus (1.35 mg/kg), followed by Rita rita = Johnius coitor (1.15 mg/kg), and the lowest in Labeo bata (0.2 mg/kg). The finding highlights greater exposure duration and feeding preferences of fish species have played a significant role in the bioaccumulation of the metal in the riverine system. Notably, the domestic effluents, agricultural runoffs, and pollutants brought along by the tributaries of River Ganga are identified as the main anthropogenic stressors for the moderate to considerably polluted status of the River Ganga. The target hazard quotient (THQ) and target carcinogenic risk (TCR) have revealed a higher susceptibility to cadmium contamination in children followed by females, and males. In addition, hierarchical cluster analysis (HCA) has noted intake of Rita rita, Channa punctata, Puntius sophore, and Johnius coitor could be more detrimental to children's health than adults.
Collapse
Affiliation(s)
| | - Anupma Kumari
- Department of Zoology, Patna University, Patna, 800005, India.
| |
Collapse
|
2
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Liu B, Han J, Zhang H, Li Y, An Y, Ji S, Liu Z. The regulatory pathway of transcription factor MYB36 from Trichoderma asperellum Tas653 resistant to poplar leaf blight pathogen Alternaria alternata Aal004. Microbiol Res 2024; 282:127637. [PMID: 38382286 DOI: 10.1016/j.micres.2024.127637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
In fungi, MYB transcription factors (TFs) mainly regulate growth, development, and resistance to stress. However, as major disease-resistance TFs, they have rarely been studied in biocontrol fungi. In this study, MYB36 of Trichoderma asperellum Tas653 (Ta) was shown to respond strongly to the stress caused by Alternaria alternata Aa1004. Compared with wild-type Ta (Ta-Wt), the inhibition rate of the MYB36 knockout strain (Ta-Kn) on Aa1004 decreased by 11.06%; the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities decreased by 82.15 U/g, 0.19 OD470/min/g, and 1631.2 μmol/min/g, respectively. The MYB36 overexpression strain (Ta-Oe) not only enhanced hyperparasitism on Aa1004, caused its hyphae to swell, deform, or even rupture, but also reduced the incidence rate of poplar leaf blight. MYB36 regulates downstream (TFs, detoxification genes, defense genes, and other antifungal-related genes by binding to the cis-acting elements "ACAT" and "ATCG". Zinc finger TFs, as the main antifungal TFs, account for 90% of the total TFs, and Zn37.5 (23.24-) and Zn83.7 (23.18-fold) showed the greatest expression difference when regulated directly by MYB36. The detoxification genes mainly comprised 11 major major facilitator superfamily (MFS) genes, among which MYB36 directly increased the expression levels of three genes by more than 2-3.44-fold. The defense genes mainly encoded cytochrome P450 (P450) and hydrolases. e.g., P45061.3 (2-10.95-), P45060.2 (2-7.07-), and Hyd44.6 (2-2.30-fold). This study revealed the molecular mechanism of MYB36 regulation of the resistance of T. asperellum to A. alternata and provides theoretical guidance for the biocontrol of poplar leaf blight and the anti-disease mechanism of biocontrol fungi.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Han
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Huifang Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Modern Agricultural Industry Research Institute of Henan Zhoukou National Agricultural High-tech Industry Demonstration Zone, Zhoukou Normal University, Henan 466000, China
| | - Yuxiao Li
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Yibo An
- National Forestry and Grassland National Reserve Forest Engineering Technology Research Center, Chongqing Forestry Investment and Development Co., Ltd., Chongqing 401120, China
| | - Shida Ji
- Horticultural College of Shenyang Agricultural University, Shenyang 110866, China
| | - Zhihua Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Ren J, Zheng C, Yong Y, Lin Z, Zhu A, He C, Pan H. Effect and mechanism of kaolinite loading amorphous zero-valent iron to stabilize cadmium in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166319. [PMID: 37586509 DOI: 10.1016/j.scitotenv.2023.166319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Amorphousness effectively improves the electron transfer rate of zero-valent iron. In this study, a novel kaolinite loading amorphous zero-valent iron composite (K-AZVI) was prepared and applied to the remediation of soils with cadmium (Cd) pollution concentrations of 20, 50, and 100 mg/kg respectively. The results showed that the application of K-AZVI increased the pH and cation exchange capacity (CEC) of soil, and decreased the dissolved organic carbon (DOC) and organic matter (OM) of soil, thus indirectly promoting the adsorption of Cd in the soil. After 28 days of stabilization, the stabilizing efficiency of K-AZVI on the water-soluble Cd content in soil reached 98.72 %. Under the amendment of 0.25 %-1.0 % (w/w), the available Cd content in 20-100 mg/kg contaminated soil decreased by 46.47 %-62.23 %, 24.10 %-41.52 %, and 16.09 %-30.51 % respectively compared with CK. More importantly, the addition of K-AZVI promoted the transformation of 33.18 %-48.42 % exchangeable fraction (EXC) to 10.09 %-20.14 % residual fraction (RES), which increased the abundance and diversity of soil bacterial communities. Comprehensive risk assessment showed that adding 1.0 % K-AZVI provided the best remediation on contaminated soil. In addition, the results of scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) of K-AZVI before and after the reaction showed that the stabilization mechanism of K-AZVI to Cd in soil is mainly the stable metal species (Cd(OH)2, CdO and CdFe2O4) formed by the direct complexation and coprecipitation of a large number of iron oxides formed by the rapid corrosion of amorphous zero-valent iron (AZVI). Overall, this work provides a promising approach to the remediation of Cd-contaminated soil using K-AZVI composites.
Collapse
Affiliation(s)
- Jieling Ren
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Shaanxi Qingling Chunchuang Environmental Protection Industry Technology Co., Ltd., Xi'an 710049, PR China.
| | - Yingying Yong
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
5
|
Zhang T, Li T, Zhou Z, Li Z, Zhang S, Wang G, Xu X, Pu Y, Jia Y, Liu X, Li Y. Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162812. [PMID: 36924951 DOI: 10.1016/j.scitotenv.2023.162812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) can accumulate in agriculture soil from the regular application of phosphorus (P) fertilizer. Microbiological method is considered as a potentially effective strategy that can not only remediate the Cd-contaminated soil but also provide the phosphorus needed for crop growth. However, the toxicity of Cd may affect the activity of microorganisms. To solve this problem, Klebsiella variicola with excellent phosphate solubilization ability (155.30 mg L-1 at 48 h) and Cd adsorption rate (90.84 % with 10 mg L-1 Cd initial concentration) was firstly isolated and identified in this study. Then, a phosphoric acid and ball milling co-modified biochar (PBC) was selected as the carrier to promote the activities of K. variicola under Cd pollution. Surface characterization revealed that the promotion of K. variicola by PBC was mainly attributed to the large specific surface area and diverse functional groups. Compared to contaminated soil, microbial PBC (MPBC) significantly increased the pakchoi biomass and phosphorus (P) content, while the Cd content in leave and root of pakchoi (Brassica chinensis L.) decreased by 25.90-43.46 % (P < 0.05). The combined application also favored the transformation of the resistant P fractions to bioavailable P, and facilitated the immobilization of 20.12 % exchangeable Cd to reducible, oxidizable, and residual Cd in the treated soil. High-throughput sequencing revealed that the response of the soil microbial community to the MPBC was more beneficial than K. variicola or PBC alone. Therefore, the application of MPBC has the potential to act as an efficient, stable, and environmentally friendly sustainable product for Cd remediation and enhanced P bioavailability in agricultural production.
Collapse
Affiliation(s)
- Tingrui Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zijun Zhou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zengqiang Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shirong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Guiyin Wang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojing Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Wang Y, Wu J, Li J, Liu B, Wang D, Gao C. The R2R3-MYB transcription factor ThRAX2 recognized a new element MYB-T (CTTCCA) to enhance cadmium tolerance in Tamarix hispida. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111574. [PMID: 36565937 DOI: 10.1016/j.plantsci.2022.111574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
R2R3-MYB transcription factors play an important role in plant development and response to various environmental stresses. In this study, a new R2R3-MYB gene, named ThRAX2, was isolated from T. hispida. ThRAX2 has an open reading frame (ORF) of 1191 bp and encodes a protein of 396 amino acids. ThRAX2 was localized in the nucleus. The overexpression of ThRAX2 in Arabidopsis and T. hispida significantly increased Cadmium (Cd) tolerance. Moreover, the accumulation of cadmium in roots and leaves was significantly reduced. The TF-centred Y1H and Y1H results showed that ThRAX2 was able to specifically bind a new cis-element (MYB-T, CTTCCA). The promoters of some Cd-responsive genes, such as ThSOS1, ThCKX3, ThCAX3A, ThMYB78, ThMIP2, ThTPS4, and ThSOD2, all contained 1-3 MYB-T sequences. Furthermore, chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) and ChIPquantitative (q)PCR showed that the ThRAX2 gene can bind to ThSOS1, ThCKX3, ThCAX3A and ThMYB78 promoter fragments, including the MYB-T motif. Meanwhile, the qRTPCR results also showed that the expression trends of ThSOS1, ThCKX3, ThCAX3A and ThMYB78 were similar to that of ThRAX2. This finding suggests that Cd tolerance of the ThRAX2 gene may regulate the expression of some downstream genes through specific recognition of the MYB-T motif and participate in regulating intracellular ion homeostasis, transport, and protein activity or enhance antioxidant enzyme activity. This study found a novel cis-acting element that binds ThRAX2 to regulate Cd tolerance, which lays the foundation for the ThRAX2 regulatory mechanism of Cd stress. This study provides a genetic and theoretical basis for the bioremediation of Cd-contaminated land by cultivating transgenic plants in the future.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Danni Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
7
|
Gao YF, Jia X, Zhao YH, Ding XY, Zhang CY, Feng XJ. Glomus mosseae improved the adaptability of alfalfa ( Medicago sativa L.) to the coexistence of cadmium-polluted soils and elevated air temperature. FRONTIERS IN PLANT SCIENCE 2023; 14:1064732. [PMID: 36968359 PMCID: PMC10033771 DOI: 10.3389/fpls.2023.1064732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The coexistence of heavy metal-polluted soils and global warming poses serious threats to plants. Many studies indicate that arbuscular mycorrhizal fungi (AMF) can enhance the resistance of plants to adverse environments such as heavy metals and high temperature. However, few studies are carried out to explore the regulation of AMF on the adaptability of plants to the coexistence of heavy metals and elevated temperature (ET). Here, we investigated the regulation of Glomus mosseae on the adaptability of alfalfa (Medicago sativa L.) to the coexistence of cadmium (Cd)-polluted soils and ET. G. mosseae significantly enhanced total chlorophyll and carbon (C) content in the shoots by 15.6% and 3.0%, respectively, and Cd, nitrogen (N), and phosphorus (P) uptake by the roots by 63.3%, 28.9%, and 85.2%, respectively, under Cd + ET. G. mosseae significantly increased ascorbate peroxidase activity, peroxidase (POD) gene expression, and soluble proteins content in the shoots by 13.4%, 130.3%, and 33.8%, respectively, and significantly decreased ascorbic acid (AsA), phytochelatins (PCs), and malondialdehyde (MDA) contents by 7.4%, 23.2%, and 6.5%, respectively, under ET + Cd. Additionally, G. mosseae colonization led to significant increases in POD (13.0%) and catalase (46.5%) activities, Cu/Zn-superoxide dismutase gene expression (33.5%), and MDA (6.6%), glutathione (22.2%), AsA (10.3%), cysteine (101.0%), PCs (13.8%), soluble sugars (17.5%), and proteins (43.4%) contents in the roots and carotenoids (23.2%) under ET + Cd. Cadmium, C, N, G. mosseae colonization rate, and chlorophyll significantly influenced shoots defenses and Cd, C, N, P, G. mosseae colonization rate, and sulfur significantly affected root defenses. In conclusion, G. mosseae obviously improved the defense capacity of alfalfa under ET + Cd. The results could improve our understanding of the regulation of AMF on the adaptability of plants to the coexistence of heavy metals and global warming and phytoremediation of heavy metal-polluted sites under global warming scenarios.
Collapse
Affiliation(s)
- Yun-feng Gao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang’an University, Xi’an, China
| | - Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| | - Yong-hua Zhao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang’an University, Xi’an, China
| | - Xiao-yi Ding
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| | - Chun-yan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| | - Xiao-juan Feng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| |
Collapse
|
8
|
Guo Y, Xiao Q, Zhao X, Wu Z, Dai Z, Zhang M, Qiu C, Long S, Wang Y. Phytoremediation with kenaf (Hibiscus cannabinus L.) for cadmium-contaminated paddy soil in southern China: translocation, uptake, and assessment of cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1244-1252. [PMID: 35913693 DOI: 10.1007/s11356-022-22111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Kenaf (Hibiscus cannabinus L.) is suitable for growing in heavy metal-polluted soil for non-food purposes and can be used as a potential crop to remediate heavy metal-contaminated soil. The main objective of this study was to investigate kenaf phytoextraction of cadmium (Cd), including uptake, translocation, and accumulation differences in tissues among kenaf cultivars. A field experiment was conducted in a Cd contaminated paddy field in southern China area with 13 kenaf cultivars in 2015 and 2016. Agronomic performance, Cd concentrations in plant tissues (root, xylem, and phloem), and biomass of different tissues of each cultivar were measured and evaluated. Significant differences in Cd concentrations and accumulation among tissues and cultivars were observed. The phloem had the highest Cd accumulation and transfer capability compared with the roots and xylem. Approximately 35 ~ 65 g of Cd could be taken up by the aerial parts of different kenaf cultivars within every hectare of soil. The percentage of Cd uptake by the phloem ranged from 47 to 61% and by the xylem ranged from 38 to 53%. By evaluating the agronomic traits and Cd bioaccumulation capacity, Fuhong 952, Fuhong 992, and Fuhong R1 were regarded as Cd accumulators for the phytoremediation of Cd-contaminated soil. Our study clearly demonstrated that a significant level of Cd in the soil was taken up through the phytoremediation with kenaf. In addition, harmless utilization of kenaf planting in Cd-contaminated paddy soil was discussed.
Collapse
Affiliation(s)
- Yuan Guo
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Qingmei Xiao
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Zhimin Wu
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Minji Zhang
- Shanghai Zhongwei Biochemistry Co., Ltd, Shanghai, 201203, China
| | - Caisheng Qiu
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Songhua Long
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Yufu Wang
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| |
Collapse
|
9
|
Use of Geographically Weighted Regression (GWR) to Reveal Spatially Varying Relationships between Cd Accumulation and Soil Properties at Field Scale. LAND 2022. [DOI: 10.3390/land11050635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spatial variation of correlation between Cd accumulation and its impact factors plays an important role in precise management of Cd contaminated farmland. Samples of topsoils (n = 247) were collected from suburban farmland located at the junction of the Yellow River Basin and the Huaihe River Basin in China using a 200 m × 200 m grid system. The total and available contents of Cd (T-Cd and A-Cd) in topsoils were analyzed by ICP-MS, and their spatial distribution was analyzed using kriging interpolation with the GIS technique. Geographically weighted regression (GWR) models were applied to explore the spatial variation and their influencing mechanisms of relationships between major environmental factors (pH, organic matter, available phosphorus (A-P)) and Cd accumulation. Spatial distribution showed that T-Cd, A-Cd and their influencing factors had obvious spatial variability, and high value areas primarily cluster near industrial agglomeration areas and irrigation canals. GWR analysis revealed that relationships between T-Cd, A-Cd and their environmental factors presented obvious spatial heterogeneity. Notably, there was a significant negative correlation between soil pH and T-Cd, A-Cd, but with the increase of pH in soil the correlation decreased. A novel finding of a positive correlation between OM and T-Cd, A-Cd was observed, but significant positive correlation only occurred in the high anthropogenic input area due to the complex effects of organic matter on Cd activity. The influence intensity of pH and OM on T-Cd and A-Cd increases under the strong influence of anthropogenic sources. Additionally, T-Cd and A-Cd were totally positively related to soil A-P, but mostly not significantly, which was attributed to the complexity of the available phosphorus source and the differences in Cd contents in chemical fertilizer. Furthermore, clay content might be an important factor affecting the correlation between Cd and soil properties, considering that the correlation between Cd and pH, SOM, A-P was significantly lower in areas with lower clay particles. This study suggested that GWR was an effective tool to reveal spatially varying relationships at field scale, which provided a new idea to further explore the related influencing factors on spatial distribution of contaminants and to realize precise management of a farmland environment.
Collapse
|
10
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
11
|
Tian X, Wang D, Li Z, Liu Y. Influence of nitrogen forms, pH, and water levels on cadmium speciation and characteristics of cadmium uptake by rapeseed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13612-13623. [PMID: 34595704 DOI: 10.1007/s11356-021-16671-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Rapeseed (Brassica napus L.) is an ideal crop for remediation in cadmium (Cd)-contaminated soil in farmland. The main objective of this study was focused on the combined effects of four nitrogen forms (urea, ammonium nitrogen, nitrate nitrogen, ammonium nitrate fertilizer), four pH levels (5, 6, 7, 8), and three water levels (low water, middle water, high water) on Cd speciation and characteristics of Cd uptake by rapeseed. A pot experiment was conducted at the Xindu Experimental Park in Sichuan Province, China. Experimental results indicated that the interaction effects of pH and nitrogen forms, three factors on Cd speciation (except organic-bound Cd and exchangeable Cd), were significant and the interaction effects of pH and nitrogen forms on Cd uptake by rapeseed also was significant only under the condition of planting rapeseed. The higher the water level was or the lower the pH value was, the better the repair effect rapeseed to Cd was. High water significantly increased the stem Cd content by 11.89% and 29.55% through significantly increasing the content of exchangeable Cd by 23.40% and 52.63%, respectively, compared with middle water and low water as planting rapeseed, and pH 5 significantly increased the stem Cd content, total Cd enrichment coefficients, bio-availability coefficient, and Cd removal rate by 24.45~40.33%, 49.45~76.62%, 60.00~166.67%, and 16.67~26.00%, respectively, through significantly increasing the content of exchangeable Cd by 37.78~113.79%, compared with pH 7 and pH 8 as the significant decreasing of carbonate-bound Cd, bound to Fe-Mn oxide, and content of organic-bound Cd and residual Cd. Ammonium nitrate also significantly increased total Cd enrichment coefficients, bio-availability coefficient, and Cd removal rate by 45.63~138.10%, 21.05~109.09%, and 40.00~77.50%, respectively, compared with other three nitrogen forms as good growth and Cd resistance of rapeseed. Path analysis structural equation modeling revealed that content of exchangeable Cd and residual Cd had significant and direct path coefficients with variances in stem Cd content of rapeseed. Combined with the safety of edible oil, the best management practices for optimal remediation efficiency of rapeseed to Cd-contaminated soil were ammonium nitrate fertilizer, pH = 5, and high water.
Collapse
Affiliation(s)
- Xiaoqin Tian
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China
| | - Dan Wang
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
| | - Zhuo Li
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China
| | - Yonghong Liu
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China
| |
Collapse
|
12
|
Liu Z, Sun Z, Zeng C, Dong X, Li M, Liu Z, Yan M. The elemental defense effect of cadmium on Alternaria brassicicola in Brassica juncea. BMC PLANT BIOLOGY 2022; 22:17. [PMID: 34986803 PMCID: PMC8729108 DOI: 10.1186/s12870-021-03398-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/10/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND The elemental defense hypothesis states a new defensive strategy that hyperaccumulators defense against herbivores or pathogens attacks by accumulating heavy metals. Brassica juncea has an excellent ability of cadmium (Cd) accumulation. However, the elemental defense effect and its regulation mechanism in B. juncea remain unclear. RESULTS In this study, we profiled the elemental defense effect and the molecular regulatory mechanism in Cd-accumulated B. juncea after Alternaria brassicicola infection. B. juncea treated with 180 mg Kg- 1 DW CdCl2 2.5H2O exhibited obvious elemental defense effect after 72 h of infection with A. brassicicola. The expression of some defense-related genes including BjNPR1, BjPR12, BjPR2, and stress-related miRNAs (miR156, miR397, miR398a, miR398b/c, miR408, miR395a, miR395b, miR396a, and miR396b) were remarkably elevated during elemental defense in B. juncea. CONCLUSIONS The results indicate that Cd-accumulated B. juncea may defend against pathogens by coordinating salicylic acid (SA) and jasmonic acid (JA) mediated systemic acquired resistance (SAR) and elemental defense in a synergistic joint effect. Furthermore, the expression of miRNAs related to heavy metal stress response and disease resistance may regulate the balance between pathogen defense and heavy metal stress-responsive in B. juncea. The findings provide experimental evidence for the elemental defense hypothesis in plants from the perspectives of phytohormones, defense-related genes, and miRNAs.
Collapse
Affiliation(s)
- Zhe Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhenzhen Sun
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chaozhen Zeng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xujie Dong
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhixiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
13
|
You L, Li W, Xu W, Zhang C, Hu X. Effects of nanometer magnesium hydroxide on soil cadmium form under different cadmium levels. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lelin You
- College of Resources and Environmental Sciences Southwest University Chongqing China
| | - Wenyi Li
- Department of Food and Drug Liaoning Agricultural Technical College Yingkou China
| | - Weihong Xu
- College of Resources and Environmental Sciences Southwest University Chongqing China
| | - Chunlai Zhang
- College of Resources and Environmental Sciences Southwest University Chongqing China
| | - Xiaofeng Hu
- Department of Food and Drug Liaoning Agricultural Technical College Yingkou China
| |
Collapse
|
14
|
Remediation Techniques for Cadmium-Contaminated Dredged River Sediments after Land Disposal. SUSTAINABILITY 2021. [DOI: 10.3390/su13116093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper examines the remediation techniques of cadmium (Cd)-contaminated dredged river sediments after land disposal in a city in East China. Three remediation techniques, including stabilization, soil leaching, and phytoremediation, are compared by analyzing the performance of the techniques for Cd-contaminated soil remediation. The experimental results showed that the stabilization technique reduced the leaching rate of soil Cd from 33.3% to 14.3%, thus effectively reducing the biological toxicity of environmental Cd, but the total amount of Cd in soil did not decrease. Leaching soil with citric acid and oxalic acid achieved Cd removal rates of 90.1% and 92.4%, respectively. Compared with these two remediation techniques, phytoremediation was more efficient and easier to implement and had less secondary pollution, but it took more time, usually several years. In this study, these three remediation techniques were analyzed and discussed from technical, economic, and environmental safety perspectives by comprehensively considering the current status and future plans of the study site. Soil leaching was found to be the best technique for timely treatment of Cd contamination in dredged river sediments after land disposal.
Collapse
|
15
|
Niu H, Leng Y, Li X, Yu Q, Wu H, Gong J, Li H, Chen K. Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation. CHEMOSPHERE 2021; 269:128765. [PMID: 33143888 DOI: 10.1016/j.chemosphere.2020.128765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation of cadmium (Cd) contaminated soils by accumulators or hyperaccumulators has received considerable attention. However, there is still limited information about its migration, dynamic characteristics, and interaction with microbial communities in rhizosphere. In this study, the behaviors of Cd in rhizosphere soils in phytoremediation were carefully studied and illustrated. We find that the migration rate of Cd in rhizosphere is higher than the absorption rate of Cd by roots of plants, and Cd in near-rhizosphere moves sluggishly, and near-rhizosphere soils forms a mass pool of Cd for absorption by plants. Additionally, in tall fescue and Indian mustard treatments, shoot biomasses, total extracted Cd and migration rate of Cd in near-rhizosphere soils were comparable. It suggests that shoot biomasses of plants significantly affect their extraction of heavy metals from rhizosphere soils. Biomasses of bacteria significantly increased after phytoremediation, and structures of microbiome communities of soils after phytoremediation reassembled significantly. Furthermore, Indian mustard, even with relative lower root biomasses, could better reassembled the microbiome communities in rhizosphere than tall fescue which possesses a higher developed root system. In the end, analyses of functional microorganisms in rhizosphere soils provide new insights into biological and physiochemical roles of these populations in phytoremediation.
Collapse
Affiliation(s)
- Hong Niu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - YiFei Leng
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Xuecheng Li
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Qian Yu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Hang Wu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Junchao Gong
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - HaoLin Li
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|
16
|
Li Q, Xing Y, Fu X, Ji L, Li T, Wang J, Chen G, Qi Z, Zhang Q. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress - Microbial diversity and metabolomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112016. [PMID: 33550079 DOI: 10.1016/j.ecoenv.2021.112016] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 05/27/2023]
Abstract
The effects of Bacillus subtilis inoculation on the growth and Cd uptake of alfalfa were evaluated in this research using pot experiments, and the relevant biochemical mechanisms were first investigated by combined microbial diversity and nontarget metabolomics analyses. The results indicated that inoculation with alfalfa significantly decreased the amount of plant malondialdehyde (MDA) and improved the activities of plant antioxidant enzymes and soil nutrient cycling-involved enzymes, thereby promoting biomass by 29.4%. Inoculation also increased Cd bioavailability in rhizosphere soil by 12.0% and Cd removal efficiency by 139.3%. The biochemical mechanisms included enhanced bacterial diversity, transformed microbial community composition, regulated amounts of amino acids, fatty acids, carbohydrates, flavonoids and phenols in rhizosphere soil metabolites, and modulations of the corresponding Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These responses were beneficial to microbial activity, nutrient cycling, and Cd mobilization, detoxification, and decontamination by alfalfa in soil. This study, especially the newly identified differential metabolites and metabolic pathways, provides new insights into mechanism revelation and strategy development in microbe-assisted phytomanagement of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| |
Collapse
|
17
|
Yao X, Chen P, Cheng T, Sun K, Megharaj M, He W. Inoculation of Bacillus megaterium strain A14 alleviates cadmium accumulation in peanut: effects and underlying mechanisms. J Appl Microbiol 2021; 131:819-832. [PMID: 33386698 DOI: 10.1111/jam.14983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
AIMS A cadmium (Cd)-tolerant Bacillus megaterium strain A14 was used to investigate the effects and mechanisms of bacterial inoculation on peanut growth, Cd accumulation in grains and Cd fixation in Cd-contaminated soil. METHODS AND RESULTS Spectroscopic analysis showed that A14 has many functional groups (-OH, -NH2 and -COO et al.) distributed on its surface. The pot experiment indicated that compared to the Cd-contaminated soil alone treatment, inoculation with strain A14 increased shoot and root biomass by 59·93 and 58·31% respectively. The accumulation of Cd in grains decreased by 48·14%, while the proportion of exchangeable Cd in soil decreased from 40 to 26% in A14 inoculated soil. CONCLUSIONS Inoculation with B. megaterium A14 improved peanut plant growth via (i) adsorbing Cd2+ through functional groups on cell surface, (ii) immobilization of Cd in soil through extracellular secretions, (iii) scavenging the reactive oxygen species through production of antioxidant enzymes, and (iv) by reducing the phytoavailable Cd through regulation of Cd transport gene expression. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided a new sight on microbial approach for the chemical composition transformation of soil Cd and associated food safety production, which pointed out an efficient way to improve peanut cultivation.
Collapse
Affiliation(s)
- X Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - P Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - T Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - K Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - M Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle (UoN), Callaghan, NSW, Australia
| | - W He
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
18
|
Zou Z, Wang Y, Huang J, Lei Z, Wan F, Dai Z, Yi L, Li J. A study on the mixture repairing effect of biochar and nano iron oxide on toxicity of Cd toward muskmelon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115371. [PMID: 32818669 DOI: 10.1016/j.envpol.2020.115371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination with cadmium (Cd) has become a serious problem, adversely affecting food safety and human health. Effective methods are urgently needed to alleviate toxicity of Cd in plants. In this study, a nine-week continuous pot experiments was conducted to explore the effectiveness of the different nano iron oxide (α-Fe2O3, γ-Fe2O3, Fe3O4) alone and combined with biochar in muskmelon grown on a Cd-contaminated soil. The antioxidant system, chlorophyll, soluble protein, other physiological indexes of muskmelon leaves and the distribution of Cd in matrix soil, leaves and fruit were detected. The results showed that Cd was readily absorbed by plants and caused oxidative stress on plants, while biochar, α-Fe2O3 nanoparticles (NPs) and their mixture group (BFe1 group) could significantly improve it. Specifically, the three treatments reduced the Cd content of the fruit by 19.51-78.86%, reduced the Cd content of leaves by 15.44-36.23% and 22.36-31.77% in weeks 3 and 5, respectively. For the activity of enzymes, three treatments decreased superoxide dismutase (SOD) activity and catalase (CAT) activity by 3.41-38.57% and 24.27-30.33% in week 7, respectively. So BFe1 group application immobilized Cd in soil and reduced Cd partitioning in the aboveground tissues. Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon and can protect human beings from Cd exposure.
Collapse
Affiliation(s)
- Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, PR China
| | - Jiali Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhen Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Fengting Wan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, PR China
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China; Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, PR China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
19
|
Guo Y, Qiu C, Long S, Wang H, Wang Y. Cadmium accumulation, translocation, and assessment of eighteen Linum usitatissimum L. cultivars growing in heavy metal contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:490-496. [PMID: 31686526 DOI: 10.1080/15226514.2019.1683714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flax (Linum usitatissimum L.) is suitable for growing in heavy metal polluted soil for non-food purposes and can be used as potential crops for cleaning the soil from heavy metals. The main objective of this study was to investigate flax/linseed phytoextraction of cadmium (Cd), including uptake, translocation, and accumulation differences in organs among flax/linseed cultivars. A field experiment was carried out in Cd contaminated field of Chinese southern area with nine flax, one dual-purpose, and eight linseed cultivars. Cd concentrations in plant organs (root, xylem, phloem, and capsule) and biomass of different organs of each cultivar were measured and evaluated. Significant differences in Cd concentration and accumulation among organs were observed. The most Cd was accumulated by phloem, which was 2 ∼ 4 times more than other organs, followed by roots, xylems and capsules played a comparably smaller role. The uptake of Cd by flax/linseed from per hectare was calculated and had highly significant positive correlation with biomass. Phloem accumulated 45 ∼ 55% of total Cd from the soil by the plant. Among testing 18 flax/linseed cultivars, one flax cultivar (Zhongya 1), and two linseed cultivars (Y2I329 and Y2I330), which extracted more than 60 g ha-1, can be considered as Cd accumulators for phytoremediation of Cd contaminated soil.
Collapse
Affiliation(s)
- Yuan Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Caisheng Qiu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Songhua Long
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Hui Wang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yufu Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|