1
|
Bancel S, Cachot J, Bon C, Rochard É, Geffard O. A critical review of pollution active biomonitoring using sentinel fish: Challenges and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124661. [PMID: 39111525 DOI: 10.1016/j.envpol.2024.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Water pollution is a significant threat to aquatic ecosystems. Various methods of monitoring, such as in situ approaches, are currently available to assess its impact. In this paper we examine the use of fish in active biomonitoring to study contamination and toxicity of surface waters. We analysed 148 previous studies conducted between 2005 and 2022, including both marine and freshwater environments, focusing on the characteristics of the organisms used as well as the principal goals of these studies. The main conclusions we drew are that a wide range of protocols and organisms have been used but there is no standardised method for assessing the quality of aquatic ecosystems on a more global scale. Additionally, the most commonly used developmental stages have been juveniles and adults. At these stages, the most frequently used species were the fathead minnow (Pimephales promelas) and two salmonids: rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Few studies used earlier stages of development (embryos or larvae), mostly due to the difficulty of obtaining fish embryos and caging them in the field. Finally, we identified research gaps in active biomonitoring for water quality assessment which could indicate useful directions for future research and development.
Collapse
Affiliation(s)
| | - Jérôme Cachot
- Université de Bordeaux, CNRS and INP Bordeaux, UMR 5805 EPOC, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, Nouvelle-Aquitaine, France
| | - Corentin Bon
- INRAE, UR Riverly, F-69100, Villeurbanne, France
| | | | | |
Collapse
|
2
|
Kazour M, Amara R. To what extent is blue mussels caging representative of microplastics in the natural environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168975. [PMID: 38036136 DOI: 10.1016/j.scitotenv.2023.168975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Bivalves have gained prominence in active biomonitoring of microplastics (MPs) pollution. Nevertheless, critical questions persist regarding blue mussels' selectivity and representativeness of the presence of microplastics in the natural environments. In this current study, we explored short- and long-term exposure durations for caged mussels, aiming to establish the minimum period required for them to attain a steady-state in microplastics retention and investigate their selectivity in a real-world context. Various deployment periods (1, 2, and 5 weeks) were tested, with concurrent collection of MPs from the surrounding water each week. The results revealed a significant increase in ingested MPs, reaching a threshold of approximately 1.4 MPs per gram of wet weight during the fifth week of caging. The characteristics of MPs found in mussels exhibited some differences from those collected in the surrounding waters and were less temporally variable. Notably, the collected caged mussels demonstrated a tendency to retain smaller particles (<80 μm). This study underscores complex processes governing MPs selection in natural environments and the need for further research to gain a more comprehensive understanding of the conditions and suitability of mussels as bioindicators for assessing MPs pollution.
Collapse
Affiliation(s)
- Maria Kazour
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France.
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France.
| |
Collapse
|
3
|
Polt L, Motyl L, Fischer EK. Abundance and Distribution of Microplastics in Invertebrate and Fish Species and Sediment Samples along the German Wadden Sea Coastline. Animals (Basel) 2023; 13:ani13101698. [PMID: 37238129 DOI: 10.3390/ani13101698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Monitoring strategies are becoming increasingly important as microplastic contamination increases. To find potentially suitable organisms and sites for biota monitoring in the German Wadden Sea, we collected invertebrates (n = 1585), fish (n = 310), and sediment cores (n = 12) at 10 sites along the coast of Lower Saxony between 2018 and 2020. For sample processing of biota, the soft tissue was digested and the sediment samples additionally underwent a subsequent density separation step. Microplastic particles were identified using Nile red and fluorescence microscopy, followed by polymer composition analysis of a subset of particles via µRaman spectroscopy. All investigated species, sediment cores, and sites contained microplastics, predominantly in the morphology class of fragments. Microplastics were found in 92% of Arenicola marina, 94% of Littorina littorea, 85% of Mytilus edulis, and 79% of Platichthys flesus, ranging from 0 to 248.1 items/g. Sediment core samples contained MPs ranging from 0 to 8128 part/kg dry weight of sediment. In total, eight polymers were identified, predominantly consisting of polyethylene, polyvinylchloride, and polyethylene terephthalate. Considering the sampling, processing, and results, the species Mytilus edulis and Platichthys flesus are suitable species for future microplastic monitoring in biota.
Collapse
Affiliation(s)
- Laura Polt
- Microplastic Research at CEN (MRC, Center for Earth System Research and Sustainability), Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| | - Larissa Motyl
- Microplastic Research at CEN (MRC, Center for Earth System Research and Sustainability), Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| | - Elke Kerstin Fischer
- Microplastic Research at CEN (MRC, Center for Earth System Research and Sustainability), Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Defontaine S, Jalón-Rojas I. Physical processes matters! Recommendations for sampling microplastics in estuarine waters based on hydrodynamics. MARINE POLLUTION BULLETIN 2023; 191:114932. [PMID: 37087826 DOI: 10.1016/j.marpolbul.2023.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Monitoring the abundance and characteristics of microplastics in estuarine waters is crucial for understanding the fate of microplastics at the land-sea continuum, and for developing policies and legislation to mitigate associated risks. However, if protocols to monitor microplastic pollution in ocean waters or beach sediments are well established, they may not be adequate for estuarine environments, due to the complex 3D hydrodynamics. In this note, we review and discuss sampling methods and strategies in relation to the main environmental forcing, estuarine hydrodynamics, and their spatio-temporal scales of variability. We propose recommendations about when, where and how to sample microplastics to capture the most representative picture of microplastic pollution. This note opens discussions on the urgent need for standardized methods and protocols to routinely monitor microplastics in estuaries which should, at the same time, be easily adaptable to the different systems to ensure consistency and comparability of data across different studies.
Collapse
Affiliation(s)
- Sophie Defontaine
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France; Ifremer - DYNECO/DHYSED, Centre de Bretagne, CS 10070, 29280 Plouzan, France.
| | - Isabel Jalón-Rojas
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| |
Collapse
|
5
|
Okamoto K, Nomura M, Horie Y, Okamura H. Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119253. [PMID: 35378197 DOI: 10.1016/j.envpol.2022.119253] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
We examined ingestion and retention rates of microplastics (MPs) by two freshwater (Japanese medaka and zebrafish) and two marine fish species (Indian medaka and clown anemonefish) to determine their color preferences and gastrointestinal-tract retention times. In our ingestion experiments, clown anemonefish ingested the most MP particles, followed by zebrafish, and then Japanese and Indian medaka. Next, we investigated color preferences among five MP colors. Red, yellow, and green MP were ingested at higher rates than gray and blue MPs for all tested fish species. To test whether these differences truly reflect a recognition of and preference for certain colors based on color vision, we investigated the preferences of clown anemonefish for MP colors under light and dark conditions. Under dark conditions, ingestion of MP particles was reduced, and color preferences were not observed. Finally, we assessed gastrointestinal-tract retention times for all four fish species. Some individuals retained MP particles in their gastrointestinal tracts for over 24 h after ingestion. Our results show that fish rely on color vision to recognize and express preferences for certain MP colors. In addition, MP excretion times varied widely among individuals. Our results provide new insights into accidental MP ingestion by fishes.
Collapse
Affiliation(s)
- Konori Okamoto
- Faculty of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Miho Nomura
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
6
|
Guilhermino L, Martins A, Lopes C, Raimundo J, Vieira LR, Barboza LGA, Costa J, Antunes C, Caetano M, Vale C. Microplastics in fishes from an estuary (Minho River) ending into the NE Atlantic Ocean. MARINE POLLUTION BULLETIN 2021; 173:113008. [PMID: 34653887 DOI: 10.1016/j.marpolbul.2021.113008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Wild fish (Cyprinus carpio, Mugil cephalus, Platichthys flesus) from an estuary of the NE Atlantic coast were investigated for plastic contamination (N = 128). From the 1289 particles recovered from fish samples, 883 were plastics. Among these, 84% were fibres and 97% were microplastics. Thirty-six polymers were identified. The number of microplastics (mean ± SD) per individual fish (MP/fish) was 8 ± 6 in C. carpio, 10 ± 9 in M. cephalus and 2 ± 2 in P. flesus. The means of MP/fish per body site were 6 ± 7 in gastrointestinal tract, 0.5 ± 1.1 in gills, 0.3 ± 0.7 in liver and 0.6 ± 1.2 in muscle samples. A few large fibres in liver (≤ 4841 μm) and muscle (≤ 5810 μm) samples were found. The results evidence the existence of high fish contamination by microplastics and reinforce the need of further research on plastic pollution in estuaries.
Collapse
Affiliation(s)
- Lúcia Guilhermino
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal.
| | - Alexandra Martins
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Clara Lopes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.
| | - Joana Raimundo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.
| | - Luis R Vieira
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - L Gabriel A Barboza
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Joana Costa
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Carlos Antunes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; Aquamuseu do Rio Minho, Parque do Castelinho, 4920-290 Vila Nova de Cerveira, Portugal.
| | - Miguel Caetano
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.
| | - Carlos Vale
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Line Global Changes and Ecosystem Services, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
7
|
Nava V, Frezzotti ML, Leoni B. Raman Spectroscopy for the Analysis of Microplastics in Aquatic Systems. APPLIED SPECTROSCOPY 2021; 75:1341-1357. [PMID: 34541936 DOI: 10.1177/00037028211043119] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy is gaining ground in the analysis of microplastics, especially due to its high spatial resolution that allows the investigation of small plastic particles, whose numeric abundance is argued to be particularly relevant in aquatic systems. Here, we aimed at outlining the status of Raman analysis of microplastics from aquatic systems, highlighting the advantages and the drawbacks of this technique and critically presenting tools and ways to effectively employ this instrument and to improve the spectra obtained and their interpretation. In particular, we summarized procedural information for the use of Raman spectroscopy, and we discussed issues linked to fluorescence interference and the analysis of weathered polymers, which may complicate the interpretation of Raman signatures. In this context, a deep understanding of the different plastic polymers and their Raman peaks and chemical fingerprints is fundamental to avoid misidentification. Therefore, we provided a catalog with detailed information about peaks of most common plastic polymers, and this represents, to the best of our knowledge, the first comprehensive resource that systematically synthesized plastic Raman peaks. Additionally, we focused on plastic additives, which are contained in the majority of plastics. These compounds are often intense in Raman scattering and may partly or completely overlie the actual material types, resulting in the identification of additives alone or misidentification issue. For these reasons, we also presented a new R package "RamanMP" that includes a database of 356 spectra (325 of which are additives). This will help to foster the use of this technique, which is becoming especially relevant in microplastic analysis.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Maria Luce Frezzotti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
8
|
Pinheiro LM, Agostini VO, Lima ARA, Ward RD, Pinho GLL. The fate of plastic litter within estuarine compartments: An overview of current knowledge for the transboundary issue to guide future assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116908. [PMID: 33774365 DOI: 10.1016/j.envpol.2021.116908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Plastics can enter biogeochemical cycles and thus be found in most ecosystems. Most studies emphasize plastic pollution in oceanic ecosystems even though rivers and estuaries are acknowledged as the main sources of plastics to the oceans. This review detected few studies approaching the transboundary issue, as well as patterns of estuarine gradients in predicting plastic distribution and accumulation in water, sediments, and organisms. Quantities of plastics in estuaries reach up to 45,500 items m-3 in water, 567,000 items m-3 in sediment, and 131 items per individual in the biota. The role of rivers and estuaries in the transport of plastics to the ocean is far from fully understood due to small sample sizes, short-term approaches, sampling techniques that underestimate small plastics, and the use of site-specific sampling rather than covering environmental gradients. Microfibres are the most commonly found plastic type in all environmental matrices but efforts to re-calculate pathways using novel sampling techniques and estimates are incipient. Microplastic availability to estuarine organisms and rising/sinking is determined by polymer characteristics and spatio-temporal fluctuations in physicochemical, biological, and mineralogical factors. Key processes governing plastic contamination along estuarine trophic webs remain unclear, as most studies used "species" as an ecological unit rather than trophic/functional guilds and ontogenetic shifts in feeding behaviour to understand communities and intraspecific relationships, respectively. Efforts to understand contamination at the tissue level and the contribution of biofouling organisms as vectors of contaminants onto plastic surfaces are increasing. In conclusion, rivers and estuaries still require attention with regards to accurate sampling and conclusions. Multivariate analysis and robust models are necessary to predict the fate of micro- and macroplastics in estuarine environments; and the inclusion of the socio-economic aspects in modelling techniques seems to be relevant regarding management approaches.
Collapse
Affiliation(s)
- L M Pinheiro
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG). Av. Itália, Km 8, Carreiros, CEP: 96203-900, Rio Grande, RS, Brazil; Programa de Pós-graduação em Oceanologia (PPGO), Brazil.
| | - V O Agostini
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG). Av. Itália, Km 8, Carreiros, CEP: 96203-900, Rio Grande, RS, Brazil; Programa Nacional de Pós-Doutorado da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-CAPES/PPGO), Brazil
| | - A R A Lima
- Marine and Environmental Sciences Centre, ISPA - College Institute, Department of Biosciences, 1149-041, Lisbon, Portugal
| | - R D Ward
- Centre for Aquatic Environments, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, United Kingdom; Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51014, Tartu, Estonia
| | - G L L Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG). Av. Itália, Km 8, Carreiros, CEP: 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
Dawson AL, Santana MFM, Miller ME, Kroon FJ. Relevance and reliability of evidence for microplastic contamination in seafood: A critical review using Australian consumption patterns as a case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116684. [PMID: 33618116 DOI: 10.1016/j.envpol.2021.116684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 05/23/2023]
Abstract
Seafood contamination with, and human consumption of, microplastics (MPs) have recently been highlighted as an emerging concern for global food security. While there is evidence that commercial marine species are contaminated with MPs, it is still unknown if seafood can act as a vector for MP transfer to human consumers. Microplastics have been reported in the digestive tract, gills and in select internal organs of marine animals. However, many of these tissues are not typically eaten by human consumers but discarded. In this critical review, we examined the peer-reviewed literature for evidence of MP contamination in seafood, and the potential transfer to human consumers. Based on known seafood consumption patterns in a typical Australian diet, we assessed the relevance and reliability of the current body of literature to examine the prospect and risk of MP transfer. The relevance of data was considered based on the organism studied, origin of the samples, and the tissues analysed, while reliability was assessed based on procedural methodologies used to derive the data. A review of 132 studies found limited evidence of MP contamination in edible tissues from fresh fish or crustaceans. MP presence was confirmed in packaged fish, as well as in fresh and packaged bivalve molluscs. The limited number of studies satisfying the relevance and reliability criteria (n = 24) precluded a quantitative assessment of the potential risk associated with MP transfer. While consumption of packaged fish and bivalve molluscs may result in the consumption of MPs by humans, it is currently unknown whether this presents a health risk.
Collapse
Affiliation(s)
- Amanda L Dawson
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia.
| | - Marina F M Santana
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Michaela E Miller
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Frederieke J Kroon
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
10
|
Schmid C, Cozzarini L, Zambello E. Microplastic's story. MARINE POLLUTION BULLETIN 2021; 162:111820. [PMID: 33203604 DOI: 10.1016/j.marpolbul.2020.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The problem of microplastic pollution is now the order of the day in front of everyone's eyes affecting the environment and the health of leaving creature. This work aims to retrace the history of microplastics in a critical way through a substantial bibliographic collection, defining the points still unresolved and those that can be resolved. Presence of marine litter in different environments is reviewed on a global scale, focusing in particular on micro and macro plastics definition, classification and characterization techniques.
Collapse
Affiliation(s)
- Chiara Schmid
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| | - Luca Cozzarini
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy.
| | - Elena Zambello
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| |
Collapse
|
11
|
Ye X, Wang P, Wu Y, Zhou Y, Sheng Y, Lao K. Microplastic acts as a vector for contaminants: the release behavior of dibutyl phthalate from polyvinyl chloride pipe fragments in water phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42082-42091. [PMID: 32705563 DOI: 10.1007/s11356-020-10136-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/14/2020] [Indexed: 05/26/2023]
Abstract
The pollution of contaminants brought by plastic fragments is worth paying attention in the study of microplastic. The additives, like phthalates (PAEs), introduced during manufacture, are physically dispersed and can easily release into environment. Polyvinyl chloride pipes are widely used in China, and DBP is also a typical kind of additives in PVC materials. Here, the release behavior of DBP from PVC plastic pipe fragments was investigated in water environment under different conditions. Low-density polyethylene (LDPE) passive sampler was used to monitor the contents of DBP. The curve of DBP concentration started from the first increasing stage until a short equilibrium after 45 days' incubation followed by a second increasing part. The release kinetics and the rate-limiting step were discussed. For the whole migration period, the release process was better fitted to pseudo-second order which was participated by both intraparticle and plastic-water film diffusion processes while the two separated parts had different results. Moreover, light, smaller fragments, and higher temperature could all accelerate the release rate and increase the migration amount of DBP. The effect of temperature was the most significant of all, and higher temperature showed more significant effects. Besides, DBP tended to migrate in a long-time continuously. However, the release of additives will be promoted by various physical and chemical processes in nature compared to laboratory tests. Consequently, microplastic (plastic fragments with sizes smaller than 5 mm) with additives acts as a vector for pollutants, and will bring more threat to both environment and organisms.
Collapse
Affiliation(s)
- Xueying Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pingya Wang
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316021, China
| | - Yichun Wu
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316021, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014, China.
- Environmental Microplastic Pollution Research Center, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yingfei Sheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kejie Lao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
Douda K, Escobar-Calderón F, Vodáková B, Horký P, Slavík O, Sousa R. In situ and low-cost monitoring of particles falling from freshwater animals: from microplastics to parasites. CONSERVATION PHYSIOLOGY 2020; 8:coaa088. [PMID: 33005421 PMCID: PMC7519624 DOI: 10.1093/conphys/coaa088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
A simple and low-cost method of monitoring and collecting particulate matter detaching from (or interacting with) aquatic animals is described using a novel device based on an airlift pump principle applied to floating cages. The efficiency of the technique in particle collection is demonstrated using polyethylene microspheres interacting with a cyprinid fish (Carassius carassius) and a temporarily parasitic stage (glochidia) of an endangered freshwater mussel (Margaritifera margaritifera) dropping from experimentally infested host fish (Salmo trutta). The technique enables the monitoring of temporal dynamics of particle detachment and their continuous collection both in the laboratory and in situ, allowing the experimental animals to be kept under natural water quality regimes and reducing the need for handling and transport. The technique can improve the representativeness of current experimental methods used in the fields of environmental parasitology, animal feeding ecology and microplastic pathway studies in aquatic environments. In particular, it makes it accessible to study the physiological compatibility of glochidia and their hosts, which is an essential but understudied autecological feature in mussel conservation programs worldwide. Field placement of the technique can also aid in outreach programs with pay-offs in the increase of scientific literacy of citizens concerning neglected issues such as the importance of fish hosts for the conservation of freshwater mussels.
Collapse
Affiliation(s)
- Karel Douda
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Felipe Escobar-Calderón
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Barbora Vodáková
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Ronaldo Sousa
- CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|