1
|
Veríssimo SN, Paiva VH, Cunha SC, Brandão ALC, Coentro J, Fernandes JO, Pereira JM, Batista de Carvalho LAE, Cerveira LR, Marques MPM, Silva V, Norte AC, Ramos JA. From mudflats and saltpans to Open Sea: Plastic ingestion and PBDE/MeO-BDE accumulation in Waterbirds from southern Portugal. MARINE POLLUTION BULLETIN 2025; 214:117727. [PMID: 40015193 DOI: 10.1016/j.marpolbul.2025.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Plastic ingestion greatly affects waterbirds, causing lacerations and potentially leading to health disruptions from chemical leaching. Polybrominated diphenyl ethers (PBDEs), used as flame retardants in plastics, remain persistent in the environment despite restrictions, along with the less studied methoxylated PBDEs (MeO-BDEs), that may result from their transformation. Since most plastic pollution in the heavily impacted marine environment comes from terrestrial sources, freshwater/estuarine and coastal environments can also be heavily exposed to contamination. Nonetheless, research in these areas remains limited. We studied the breeding waterbird community from Ria Formosa (Algarve, Portugal) as a proxy of such contamination and sampled the wader species feeding in mudflats and saltpans, little terns feeding in lagoon channels and the adjacent sea, opportunistic gulls feeding mostly on fishery discards and landfills and marine foraging gulls feeding exclusively at sea. Specifically, we assessed 1) plastic ingestion, through the analysis of regurgitations and faeces, and 2) PBDEs and MeO-BDES uptake in eggs, feathers, and preen oil. Results showed that, overall, microplastics were the most commonly detected particles. Yellow-legged gulls (Larus michahellis) and little terns (Sternula albifrons) ingested more particles, especially fibres. Eggs of black-winged stilt (Himantopus himantopus) and yellow-legged gull had higher PBDEs concentrations, while MeO-BDEs did not differ among species. Feathers exhibited low detection values, but MeO-BDEs suggests marine invertebrates' consumption. Little terns accumulated more PBDEs and MeO-BDEs, suggesting an association between plastic ingestion and contamination load. However, species-specific traits, dietary preferences, and foraging areas should also be taken into consideration.
Collapse
Affiliation(s)
- S N Veríssimo
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - V H Paiva
- University of Coimbra, CFE - Centre for Functional Ecology, TERRA - Science for People & the Planet, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - S C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - A L C Brandão
- University of Coimbra, Department of Chemistry, Molecular Physical-Chemistry (QFM-UC), LAQV Requimte, 3004-535 Coimbra, Portugal
| | - J Coentro
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - J M Pereira
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Department of Chemistry, Molecular Physical-Chemistry (QFM-UC), LAQV Requimte, 3004-535 Coimbra, Portugal
| | - L R Cerveira
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Department of Chemistry, Molecular Physical-Chemistry (QFM-UC), LAQV Requimte, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - V Silva
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A C Norte
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J A Ramos
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Park KM, Kim B, Woo W, Kim LK, Hyun YM. Polystyrene microplastics induce activation and cell death of neutrophils through strong adherence and engulfment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136100. [PMID: 39405722 DOI: 10.1016/j.jhazmat.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 12/01/2024]
Abstract
Ingested microplastics (MPs) can accumulate throughout whole body, which may induce the dysfunction of immune system. However, it remains unclear how MP exposure affects innate immune responses at the cellular level. We found that mouse neutrophils strongly bind and then engulf polystyrene MPs. This interaction leads to proinflammatory state of neutrophils and eventually results in apoptotic cell death through toll-like receptor signaling pathway in a bacteria-recognition mimetic manner. Moreover, our data verified that orally administered polystyrene MPs reach various organs in mice, where they are interacted with and endocytosed by neutrophils. We confirmed that human neutrophils also strongly bind and internalize polystyrene MPs. Additionally, RNA sequencing analysis of polystyrene MPs-exposed human neutrophils showed the upregulation of cell death-related function. Therefore, the accumulated MPs may exacerbate inflammatory immune response by disrupting neutrophil function. These results provide novel insight into the adverse responses of neutrophils induced by MP exposure.
Collapse
Affiliation(s)
- Koung-Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bora Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonjin Woo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lark Kyun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Saikumar S, Mani R, Ganesan S, Ganesan M. Evaluating the impact of the combined acute toxicity of iron (Fe) and microplastics on Namalycastis jaya. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107141. [PMID: 39520843 DOI: 10.1016/j.aquatox.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The rising concern over heavy metals (HMs) and microplastics (MPs) pollution in marine ecosystems, primarily driven by anthropogenic activities, poses significant threats to ecological health. Understanding the combined exposure of HMs and MPs aids in toxicity assessment. In this study, we examined the combined effects of polystyrene microplastics (MPs) and iron (Fe) on oxidative stress, bioaccumulation, histopathology, and genotoxicity in Namalycastis jaya. Oxidative stress was assessed by analyzing the levels of Superoxide dismutase (SOD), Catalase (CAT), Peroxidase (POD), Malondialdehyde (MDA), and Bicinchoninic acid (BCA), while genotoxicity was evaluated using the comet assay. Bioaccumulation analysis, conducted via Inductively coupled plasma-optical emission spectrometry (ICP-OES), indicated that the highest values (4.790 µg/ml) were observed in combined exposure, emphasizing the significant increase in iron (Fe) accumulation in polychaetes facilitated by MPs. Biochemical analysis revealed that oxidative damage in polychaetes became evident within 48 h of exposure to individual contaminants. However, in the case of combined exposures, elevated stress levels were observed within just 24 h. The genotoxic assay further demonstrated a higher degree of DNA damage in the combined exposure compared to individual exposures. Similarly, histopathology revealed mild alterations in the gut epithelium in combined exposures. It is evident that MPs intensify both oxidative and DNA damage induced by Fe in polychaetes. The insights gained from this study provide valuable information for the risk assessment of Fe and MPs in environmental safety, contributing to our understanding of the complex interactions between these pollutants in marine ecosystems.
Collapse
Affiliation(s)
- Sakthinarenderan Saikumar
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Swedha Ganesan
- Department of Biotechnology, A.V.C. College (Autonomous), Mayiladuthurai, Tamil Nadu, India
| | - Mirunalini Ganesan
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
4
|
Dovzhenko NV, Slobodskova VV, Mazur AA, Kukla SP, Istomina AA, Chelomin VP, Beskhmelnov DD. Oxidative Stress in Mussel Mytilus trossulus Induced by Different-Sized Plastics. J Xenobiot 2024; 14:1826-1835. [PMID: 39584962 PMCID: PMC11586946 DOI: 10.3390/jox14040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Polyethylene and polystyrene are massively used around the world in various applications and are the most abundant plastic waste. Once in the marine environment, under the influence of physical and chemical factors, plastic products degrade, changing from the size category of macroplastics to microplastics. In order to study the effect of plastic on marine organisms, we modeled the conditions of environmental pollution with different-sized plastic-polystyrene microparticles of 0.9 µm and macro-sized polyethylene fragments of 10 cm-and compared their effect on biochemical parameters in the tissues of the bivalve mollusk Mytilus trossulus. Using biomarkers, it was found that regardless of the size and type of polymer, polystyrene microparticles and polyethylene macrofragments induced the development of oxidative stress in mussels. A significant decrease in the level of lysosomal stability in mussel hemocytes was observed. Increases in the level of DNA damage and the concentration of malonic dialdehyde in the cells of gills and the digestive gland were also shown. The level of total antiradical activity in cells varied and had a tissue-specific character. It was shown that both ingested polystyrene particles and leachable chemical compounds from polyethylene are toxic for mussels.
Collapse
Affiliation(s)
| | | | - Andrey Alexandrovich Mazur
- Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | | | | | | |
Collapse
|
5
|
Liu J, Chen Y, Song Y, Xu D, Gu Y, Wang J, Song W, Sun B, Jiang Z, Xia B. Evidence of size-dependent toxicity of polystyrene nano- and microplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) during the intestinal regeneration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124394. [PMID: 38901819 DOI: 10.1016/j.envpol.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 μm, 1 μm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 μg g-1 and 337.95 μg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqi Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Baiqin Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zitan Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
6
|
Neves B, Oliveira M, Frazão C, Almeida M, Pinto RJB, Figueira E, Pires A. The Role of Life Stages in the Sensitivity of Hediste diversicolor to Nanoplastics: A Case Study with Poly(Methyl)Methacrylate (PMMA). TOXICS 2024; 12:352. [PMID: 38787131 PMCID: PMC11126148 DOI: 10.3390/toxics12050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The presence of plastic particles in oceans has been recognized as a major environmental concern. The decrease in particle size increases their ability to directly interact with biota, with particles in the nanometer size range (nanoplastics-NPs) displaying a higher ability to penetrate biological membranes, which increases with the decrease in particle size. This study aimed to evaluate the role of life stages in the effects of poly(methyl)methacrylate (PMMA) NPs on the polychaete Hediste diversicolor, a key species in the marine food web and nutrient cycle. Thus, behavioral (burrowing activity in clean and spiked sediment) and biochemical endpoints (neurotransmission, energy reserves, antioxidant defenses, and oxidative damage) were assessed in juvenile and adult organisms after 10 days of exposure to spiked sediment (between 0.5 and 128 mg PMMA NPs/Kg sediment). Overall, the results show that H. diversicolor is sensitive to the presence of PMMA NPs. In juveniles, exposed organisms took longer to burrow in sediment, with significant differences from the controls being observed at all tested concentrations when the test was performed with clean sediment, whereas in PMMA NP-spiked sediment, effects were only found at the concentrations 8, 32, and 128 mg PMMA NPs/Kg sediment. Adults displayed lower sensitivity, with differences to controls being found, for both sediment types, at 8, 32, and 128 mg PMMA NPs/Kg sediment. In terms of Acetylcholinesterase, used as a marker of effects on neurotransmission, juveniles and adults displayed opposite trends, with exposed juveniles displaying increased activity (suggesting apoptosis), whereas in adults, overall decreased activity was found. Energy-related parameters revealed a generally similar pattern (increase in exposed organisms) and higher sensitivity in juveniles (significant effects even at the lower concentrations). NPs also demonstrated the ability to increase antioxidant defenses (higher in juveniles), with oxidative damage only being found in terms of protein carbonylation (all tested NPs conditions) in juveniles. Overall, the data reveal the potential of PMMA NPs to affect behavior and induce toxic effects in H. diversicolor, with greater effects in juveniles.
Collapse
Affiliation(s)
- Beatriz Neves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Carolina Frazão
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Mónica Almeida
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Ricardo J. B. Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Adília Pires
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| |
Collapse
|
7
|
Revel M, Freund C, Mouloud M, Perrein-Ettajani H, Métais I, Bruneau M, Yakovenko N, Le Roux R, Caley T, Alogbleto W, Verrier V, Dreanno C, El Rakwe M, Châtel A. Towards the understanding of the uptake and depuration of microplastics in the ragworm Hediste diversicolor: Field and laboratory study. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106410. [PMID: 38422819 DOI: 10.1016/j.marenvres.2024.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
An important number of studies have evaluated the presence of microplastics, particles with a size below 5 mm, in aquatic organisms. Studies have shown that these fragments are widely present in the marine environment, but research on the estuarine ecosystem is still scarce. In this study, two different approaches were used to evaluate the presence and ingestion of plastic particles in the ragworm Hediste diversicolor: a field study for the environmental assessment and a laboratory experiment in controlled condition. For the environmental evaluation, ingestion of microplastics was evaluated in the ragworm H. diversicolor sampled from the mudflats of the Seine estuary (France) during March and June 2017 and 2018, on two locations: S1 and S2, both characterized by high anthropogenic pressures, and for S2 a more influential hydrodynamic component. Ingestion of microplastics was measured in ragworms tissues and in gut content (sediment) after depuration. The number of particles as well as their size, shape and color were reported and compared between sampling period and locations. Results showed the presence of a low number of particles in both worms and gut content. In gut content, 45.6% and 87.58% of samples from site S1 and S2 respectively contained plastic like particles. In worms, 41.7% (S1) and 75.8% (S2) of analysed samples contained plastic like items. The lowest mean number of particles was 0.21 ± 0.31 (S1 in June 2017) in worms' tissues, but 0.80 ± 0.90 (S1 in June 2017) in the gut content and the highest was 1.47 ± 1.41 (S2 in April 2017) while the highest number was 2.55 ± 2.06 (S2 in June 2017) in worms and gut content respectively. The majority of suspected microplastics observed were fibers (66%) and fragments (27%), but films (3.7%) foam (2.1%), and granules (0.2%) were also identified. In addition, the most polymer type observed by Raman spectroscopy was polypropylene. Furthermore, a preliminary study of the ingestion and egestion of fluorescent polyethylene (PE) microbeads in the digestive tract of ragworms was conducted after exposure through water, during 1h at 1.2 × 106 MP/mL. Results showed a rapid turnover of PE microbeads throughout the digestive tract of worms especially after exposure through water. This study revealed that microplastics are ingested by the ragworm H. diversicolor but do not seem to bioaccumulate. More research is needed to measure potential chronic effects of microplastics on physiological parameters of H. diversicolor and potential trophic transfer of microplastics.
Collapse
Affiliation(s)
- Messika Revel
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France; UniLaSalle Rennes - Ecole des métiers de l'environnement, CYCLANN, campus de Ker Lann, 35830, Bruz, France.
| | - Carla Freund
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Mohammed Mouloud
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Hanane Perrein-Ettajani
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Isabelle Métais
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Mélanie Bruneau
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Nadiia Yakovenko
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Romuald Le Roux
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Timothy Caley
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - William Alogbleto
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Valentin Verrier
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Catherine Dreanno
- IFREMER, Centre de Brest, Laboratoire Détection Capteurs et Mesures, Plouzané, F-29280, France
| | - Maria El Rakwe
- IFREMER, Centre de Brest, Laboratoire Détection Capteurs et Mesures, Plouzané, F-29280, France
| | - Amélie Châtel
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), Université Catholique de l'Ouest, F-49000, Angers, France
| |
Collapse
|
8
|
Yan L, Yao X, Wang P, Zhao C, Zhang B, Qiu L. Effect of polypropylene microplastics on virus resistance in spotted sea bass (Lateolabrax maculatus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123054. [PMID: 38043770 DOI: 10.1016/j.envpol.2023.123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) pollution is a hot issue of global concern. Polypropylene microplastics (PP-MPs) age quickly in the marine environment and break down into smaller particles because of their relatively low temperature resistance, poor ultraviolet resistance, and poor antioxidant capacity, making them one of the major pollutants in the ocean. We assessed whether long-term exposure to micron-sized PP-MPs influences fish susceptibility to viral diseases. We found that exposure to PP-MPs (1-6 μm and 10-30 μm) at concentrations of 500 and 5000 μg/L resulted in uptake into spleen and kidney tissues of Lateolabrax maculatus. Increased activation of melanomacrophage centers was visible in histopathological sections of spleen from fish exposed to PP-MPs, and greater deterioration was observed in the spleen of fish infected by largemouth bass ulcerative syndrome virus after PP-MPs exposure. Additionally, exposure to PP-MPs led to significant cytotoxicity and a negative impact on the antiviral ability of cells. PP-MPs exposure had inhibitory or toxic effects on the immune system in spotted sea bass, which accelerated virus replication in vivo and decreased the expression of the innate immune- and acquired immune related genes in spleen and kidney tissues, thus increasing fish susceptibility to viral diseases. These results indicate that the long-term presence of micron-sized PP-MPs might impact fish resistance to disease, thereby posing a far-reaching problem for marine organisms.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Xiaoxiao Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
9
|
Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C. Single and combined effects of CuSO 4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacusleptodactylus. CHEMOSPHERE 2023; 345:140478. [PMID: 37865200 DOI: 10.1016/j.chemosphere.2023.140478] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
This study investigated the toxicity of polyethylene microplastics (MPs; <0.02 mm) and CuSO4, alone and in combination, on the freshwater crayfish Pontastacus leptodactylus. In this study, the crayfish were exposed to PE-MPs (0.0, 0.5, and 1 mg L-1) and CuSO4·5H2O (0.0, 0.5, and 1 mg L-1) for a period of 28 days. Next, multi-biomarkers, including biochemical, immunological, and oxidative stress indicators were analyzed. Results showed that co-exposure to PE-MPs and CuSO4 resulted in increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and decreased alkaline phosphatase (ALP), butyrylcholinesterase (BChE), and gamma-glutamyl-transferase (GGT). Triglycerides, cholesterol, glucose, and albumin content also increased. Although no significant change was observed in lysozyme and phenoloxidase activities in crayfish co-exposed to 0.5 mg L-1 MPs and 0.5 mg L-1 CuSO4, their activities were significantly decreased in other experimental groups. Oxidative stress parameters in hepatopancreas indicated increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and in malondialdehyde (MDA) levels, but decreased catalase (CAT), glucose 6-phosphate dehydrogenase (G6PDH), and cellular total antioxidant (TAC). Results showed that the sub-chronic toxicity of CuSO4 was confirmed. The study confirmed the toxicity of CuSO4 and found that higher concentrations led to more severe effects. Co-exposure to PE-MPs and CuSO4 primarily compromised the endpoints, showing increased toxicity when both pollutants were present in higher concentrations. The activities of POX, LYZ, ALP, GGT, LDH, and CAT were suppressed by both CuSO4 and MPs. However, a synergistic increase was observed in other measured biomarkers in crayfish co-exposed to CuSO4 and MPs.
Collapse
Affiliation(s)
- Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mohammad Hossein Sayadi
- Department of Agriculture, Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
10
|
Métais I, Perrein-Ettajani H, Mouloud M, Roman C, Le Guernic A, Revel M, Tramoy R, Caupos E, Boudahmane L, Lagarde F, Le Bihanic F, Gasperi J, Châtel A. Effect of an environmental microplastic mixture from the Seine River and one of the main associated plasticizers, dibutylphthalate, on the sentinel species Hediste diversicolor. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106159. [PMID: 37683560 DOI: 10.1016/j.marenvres.2023.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg-1 sediment), DBP (38 μg kg-1 sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers. After 21 days, worms exposed to MPs showed an increasing aerobic metabolism, an enhancement of both antioxidant and neuroimmune responses. Energy-related biomarkers demonstrated that the energy reallocated to the defence system may come from proteins. A similar impact was depicted after DBP exposure, except for neurotoxicity. Our results provide a better understanding of the ecotoxicological effects of environmental MPs and their associated-contaminants on H. diversicolor.
Collapse
Affiliation(s)
- Isabelle Métais
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France.
| | | | - Mohammed Mouloud
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Coraline Roman
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Antoine Le Guernic
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Messika Revel
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France; UniLaSalle - Ecole des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, F-35170, Bruz, France
| | - Romain Tramoy
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | - Emilie Caupos
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | - Lila Boudahmane
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | | | | | - Johnny Gasperi
- Université Gustave Eiffel, GERS-LEE, F-44344, Bouguenais, France
| | - Amélie Châtel
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| |
Collapse
|
11
|
Wang H, Liu H, Zhang Y, Zhang L, Wang Q, Zhao Y. The toxicity of microplastics and their leachates to embryonic development of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106114. [PMID: 37517918 DOI: 10.1016/j.marenvres.2023.106114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Microplastic pollution has been widely detected across the global ocean, posing a major threat to a wide variety of marine biota. To date, the deleterious impacts of microplastics have predominantly been linked to their direct exposure, while the potential risks posed by the leachates emanating from microplastics have received comparatively less attention. Here, the toxicity of virgin plasticized polyvinyl chloride (PVC) microspheres and their leachates were evaluated on the embryo-larval development of sea cucumber Apostichopus japonicus using an in-vitro assay. Results showed that a significant toxic effect of both PVC microspheres and their leachates on the embryo development and larval growth of sea cucumbers follows a dose-dependent and time-dependent pattern. Nonetheless, the toxicity of PVC leachates surpasses that of the microspheres themselves. Abnormal developmental phenotypes, such as aberrant gastrulation, misaligned mesenchymal cells, and delayed arm development, were also observed in embryos and larvae treated with PVC. Further chemical analyses of PVC microspheres and leachates revealed the existence of five distinct phthalate esters (PAEs), with DIBP (diisobutyl phthalate) and DBP (dibutyl phthalate) exhibiting higher concentrations in the PVC leachates. This finding suggests that the elevated toxicity of plastic leachate may be attributed to the leaching of phthalate additives from the plastic particles.
Collapse
Affiliation(s)
- Haona Wang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Lijie Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
12
|
Vidal A, Neury-Ormanni J, Latchere O, Roman C, Gillet P, Métais I, Châtel A. Aquatic worms: relevant model organisms to investigate pollution of microplastics throughout the freshwater-marine continuum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91534-91562. [PMID: 37495809 DOI: 10.1007/s11356-023-28900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Plastic pollution has become a global and emergency concern. Degradation processes of plastic macrowaste, either at the millimetre- and micrometre-size scales (microplastics, MP) or a nanometre one (nanoplastic, NP), is now well documented in all environmental compartments. It is hence necessary to study the environmental dynamic of MNP (micro(nano)plastic) on aquatic macrofauna considering their dispersion in different compartments. In this context, worms, having a large habitat in natural environments (soil, sediment, water) represent a relevant model organism for MNP investigations. In aquatic systems, worms could be used to compare MNP contamination between freshwater and seawater. The aim of this review was to discuss the relevance of using worms as model species for investigating MNP pollution in freshwater, estuarine, and marine systems. In this context, studies conducted in the field and in laboratory, using diverse classes of aquatic worms (polychaete and clitellate, i.e. oligochaete and hirudinea) to assess plastic contamination, were analysed. In addition, the reliability between laboratory exposure conditions and the investigation in the field was discussed. Finally, in a context of plastic use regulation, based on the literature, some recommendations about model species, environmental relevance, and experimental needs related to MNP are given for future studies.
Collapse
Affiliation(s)
- Alice Vidal
- Laboratoire Biosse, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France.
| | - Julie Neury-Ormanni
- Laboratoire Biosse, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| | - Oihana Latchere
- Laboratoire Biosse, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| | - Coraline Roman
- Laboratoire Biosse, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| | - Patrick Gillet
- Laboratoire Biosse, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| | - Isabelle Métais
- Laboratoire Biosse, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| | - Amélie Châtel
- Laboratoire Biosse, Université Catholique de L'Ouest (UCO), 3 Place André Leroy, 49100, Angers, France
| |
Collapse
|
13
|
Sulaiman RNR, Bakar AA, Ngadi N, Kahar INS, Nordin AH, Ikram M, Nabgan W. Microplastics in Malaysia's Aquatic Environment: Current Overview and Future Perspectives. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300047. [PMID: 37635702 PMCID: PMC10448155 DOI: 10.1002/gch2.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/27/2023] [Indexed: 08/29/2023]
Abstract
Microplastic pollution has adversely affected the aquatic ecosystem, living creatures, and human health. Several studies in Malaysia have provided baseline information on the existence of microplastics in surface water, ingestion by marine life and sediment. Also, humans are exposed to microplastic due to consumption of contaminated abiotic and biotic products, such as processed seafood. Nonetheless, knowledge is still scarce among Malaysian on the potential remediation and pollution management of microplastics, which poses a significant challenge to preserve a good environmental status. Green technologies also other alternative to mitigate the contamination of microplastics for sustainable future. Hence, this review aims to provide an overview of microplastic's occurrence, fate, and implications in Malaysia's aquatic environment. Detection of microplastics from the water surface, ingestion by aquatics, and sediment samples are highlighted. Available different treatment processes toward microplastic remediation are also discussed. Additionally, the potential challenges, current perspective for plastic management in Malaysia, as well as green strategies for reducing microplastic contamination are also put forward. The goal of this work is to improve the understanding of the seriousness of microplastic contamination in aquatic environments, thus encouraging key concerns that need to be investigated further.
Collapse
Affiliation(s)
| | - Aznizam Abu Bakar
- Faculty of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaSkudaiJohor81310Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaSkudaiJohor81310Malaysia
| | | | - Abu Hassan Nordin
- Faculty of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaSkudaiJohor81310Malaysia
- Faculty of Applied SciencesUniversiti Teknologi MARA (UiTM)ArauPerlis02600Malaysia
| | - Muhammad Ikram
- Solar Cell Application Research LabDepartment of PhysicsGovernment College University LahoreLahorePunjab54000Pakistan
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| |
Collapse
|
14
|
Ahmed ASS, Billah MM, Ali MM, Bhuiyan MKA, Guo L, Mohinuzzaman M, Hossain MB, Rahman MS, Islam MS, Yan M, Cai W. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162414. [PMID: 36868275 DOI: 10.1016/j.scitotenv.2023.162414] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Cadiz, Spain
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Mohammad Mohinuzzaman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Sonapur, Bangladesh
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Wenlong Cai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Martinez SA, Simon CJ, Cohen RA. Synthetic Microfiber Material Influences Ingestion by Freshwater Worms. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:87. [PMID: 37119338 DOI: 10.1007/s00128-023-03725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Plastics enter the environment, amongst others, from synthetic textiles, which shed microplastic fibers (microfibers) during their production, use and disposal. We tested whether short- and long-term effects of microfibers on the aquatic worm, Lumbriculus variegatus, depend on the synthetic microfiber material. Microcosms containing L. variegatus were exposed to no microfibers (control) or one of three polymer treatments (nylon, polyester, or olefin) at 5 g of microfibers kg-1 of sediment for 48 h or 28 days. Following exposure, L. variegatus were counted, weighed, and the number of microfibers ingested determined. Polyester microfibers occurred in higher quantities (10-12) than nylon and olefin (< one) per individual after 48 h and 28 days. Only the olefin per individual doubled after 28 days compared to 48 h. These findings indicate that polyester microfibers are more likely to affect L. variegatus and have greater potential to be ingested by higher trophic levels than other polymers.
Collapse
|
16
|
Araújo AM, Ringeard H, Nunes B. Do microplastics influence the long-term effects of ciprofloxacin on the polychaete Hediste diversicolor? An integrated behavioral and biochemical approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104088. [PMID: 36841270 DOI: 10.1016/j.etap.2023.104088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Ciprofloxacin (CPX), the most commonly used fluoroquinolone antibiotic, and microplastics (MPs) are two classes of emerging contaminants with severe adverse impacts on aquatic organisms. Previous studies suggest that both CPX and MPs induce deleterious changes in exposed aquatic biota, but the characterization of a chronic and combined ecotoxicological response is not well known, especially in organisms from estuarine ecosystems. Thus, in this study, we investigated the behavioral and biochemical effects of environmentally relevant levels of CPX alone and in combination with polyethylene terephthalate (PET) microplastics over 28 days of exposure, using the polychaete Hediste diversicolor as a model. In addition to behavioral parameters, different biochemical endpoints were also evaluated, namely the levels of metabolic enzymes of phase I (7-ethoxy-resorufin-O-deethylase, EROD), and phase II (glutathione-S-transferase, GSTs), antioxidant defense (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), oxidative damage (lipid peroxidation, by means of levels of thiobarbituric acid reactive substances [TBARS]) and acetylcholinesterase (AChE). Chronic exposure to ciprofloxacin caused a decrease in burrowing time and a significant increase in SOD activity. In animals exposed to the combination of CPX and PET MPs, effects on behavioral traits were also observed, with higher concentrations of MPs leading to a marked delay in the animals' burrowing time. In addition, these animals showed changes in their antioxidant defenses, namely, a significant increase in SOD activity, while GPx activity was severely compromised. For none of the experimental groups, significant alterations were observed in the metabolic enzymes, TBARS or AChE. These findings provide the first insights into the responses of H. diversicolor when exposed to the combination of CPX and PET MPs, highlighting that, although the here studied conditions, there was no evidence of oxidative damage or neurotoxicity, these organisms are not risk-free in co-exposure scenarios, even at low environmental relevant concentrations.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Henri Ringeard
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Porter A, Barber D, Hobbs C, Love J, Power AL, Bakir A, Galloway TS, Lewis C. Uptake of microplastics by marine worms depends on feeding mode and particle shape but not exposure time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159287. [PMID: 36209888 DOI: 10.1016/j.scitotenv.2022.159287] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The uptake of microplastics into marine species has been widely documented across trophic levels. Feeding mode is suggested as playing an important role in determining different contamination loads across species, but this theory is poorly supported with empirical evidence. Here we use the two distinct feeding modes of the benthic polychaete, Hediste diversicolor (The Harbour Ragworm) (O.F. Müller, 1776), to test the hypothesis that filter feeding will lead to a greater uptake of microplastic particles than deposit feeding. Worms were exposed to both polyamide microfragments and microfibres in either water (as filter feeders) or sediment (as deposit feeders) for 1 week. No effect of exposure time was found between 1 day and 1 week (p > 0.19) but feeding mode was found to significantly affect the number of microfibres recovered from each worm (p < 0.001). When exposed to microfibers, filter feeding worms took up ≈15,000 % more fibres than deposit feeding worms (p < 0.001), whereas when feeding on microfragments there was no difference between feeding modes. Our data demonstrate that both feeding mode and particle characteristics significantly influence the uptake of microplastics by H. diversicolor. Using imaging flow cytometry, filter feeders were found to take up a broader size range of particles, with significantly more smaller and larger particles than deposit feeders (p < 0.05), commensurate with the range of plastics isolated from the guts of ragworms recovered from the environment. These results demonstrate that biological traits are useful in understanding the uptake of plastics into marine worms and warrant further exploration as a tool for understanding the bioaccessibility of plastics to marine organisms.
Collapse
Affiliation(s)
- Adam Porter
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Dan Barber
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Catherine Hobbs
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - John Love
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ann L Power
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Adil Bakir
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, United Kingdom
| | - Tamara S Galloway
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ceri Lewis
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
18
|
Calmão M, Blasco N, Benito A, Thoppil R, Torre-Fernandez I, Castro K, Izagirre U, Garcia-Velasco N, Soto M. Time-course distribution of fluorescent microplastics in target tissues of mussels and polychaetes. CHEMOSPHERE 2023; 311:137087. [PMID: 36332739 DOI: 10.1016/j.chemosphere.2022.137087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The majority of the plastic produced in the last century is accumulated in the environment, leading to an exacerbated contamination of marine environments due to transport from land to the ocean. In the ocean, mechanical abrasion, oxidation, and photodegradation degrade large plastics into microplastics (MPs) - 0.1 μm to 5 mm (EFSA, 2016) which are transported through water currents reaching the water surface, water column, and sediments. Further, they can be accumulated by aquatic and benthic species, entering the trophic chain and becoming a potential threat to humans. In the present research, we aimed to decipher the accumulation and distribution time-courses between different organs or target tissues of organisms inhabiting coastal areas such as mussels Mytilus galloprovincialis and polychaetes Hediste diversicolor. Both were exposed in microcosm experiments to fluorescent polystyrene MPs (1 μm) which were spiked at two doses (103 and 105 particles/mL) for 1, 4, 24, and 72 h. Mussels and polychaetes were digested with 10% KOH and filtered to quantify the number of MPs incorporated. Different anatomical parts of the body were selected and processed for cryosectioning and posterior microscopic localisation of MPs. Both species accumulate MPs spiked in water column, mainly after exposure to the highest dose. In mussels, particles were found in distinct parts of the digestive tract (stomach, digestive diverticula, ducts) and gills. Even if the majority of MPs were localised in the lumen of the digestive tract, in some cases, were inside the digestive epithelium. The identification of MPs and their internalization in the digestive system was studied using Raman spectroscopy. A decreasing trend with time regarding MPs number in the digestive tract (stomach) of mussels was observed while the opposite was recorded for polychaetes and sediments. The combination of microscopical observations of frozen sections and Raman, appeared to be accurate methodologies to address MPs abundances and to reveal their localisation in different organs. This work has enabled to understand the distribution and fate of MPs in different environmental compartments and it could contribute to gain knowledge about their impact after ingestion by coastal organisms.
Collapse
Affiliation(s)
- Mariana Calmão
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Nagore Blasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Alba Benito
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Basque Country, Spain
| | - Rhea Thoppil
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Basque Country, Spain
| | - Imanol Torre-Fernandez
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Basque Country, Spain
| | - Kepa Castro
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Basque Country, Spain
| | - Urtzi Izagirre
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| |
Collapse
|
19
|
Abouda S, Missawi O, Cappello T, Boughattas I, De Marco G, Maisano M, Banni M. Toxicological impact of environmental microplastics and benzo[a]pyrene in the seaworm Hediste diversicolor under environmentally relevant exposure conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119856. [PMID: 35944779 DOI: 10.1016/j.envpol.2022.119856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, marine ecosystems are under severe threat from the simultaneous presence of multiple stressors, including microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P). In addition to their presence in various marine compartments, there are increasing concerns on the potential capacity of MPs to sorb, concentrate and transfer these pollutants in the environment. Although their ecotoxicological impacts are currently evident, few works have studied the combined effects of these contaminants. Therefore, the major purpose of this work was to assess the toxicity of environmental relevant concentrations of MPs (<30 μm) and B[a]P, alone and in mixture, in the seaworm Hediste diversicolor by exploring their accumulation and hazardous biological effects for 3 and 7 days. Environmental MPs were able to increase B[a]P in a time-dependent manner. The obtained results showed that individual treatments, as well as co-exposure to contaminants, caused cytotoxicity and genotoxicity in the cœlomic fluid cells, while oxidative stress effects were observed at tissue and gene levels associated with alteration in neurotransmission. Overall, our findings provide additional clues about MPs as organic pollutant vectors in the marine environment, and contribute to a clearer understanding of their toxicological risk to aquatic invertebrates.
Collapse
Affiliation(s)
- Siwar Abouda
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy.
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| |
Collapse
|
20
|
Hewins B, Gibson G. Petroleum-based and biodegradable microplastics alter tissue structure and fecundity in the eastern mudsnail ( Ilyanassa obsoleta). CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microplastics are hazardous to aquatic life. Most experiments focus on the effects of a single type of microbead, while in the environment, organisms are exposed to irregularly shaped fragments belonging to several chemical groups. The effects of biodegradable plastics are unknown. We tested the effects of mixed-source (MS) petroleum-based and biodegradable (polylactic acid, PLA) microplastics on the intertidal eastern mudsnail, Ilyanassa obsoleta (Say, 1822), a benthic grazer. MS plastics were collected from local coastal areas (polystyrene, polyethylene, polypropylene, polyvinyl chloride and polyethylene terephthalate, combined) and were tested at three exposures, including one similar to concentrations found locally (2250 particles/kg sediment). Plastics were milled to be similar in size to the biofilm–sediment mix provided to the snails as food (32.94 µm2 for sediment, 137.99 µm2 for MS, and 31.16 µm2 for PLA). Locally relevant exposures of MS microplastics disrupted digestive gland histology, while extreme exposures additionally increased the number of hemocytes and reduced fecundity. Effects of PLA were similar to those of MS microplastics, at the extreme exposure tested here. These results indicate that both petroleum-based and biodegradable microplastics disrupt the structure of the digestive gland and that environmentally relevant exposures induce “hidden” tissue-level changes that are invisible without specialized techniques.
Collapse
Affiliation(s)
- Ben Hewins
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Glenys Gibson
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
21
|
Pinheiro LM, Britz LMK, Agostini VO, Pérez-Parada A, García-Rodríguez F, Galloway TS, Pinho GLL. Salt marshes as the final watershed fate for meso- and microplastic contamination: A case study from Southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156077. [PMID: 35597351 DOI: 10.1016/j.scitotenv.2022.156077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Plastics pose a major threat to aquatic ecosystems especially in smaller size fractions. Salt marshes play a crucial role in maintaining the coastal zone and aquatic food web, yet their contamination, including by plastic materials, is still poorly investigated. This work investigated meso- (MEP, 5-25 mm) and microplastic (MIP, 1 μm-5 mm) contamination of a salt marsh, which reached average levels of 279.63 ± 410.12 items kg-1, 366.92 ± 975.18 items kg-1, and 8.89 ± 8.75 items L-1 in surface sediment, sediment cores and water, respectively. Photomicrographs revealed a complex fouling community on plastics surface for both different salt marsh zones and plastic formats. Abundance of plastics in sediment was higher in the dryer, vegetated zones compared to flooded, unvegetated zones. This is consistent with the role of vegetation as a trap for solid litter and final fate of plastic deposition, but also with local hydrodynamics influencing deposition pattern. Plastics were detected up to 66 cm-depth, presenting higher levels at surface sediments. It was also possible to identify the main groups of microorganisms (1638 bacterial cells, 318 microalgae cells, and 20049.93 μm2 of filamentous fungi) composing the Plastisphere communities on all plastic items recorded in the different zones. These results are a pioneer contribution, highlighting that regional salt marshes participate in sequestration and longstanding accumulation of plastic particles in estuarine environments, before exportation to the ocean.
Collapse
Affiliation(s)
- Lara M Pinheiro
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Carreiros, CEP: 96203-900 Rio Grande, RS, Brazil; Programa de Pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (FURG), Brazil; College of Life and Environmental Sciences, University of Exeter, EX4 4QD, United Kingdom.
| | - Larissa M K Britz
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Carreiros, CEP: 96203-900 Rio Grande, RS, Brazil
| | - Vanessa O Agostini
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Carreiros, CEP: 96203-900 Rio Grande, RS, Brazil; Programa Nacional de Pós-Doutorado da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-CAPES/PPGO), Brazil
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la Republica, Ruta 9 y Ruta 15, 27000 Rocha, Uruguay
| | - Felipe García-Rodríguez
- Programa de Pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (FURG), Brazil; Departamento de Geociencias, Centro Universitario Regional del Este (CURE), Universidad de la Republica, Ruta 9 y Ruta 15, 27000 Rocha, Uruguay
| | - Tamara S Galloway
- College of Life and Environmental Sciences, University of Exeter, EX4 4QD, United Kingdom
| | - Grasiela L L Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Carreiros, CEP: 96203-900 Rio Grande, RS, Brazil
| |
Collapse
|
22
|
Baranzini N, Pulze L, Bon C, Izzo L, Pragliola S, Venditto V, Grimaldi A. Hirudo verbana as a freshwater invertebrate model to assess the effects of polypropylene micro and nanoplastics dispersion in freshwater. FISH & SHELLFISH IMMUNOLOGY 2022; 127:492-507. [PMID: 35803505 DOI: 10.1016/j.fsi.2022.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plastics are a heterogeneous class of synthetic compounds that, due to their unique characteristics find numerous applications both in industrial and civil fields. However, despite the great advantages that these materials brought in everyday life, the plastic wastes resulting from their massive use represent one of the main environmental problems at the global level. Once released, plastics persist for a long time and are subjected both to biotic and abiotic processes leading to the formation of small particles, known as micro and to nanoplastics, that interact with organisms, accumulating inside tissues and risking to enter in the trophic chain. Among the different types of plastic, polypropylene (PP) is one of the diffused, widely exploited in food and textile industries for disposable packaging and to produce surgical masks. Owing to the huge distribution and the resultant abundant presence of PP waste products, it results necessary investigate the possible toxicity on living organisms. For these reasons, here we analyzed the effects of PP micro and nanoplastics dispersed in freshwater, using the medicinal leech Hirudo verbana as invertebrate model. To better follow the plastics fate, fluorescent particles, labeled with a fluorophore, have been used. Animals were examined at various timings after plastics exposure and results were analyzed by means of microscopy, immunofluorescent and molecular biology analyses. After assessing the entrance of PP fragments into leech tissues, the activation of the innate immune response was evaluated. The results show that the presence of micro and nanoplastics induces an initial physical protection that consists in the secretion of mucus, followed by an increase of blood vessels and the recruitment of immune cells, in particular macrophages. Moreover, macrophages were directly involved in both phagocytic and encapsulation processes, as demonstrated by acid phosphatase (ACP) histoenzymatic and Thioflavin-T assays, expressing specific pro-inflammatory factors, such as HvRNASET2 and HmAIF-1, as demonstrated by immunolocalization and qPCR experiments. Finally, the expression levels of genes related to oxidative stress-induced enzymes have been investigated, in order to evaluate the possible increase in reactive oxygen species (ROS), due to the entry into the leech tissues of PP micro and nanoplastics. This work allows deepening the current knowledge of the possible harmful effects on human health deriving from micro and nanoplastics dispersion, leading new insight about freshwater ecosystems that often represent the first environments interested in plastic pollution.
Collapse
Affiliation(s)
- Nicolò Baranzini
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Laura Pulze
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Camilla Bon
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Lorella Izzo
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy
| | - Stefania Pragliola
- Department of Chemistry and Biology, University of Salerno and INSTM Research Unit, 132 Giovanni Paolo II Rd, I-84084, Italy
| | - Vincenzo Venditto
- Department of Chemistry and Biology, University of Salerno and INSTM Research Unit, 132 Giovanni Paolo II Rd, I-84084, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science (DBSV), University of Insubria, 3 J. H. Dunant Rd, Varese, 21100, Italy.
| |
Collapse
|
23
|
Urban-Malinga B, Jakubowska-Lehrmann M, Białowąs M, Hallmann A. Microplastics cause neurotoxicity and decline of enzymatic activities in important bioturbator Hediste diversicolor. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105660. [PMID: 35690022 DOI: 10.1016/j.marenvres.2022.105660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) tend to accumulate in marine sediments thus benthic fauna is particularly vulnerable to microplastic pollution. Hediste diversicolor is a widespread species in coastal marine sediments. It plays key ecological functions mostly related to bioturbation process which means sediment reworking due to the worm burrowing activity and building a network of galleries. Herein, we show that commercial plastic microspheres of two sizes (63-75 and 300-355 μm) have the potential to cause neurotoxicity in H. diversicolor. The whole-body acetylcholinesterase (AChE) activity - a common indicator of neurotoxic effect - was on average 60% lower in polychaetes exposed for 28 days to MPs served at environmentally relevant concentrations (0.08% sediment d. wt.), than in unexposed ones. Significantly reduced activities of antioxidant enzymes (SOD, CAT, GST) indicated suppression of the cellular antioxidative system in worms exposed to MPs. No changes were, however, observed in tGSH, lipid or protein oxidation measures (CBO, MDA), and in the energetic value of these polychaetes. The response was generally similar with no regard to MPs size. Only very few microspheres were found in polychaetes exposed to MPs spiked sediment. The potential role of MPs-associated pollutants as a factor responsible for observed biochemical effects, is discussed.
Collapse
Affiliation(s)
| | | | - Marcin Białowąs
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
24
|
Missawi O, Venditti M, Cappello T, Zitouni N, Marco GDE, Boughattas I, Bousserrhine N, Belbekhouche S, Minucci S, Maisano M, Banni M. Autophagic event and metabolomic disorders unveil cellular toxicity of environmental microplastics on marine polychaete Hediste diversicolor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119106. [PMID: 35248622 DOI: 10.1016/j.envpol.2022.119106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Although the hazards of microplastics (MPs) have been quite well explored, the aberrant metabolism and the involvement of the autophagy pathway as an adverse response to environmental MPs in benthic organisms are still unclear. The present work aims to assess the impact of different environmental MPs collected from the south coast of the Mediterranean Sea, composed by polyethylene (PE), polyethylene vinyl acetate (PEVA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polyamide (PA) on the metabolome and proteome of the marine polychaete Hediste diversicolor. As a result, all the microplastic types were detected with Raman microspectroscopy in polychaetes tissues, causing cytoskeleton damage and induced autophagy pathway manifested by immunohistochemical labeling of specific targeted proteins, through Tubulin (Tub), Microtubule-associated protein light chain 3 (LC3), and p62 (also named Sequestosome 1). Metabolomics was conducted to further investigate the metabolic alterations induced by the environmental MPs-mixture in polychaetes. A total of 28 metabolites were differentially expressed between control and MPs-treated polychaetes, which showed elevated levels of amino acids, glucose, ATP/ADP, osmolytes, glutathione, choline and phosphocholine, and reduced concentration of aspartate. These novel findings extend our understanding given the toxicity of environmental microplastics and unravel their underlying mechanisms.
Collapse
Affiliation(s)
- Omayma Missawi
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia.
| | - Massimo Venditti
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Tiziana Cappello
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Nesrine Zitouni
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia
| | - Giuseppe DE Marco
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Iteb Boughattas
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia; Regional Field Crops Research Center of Beja, Tunisia
| | - Noureddine Bousserrhine
- University Paris-Est Creteil, Laboratory of Water, Environment and Urban Systems, Faculty of Science and Technology, Creteil Cedex, France
| | - Sabrina Belbekhouche
- CNRS, University of Paris-Est Creteil, Institute of Chemistry and Materials Paris-Est ICMPE, UMR7182, 94320 Thiais, France
| | - Sergio Minucci
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maisano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Mohamed Banni
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia; Higher Institute of Biotechnology Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
25
|
Dolar A, Drobne D, Dolenec M, Marinšek M, Jemec Kokalj A. Time-dependent immune response in Porcellio scaber following exposure to microplastics and natural particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151816. [PMID: 34813818 DOI: 10.1016/j.scitotenv.2021.151816] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are very common contaminants in the environment. Despite increasing efforts to assess the effects of microplastics on soil organisms, there remains a lack of knowledge on how organisms respond to diverse types of microplastics after different exposure durations. In the present study, we investigated the immune response of the terrestrial crustacean Porcellio scaber exposed to the two most common microplastic particles in the environment: polyester fibres and tyre particles. We also tested two natural particles: wood dust and silica powder, with all treatments performed at 1.5% w/w. The response of P. scaber was evaluated at the level of the immune system, and also the biochemical, organism and population level, after different exposure durations (1, 2, 4, 7, 14, 21 days). These data reveal dynamic changes in the levels of some immune parameters shortly after exposure, with a gradual return to control values. The total number of haemocytes was significantly decreased after 4 days of exposure to tyre particles, while the proportion of different haemocyte types in the haemolymph was altered shortly after exposure to both polyester fibres and tyre particles. Moreover, 7 days of exposure to tyre particles resulted in increased superoxide dismutase activity in the haemolymph, while metabolic activity in whole woodlice (measured as electron transport system activity) was increased after exposure for 7, 14 and 21 days. In contrast, the natural particles did not elicit any significant changes in the measured parameters. Survival and feeding of P. scaber were not altered by exposure to the microplastics and natural particles in soil. Overall, this study defines a time-dependent transient immune response of P. scaber, which indicates that immune parameters represent sensitive biomarkers of exposure to microplastics. We discuss the importance of using natural particles in studies of microplastics exposure and their effects.
Collapse
Affiliation(s)
- Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Dolenec
- Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia
| | - Marjan Marinšek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Genotoxic Properties of Polystyrene (PS) Microspheres in the Filter-Feeder Mollusk Mytilus trossulus (Gould, 1850). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microplastic pollution of the aquatic environment is one of the most serious environmental problems today. The potential environmental risks of such particles have become growing concerns in recent years, as direct or indirect exposure to these particles leads to adverse effects on marine organisms. In this study, we investigated the potential risk of polystyrene (PS) microspheres on the genome integrity of cells of different tissues (gills and digestive gland) of the filter-feeder mollusk Mytilus trossulus, using a comet assay. With the help of the comet assay, we estimated the level of genome destruction in the cells of two different mussel tissues after short-term exposure to polystyrene. It was discovered that, despite their chemical inertness, PS microspheres that are 0.9 µm in diameter, at a concentration of 106 particles/L, exhibit genotoxic properties, which are expressed as a two-fold increase in the level of cell DNA damage of the mussel’s digestive gland. It is noted that, after exposure to PS, about half of the mussel’s digestive gland cells experienced damage in 25–35% of their DNA. In addition, the proportion of cells with significant DNA damage (50%) was about 5%. Given the unique role of the genome, DNA damage in these cells may be the earliest stage in the development of biochemical events that lead to toxic effects. These findings provide a basis for studying specific biomarkers of microplastic contamination.
Collapse
|
27
|
Screening for polystyrene nanoparticle toxicity on kidneys of adult male albino rats using histopathological, biochemical, and molecular examination results. Cell Tissue Res 2022; 388:149-165. [PMID: 35088181 PMCID: PMC8976822 DOI: 10.1007/s00441-022-03581-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Abstract
Polystyrene Nanoparticles (PS-NPs) used for packaging foam, disposable cups, and food containers. Therefore, this study aimed to evaluate PS- NPs toxic effects on kidney of adult male albino rats. A total of 30 rats divided into three groups (n = 10): group I negative control group; group II orally administered 3% PS-NPs (3 mg/kg body weight/day) and group III orally administered 3% PS-NPs (10 mg/kg body weight/day) for 35 days. Blood and kidney samples collected and processed for biochemical, histopathological, and immunohistochemical examinations. Results showed that low and high doses PS-NPs had significantly increased serum blood urea nitrogen (BUN), creatinine, malondialdehyde, significantly further reduced glutathione, downregulation of nuclear factor erythroid 2–related factor 2 and glutathione peroxidase, upregulation of caspase-3 and Cytochrome-c. Histopathological examination revealed several alterations. Low dose of PS-NPs exhibited dilated glomerular capillaries, hypotrophy of some renal corpuscles significantly decreases their diameter to 62 μm. Some proximal convoluted tubules and distal convoluted tubules showed loss of cellular architecture with pyknotic nuclei. Hyalinization and vacuolation in renal medulla. In high dose PS-NPs, alterations increased in severity. A significant increase in percentage area of cyclooxygenase-2 in low and high-doses. In conclusion, PS-NPs are a nephrotoxic causing renal dysfunction.
Collapse
|
28
|
Jemec Kokalj A, Dolar A, Drobne D, Marinšek M, Dolenec M, Škrlep L, Strmljan G, Mušič B, Škapin AS. Environmental hazard of polypropylene microplastics from disposable medical masks: acute toxicity towards Daphnia magna and current knowledge on other polypropylene microplastics. MICROPLASTICS AND NANOPLASTICS 2022; 2:1. [PMID: 35005629 PMCID: PMC8724753 DOI: 10.1186/s43591-021-00020-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/01/2021] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic has increased the use of disposable plastics, including medical masks, which have become a necessity in our daily lives. As these are often improperly disposed of, they represent an important potential source of microplastics in the environment. We prepared microplastics from polypropylene medical masks and characterised their size, shape, organic chemical leaching, and acute toxicity to the planktonic crustacean Daphnia magna. The three layers of the masks were separately milled and characterised. Each of the inner frontal, middle filtering, and outer layers yielded different types of microplastics: fibres were obtained from the inner and outer layer, but irregular fragments from the middle layer. The shape of the obtained microplastics differed from the initial fibrous structure of the intact medical mask layers, which indicates that the material is deformed during cryo-milling. The chemical compositions of plastics-associated chemicals also varied between the different layers. Typically, the inner layer contained more chemicals related to antimicrobial function and flavouring. The other two layers also contained antioxidants and their degradation products, plasticisers, cross-linking agents, antistatic agents, lubricants, and non-ionic surfactants. An acute study with D. magna showed that these microplastics do not cause immobility but do physically interact with the daphnids. Further long-term studies with these microplastics are needed using a suite of test organisms. Indeed, studies with other polypropylene microplastics have shown numerous adverse effects on other organisms at concentrations that have already been reported in the environment. Further efforts should be made to investigate the environmental hazards of polypropylene microplastics from medical masks and how to handle this new source of environmental burden. PLEASE CHECK THE SI WORD DOCUMENT THE AUTHORS ARE NOT LISTED THERE I CANNOT EDIT THAT FILE PLEASE ADD THE AUTHORS SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43591-021-00020-0.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Marjan Marinšek
- Faculty of Chemistry and Chemical Technology, Chair of Materials and Polymer Science, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matej Dolenec
- Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, SI-1000 Ljubljana, Slovenia
| | - Luka Škrlep
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| | - Gregor Strmljan
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| | - Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| | - Andrijana Sever Škapin
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Field evidence for microplastic interactions in marine benthic invertebrates. Sci Rep 2021; 11:20900. [PMID: 34686714 PMCID: PMC8536658 DOI: 10.1038/s41598-021-00292-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Microplastics represent an important issue of concern for marine ecosystems worldwide, and closed seas, such as the Mediterranean, are among the most affected by this increasing threat. These pollutants accumulate in large quantities in benthic environments causing detrimental effects on diverse biocenoses. The main focus of this study is on the ‘polychaetes-microplastics’ interactions, particularly on two species of benthic polychaetes with different ecology and feeding strategies: the sessile and filter feeder Sabella spallanzanii (Gmelin, 1791) and the vagile carnivorous Hermodice carunculata (Pallas, 1766). Since not standardized protocols are proposed in literature to date, we compared efficiencies of diverse common procedures suitable for digesting organic matter of polychaetes. After the definition of an efficient digestion protocol for microplastics extraction for both polychaetes, our results showed high microplastics ingestion in both species. Microplastics were found in 42% of individuals of S. spallanzanii, with a mean of 1 (± 1.62) microplastics per individual, in almost all individuals of H. carunculata (93%), with a mean of 3.35 (± 2.60). These significant differences emerged between S. spallanzanii and H. carunculata, is probably due to the diverse feeding strategies. The susceptibility to this pollutant makes these species good bioindicators of the impact of microplastics on biota.
Collapse
|
30
|
Hamzah SR, Altrawneh RS, Anuar ST, Khalik WMAWM, Kolandhasamy P, Ibrahim YS. Ingestion of microplastics by the estuarine polychaete, Namalycastis sp. in the Setiu Wetlands, Malaysia. MARINE POLLUTION BULLETIN 2021; 170:112617. [PMID: 34139586 DOI: 10.1016/j.marpolbul.2021.112617] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
In this study, the ingestion of microplastics by the deposit-feeding polychaete Namalycastis sp. in the estuarine area of the Setiu Wetlands, Malaysia was confirmed. Samples were collected from six stations, covering the wetland from the south to the north, bimonthly between November 2016 and November 2017. Microplastics were extracted from polychaete samples following digestion in an alkaline solution (10 M NaOH). They were identified by physical characteristics (i.e., shape and color under dissecting microscope and scanning electron microscope), and chemical analysis using a LUMOS Fourier Transform Infrared Microscope (μ-FTIR). A total of 3277 pieces were identified, which were dominated by filaments (99.79%) and with the majority transparent in color (84.71%). Most of the microplastics identified were polypropylene (PP) followed by polyamide (PA) based on their main peak in the of μ-FTIR spectrum. Principal component analysis demonstrated the dominance of microplastics at stations 3 and 4 of the sampling area, probably because of the influx from the open sea and from aquaculture. The findings of this research provide baseline information on microplastics ingested by benthic organisms and their fate in the estuarine food web.
Collapse
Affiliation(s)
- Siti Rabaah Hamzah
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ra'ad Shaher Altrawneh
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Sabiqah Tuan Anuar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wan Mohd Afiq Wan Mohd Khalik
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Prabhu Kolandhasamy
- Coastal and Marine Ecology Division, Gujarat Institute of Desert Ecology, Bhuj-Kachchh 370001, India
| | - Yusof Shuaib Ibrahim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
31
|
Prata JC, da Costa JP, Lopes I, Andrady AL, Duarte AC, Rocha-Santos T. A One Health perspective of the impacts of microplastics on animal, human and environmental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146094. [PMID: 33677304 DOI: 10.1016/j.scitotenv.2021.146094] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 05/27/2023]
Abstract
Microplastics contamination is widespread in the environment leading to the exposure of both humans and other biota. While most studies overemphasize direct toxicity of microplastics, particle concentrations, characteristics and exposure conditions being used in these assays needs to be taken into consideration. For instance, toxicity assays that use concentrations over 100,000 times higher than those expected in the environment have limited practical relevance. Thus, adverse effects on animal and human health of current environmental concentrations are identified as a knowledge gap. Conversely, this does not suggest the lack of any significant effects of microplastics on a global scale. The One Health approach provides a novel perspective focused on the intersection of different areas, namely animal, human, and environmental health. This review provides a One Health transdisciplinary approach to microplastics, addressing indirect effects beyond simple toxicological effects. Microplastics can, theoretically, change the abiotic properties of matrices (e.g., soil permeability) and interfere with essential ecosystem functions affecting ecosystem services (e.g., biogeochemical processes) that can in turn impact human health. The gathered information suggests that more research is needed to clarify direct and indirect effects of microplastics on One Health under environmentally relevant conditions, presenting detailed knowledge gaps.
Collapse
Affiliation(s)
- Joana C Prata
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P da Costa
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Magni S, Nigro L, Della Torre C, Binelli A. Characterization of plastics and their ecotoxicological effects in the Lambro River (N. Italy). JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125204. [PMID: 33513553 DOI: 10.1016/j.jhazmat.2021.125204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This study had the dual objective of both the qualitative and quantitative assessment of plastic mixtures sampled in 5 different sites located along the Lambro River (northern Italy), and the contemporarily determination of the ecotoxicological effects of the same mixtures sampled, through 21-day laboratory exposures of the freshwater bivalve Dreissena polymorpha. The monitoring survey was carried out by a Fourier Transform Infrared Microscope System, while the ecotoxicological assessment was performed by the mussel mortality, a biomarker suite and the proteomics. The main results of the monitoring have highlighted some critical points, related to the concentration of plastics detected at Milan and, especially at the southernmost sampling station, where a daily flow of more than 6 million plastic debris has been estimated, ending directly into the Po River, the main Italian river. The ecotoxicological analysis highlighted how the toxicity is not exclusively due to the plastic concentration, but that the different characteristics of the polymers probably become more important. Furthermore, we observed an extensive mortality of bivalves exposed to the sampled mixtures in the two southernmost sampling stations, while the battery of biomarkers and the results of proteomics have highlighted how the sampled plastic mixtures caused an imbalance in the redox state, already indicated as a classic effect due to plastic exposure, but also an impact on energy stock and on some fundamental cellular pathways always linked to energy metabolism.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
33
|
Pinheiro LM, Agostini VO, Lima ARA, Ward RD, Pinho GLL. The fate of plastic litter within estuarine compartments: An overview of current knowledge for the transboundary issue to guide future assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116908. [PMID: 33774365 DOI: 10.1016/j.envpol.2021.116908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Plastics can enter biogeochemical cycles and thus be found in most ecosystems. Most studies emphasize plastic pollution in oceanic ecosystems even though rivers and estuaries are acknowledged as the main sources of plastics to the oceans. This review detected few studies approaching the transboundary issue, as well as patterns of estuarine gradients in predicting plastic distribution and accumulation in water, sediments, and organisms. Quantities of plastics in estuaries reach up to 45,500 items m-3 in water, 567,000 items m-3 in sediment, and 131 items per individual in the biota. The role of rivers and estuaries in the transport of plastics to the ocean is far from fully understood due to small sample sizes, short-term approaches, sampling techniques that underestimate small plastics, and the use of site-specific sampling rather than covering environmental gradients. Microfibres are the most commonly found plastic type in all environmental matrices but efforts to re-calculate pathways using novel sampling techniques and estimates are incipient. Microplastic availability to estuarine organisms and rising/sinking is determined by polymer characteristics and spatio-temporal fluctuations in physicochemical, biological, and mineralogical factors. Key processes governing plastic contamination along estuarine trophic webs remain unclear, as most studies used "species" as an ecological unit rather than trophic/functional guilds and ontogenetic shifts in feeding behaviour to understand communities and intraspecific relationships, respectively. Efforts to understand contamination at the tissue level and the contribution of biofouling organisms as vectors of contaminants onto plastic surfaces are increasing. In conclusion, rivers and estuaries still require attention with regards to accurate sampling and conclusions. Multivariate analysis and robust models are necessary to predict the fate of micro- and macroplastics in estuarine environments; and the inclusion of the socio-economic aspects in modelling techniques seems to be relevant regarding management approaches.
Collapse
Affiliation(s)
- L M Pinheiro
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG). Av. Itália, Km 8, Carreiros, CEP: 96203-900, Rio Grande, RS, Brazil; Programa de Pós-graduação em Oceanologia (PPGO), Brazil.
| | - V O Agostini
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG). Av. Itália, Km 8, Carreiros, CEP: 96203-900, Rio Grande, RS, Brazil; Programa Nacional de Pós-Doutorado da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-CAPES/PPGO), Brazil
| | - A R A Lima
- Marine and Environmental Sciences Centre, ISPA - College Institute, Department of Biosciences, 1149-041, Lisbon, Portugal
| | - R D Ward
- Centre for Aquatic Environments, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, BN2 4GJ, United Kingdom; Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51014, Tartu, Estonia
| | - G L L Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG). Av. Itália, Km 8, Carreiros, CEP: 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
34
|
Redondo-Hasselerharm PE, Vink G, Mitrano DM, Koelmans AA. Metal-doping of nanoplastics enables accurate assessment of uptake and effects on Gammarus pulex. ENVIRONMENTAL SCIENCE. NANO 2021; 8:1761-1770. [PMID: 34221410 PMCID: PMC8211321 DOI: 10.1039/d1en00068c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 05/26/2023]
Abstract
Because of the difficulty of measuring nanoplastics (NP), the use of NPs doped with trace metals has been proposed as a promising approach to detect NP in environmental media and biota. In the present study, the freshwater amphipod Gammarus pulex were exposed to palladium (Pd)-doped NP via natural sediment at six spiking concentrations (0, 0.3, 1, 3, 10 and 30 g plastic per kg of sediment dry weight) with the aim of assessing their uptake and chronic effects using 28 days standardized single species toxicity tests. NP concentrations were quantified based on Pd concentrations measured by ICP-MS on digests of the exposed organisms and faecal pellets excreted during a post-exposure 24 hour depuration period. Additionally, NP concentrations were measured in sediments and water to demonstrate accuracy of NP dosing and to quantify the resuspension of NP from the sediment caused by the organisms. A significant positive linear relationship between the uptake of NP by G. pulex and the concentration of NP in the sediments was observed, yet no statistically significant effects were found on the survival or growth of G. pulex. A biodynamic model fitted well to the data and suggested bioaccumulation would occur in two kinetic compartments, the major one being reversible with rapid depuration to clean medium. Model fitting yielded a mass based trophic transfer factor (TTF), conceptually similar to the traditional biota sediment accumulation factor, for NP in the gut of 0.031. This value is close to a TTF value of 0.025 that was obtained for much larger microplastic particles in a similar experiment performed previously. Mechanistically, this suggests that ingestion of plastic is limited by the total volume of ingested particles. We demonstrated that using metal-doped plastics provides opportunities for precise quantification of NP accumulation and exposure in fate and effect studies, which can be a clear benefit for NP risk assessment.
Collapse
Affiliation(s)
- P E Redondo-Hasselerharm
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research P.O. Box 47 6700 AA Wageningen The Netherlands
| | - G Vink
- Chemical Biological Soil Laboratory, Wageningen University & Research P.O. Box 47 6700 AA Wageningen The Netherlands
| | - D M Mitrano
- Department of Environmental Systems Science, ETH Zurich Universitatstrasse 16 8092 Zurich Switzerland
| | - A A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research P.O. Box 47 6700 AA Wageningen The Netherlands
| |
Collapse
|
35
|
Barrick A, Champeau O, Chatel A, Manier N, Northcott G, Tremblay LA. Plastic additives: challenges in ecotox hazard assessment. PeerJ 2021; 9:e11300. [PMID: 33959427 PMCID: PMC8054737 DOI: 10.7717/peerj.11300] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
The risk of plastic debris, and specifically micro(nano)plastic particles, to ecosystems remains to be fully characterized. One particular issue that warrants further characterization is the hazards associated with chemical additives within micro(nano)plastic as they are not chemically bound within the polymers and can be persistent and biologically active. Most plastics contain additives and are therefore potential vectors for the introduction of these chemicals into the environment as they leach from plastic, a process that can be accelerated through degradation and weathering processes. There are knowledge gaps on the ecotoxicological effects of plastic additives and how they are released from parent plastic materials as they progressively fragment from the meso to micro and nano scale. This review summarizes the current state of knowledge of the ecotoxicity of plastic additives and identifies research needs to characterize the hazard they present to exposed biota. The potential ecological risk of chemical additives is of international concern so key differences in governance between the European Union and New Zealand to appropriately characterize their risk are highlighted.
Collapse
Affiliation(s)
| | | | | | - Nicolas Manier
- French National Institute for Industrial Environment and Risks, Verneuil en Halatte, France
| | | | - Louis A Tremblay
- Cawthron Institute, Nelson, New Zealand.,University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Revel M, Roman C, Châtel A. Is cell culture a suitable tool for the evaluation of micro- and nanoplastics ecotoxicity? ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:421-430. [PMID: 33580466 DOI: 10.1007/s10646-021-02355-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Plastic particles have been described in aquatic ecosystems worldwide. An increasing number of studies have tried to evaluate the toxic impacts of microplastics (1-5000 µm) but also nanoplastics (<1 µm) in marine and freshwater organisms. However, the wide variety of plastic particles characteristics such as various sizes, shapes, functionalization or types of polymer, makes it difficult to evaluate their impact with regular ecotoxicity testing. In this context, cell culture, mainly used in human toxicology, could be a promising tool to evaluate micro- and nanoplastics toxicity with a wide diversity of conditions allowing to generate a large set of data. This review presents the current research on micro and nanoplastics using cell culture of marine and freshwater organisms, describes the limitations of cell culture tool and defines whether this tool can be considered as a relevant alternative strategy for ecotoxic evaluation of micro and nanoplastics especially for future regulatory needs. Articles using specifically cell culture tool from aquatic organisms such as fish or bivalves were identified. The majority evaluated the toxicity of polystyrene nanobeads on immune parameters, oxidative stress or DNA damage in fish cells. Although most of the papers characterized nanoplastic particles into the cell culture media, the relevance of testing conditions is not always clear. The development of cell culture can offer many opportunities for the evaluation of plastic particles' cellular impacts, but more research is needed to develop relevant culture models, on various aquatic organisms, and with consideration of abiotic parameters especially composition of cell culture media for nanoplastic evaluation.
Collapse
Affiliation(s)
- Messika Revel
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique de l'Ouest, F-49000, Angers, France.
| | - Coraline Roman
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique de l'Ouest, F-49000, Angers, France
| | - Amélie Châtel
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique de l'Ouest, F-49000, Angers, France
| |
Collapse
|
37
|
Mohsen M, Zhang L, Sun L, Lin C, Wang Q, Liu S, Sun J, Yang H. Effect of chronic exposure to microplastic fibre ingestion in the sea cucumber Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111794. [PMID: 33348256 DOI: 10.1016/j.ecoenv.2020.111794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) in the form of microfibres (MFs) are of great concern because of their size and increasing abundance, which increase their potential to interact with or be ingested by aquatic organisms. Although MFs are the dominant shape of MPs ingested by sea cucumbers in habitats, their effect on sea cucumbers remains unclear. This study examined the effect of dietary exposure to MFs on the growth and physiological status of both juvenile and adult Apostichopus japonicus sea cucumbers. MFs were mixed into the diet of sea cucumbers for 60 d at environmentally relevant concentrations of 0.6 MFs g-1, 1.2 MFs g-1 and 10 MFs g-1. Dietary exposure to MFs, with concentrations at or above those commonly found in the habitats, did not significantly affect the growth and faecal production rate of either juvenile or adult sea cucumbers. However, a disruption in immunity indices (acid phosphatase and alkaline phosphatase activity) and oxidative stress indices (total antioxidant capacity and malondialdehyde content) was observed in juvenile and adult sea cucumbers, indicating that these indices might be useful as potential biomarkers of the exposure to MF ingestion in sea cucumbers. This study provides insights into the toxicity mechanism of MF ingestion in a commercially and ecologically important species.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jinchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
38
|
Latchere O, Audroin T, Hétier J, Métais I, Châtel A. The need to investigate continuums of plastic particle diversity, brackish environments and trophic transfer to assess the risk of micro and nanoplastics on aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116449. [PMID: 33465650 DOI: 10.1016/j.envpol.2021.116449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Plastic particles are ubiquitous in marine and freshwater environments. While many studies have focused on the toxicity of microplastics (MPs) and nanoplastics (NPs) in aquatic environments there is no clear conclusion on their environmental risk, which can be attributed to a lack of standardization of protocols for in situ sampling, laboratory experiments and analyzes. There are also far more studies concerning marine environments than fresh or brackish waters despite their role in the transfer of plastics from continents to oceansWe systematically reviewed the literature for studies: (1) using plastics representative of those found in the environment in laboratory experiments, (2) on the contamination of plastic particles in the continuum between fresh and marine waters, focusing in particular on estuaries and (3) on the continuum of contamination of plastic particles between species through trophic transfer in aquatic environments. We found that the exposure of aquatic organisms in the laboratory to plastic particles collected in the environment are very scarce. Moreover, plastic exposures of estuarine species in the laboratory are generally carried out for a single salinity and a single temperature that do not reflect the fluctuating environmental conditions of estuaries. Finally, the trophic transfer of plastic particles is mainly studied in the laboratory through simple food chains which are not representative of the complexity of the trophic networks observed in the aquatic environment. We pointed out that future studies in the laboratory should include both MPs and NPs sampled in the environment and focus on the precise characterization of the composition and surface of these plastics as well as on their absorbed pollutants, additives or biofilms. Moreover, investigations must be continued concerning the toxicity of plastic particles in brackish water environments such as estuaries and the trophic transfer of plastic particles in complex food chains.
Collapse
Affiliation(s)
- Oïhana Latchere
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France.
| | - Thybaud Audroin
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| | - Jean Hétier
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| | - Isabelle Métais
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| | - Amélie Châtel
- Laboratoire Mer, Molécules, Santé (MMS EA2160), Université Catholique de L'Ouest, 3 Place André Leroy, 49100, Angers, France
| |
Collapse
|
39
|
Perspectives on Micro(Nano)Plastics in the Marine Environment: Biological and Societal Considerations. WATER 2020. [DOI: 10.3390/w12113208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marine litter is a global problem which has been negatively affecting the environment. Plastic materials are the most commonly found marine debris, with potential biological (not only for aquatic organisms but also for humans) as well as socio-economic impacts. Considering that it is an anthropogenic problem, society could play an important role to minimize it. Although a considerable amount of research has addressed the biological effects of plastics (micro(nano)plastics) on biota, few studies have addressed how scientific information is being transmitted to the public and the potential role of citizen environmental education. The current paper discusses known effects, researched topics and how scientific knowledge is currently being transmitted to the public.
Collapse
|
40
|
Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol 2020; 17:57. [PMID: 33183327 PMCID: PMC7661204 DOI: 10.1186/s12989-020-00387-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Together with poor biodegradability and insufficient recycling, the massive production and use of plastics have led to widespread environmental contamination by nano- and microplastics. These particles accumulate across ecosystems - even in the most remote habitats - and are transferred through food chains, leading to inevitable human ingestion, that adds to the highest one due to food processes and packaging. OBJECTIVE The present review aimed at providing a comprehensive overview of current knowledge regarding the effects of nano- and microplastics on intestinal homeostasis. METHODS We conducted a literature search focused on the in vivo effects of nano- and microplastics on gut epithelium and microbiota, as well as on immune response. RESULTS Numerous animal studies have shown that exposure to nano- and microplastics leads to impairments in oxidative and inflammatory intestinal balance, and disruption of the gut's epithelial permeability. Other notable effects of nano- and microplastic exposure include dysbiosis (changes in the gut microbiota) and immune cell toxicity. Moreover, microplastics contain additives, adsorb contaminants, and may promote the growth of bacterial pathogens on their surfaces: they are potential carriers of intestinal toxicants and pathogens that can potentially lead to further adverse effects. CONCLUSION Despite the scarcity of reports directly relevant to human, this review brings together a growing body of evidence showing that nano- and microplastic exposure disturbs the gut microbiota and critical intestinal functions. Such effects may promote the development of chronic immune disorders. Further investigation of this threat to human health is warranted.
Collapse
Affiliation(s)
- Nell Hirt
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France.
| |
Collapse
|
41
|
Zou W, Xia M, Jiang K, Cao Z, Zhang X, Hu X. Photo-Oxidative Degradation Mitigated the Developmental Toxicity of Polyamide Microplastics to Zebrafish Larvae by Modulating Macrophage-Triggered Proinflammatory Responses and Apoptosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13888-13898. [PMID: 33078945 DOI: 10.1021/acs.est.0c05399] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and pose substantial threats to the water ecosystem. However, the impact of natural aging of MPs on their toxicity has rarely been considered. This study found that visible light irradiation with hydrogen peroxide at environmentally relevant concentration for 90 days significantly altered the physicochemical properties and mitigated the toxicity of polyamide (PA) fragments to infantile zebrafish. The size of PA particles was reduced from ∼8.13 to ∼6.37 μm, and nanoparticles were produced with a maximum yield of 5.03%. The end amino groups were volatilized, and abundant oxygen-containing groups (e.g., hydroxyl and carboxyl) and carbon-centered free radicals were generated, improving the hydrophilicity and colloidal stability of degraded MPs. Compared with pristine PA, the depuration of degraded MPs mediated by multixenobiotics resistance was much quicker, leading to markedly lower bioaccumulation in fish and weaker inhibition on musculoskeletal development. By integrating transcriptomics and transgenic zebrafish [Tg(lyz:EGFP)] tests, differences in macrophages-triggered proinflammatory effects, apoptosis via IL-17 signaling pathway, and antioxidant damages were identified as the underlying mechanisms for the attenuated toxicity of degraded MPs. This work highlights the importance of natural degradation on the toxicity of MPs, which has great implications for risk assessment of MPs.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Mengli Xia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
42
|
Chen JC, Chen MY, Fang C, Zheng RH, Jiang YL, Zhang YS, Wang KJ, Bailey C, Segner H, Bo J. Microplastics negatively impact embryogenesis and modulate the immune response of the marine medaka Oryzias melastigma. MARINE POLLUTION BULLETIN 2020; 158:111349. [PMID: 32573451 DOI: 10.1016/j.marpolbul.2020.111349] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Microplastic (MP) pollution is an emerging contaminant in aquatic environments worldwide. Nonetheless, the developmental toxicity of MPs in the early life stages of fish and the mechanisms involved are not yet fully understood. The present study investigated the effects of different concentrations of polystyrene (PS) MPs on the early development of the marine model fish the medaka Oryzias melastigma. Our results showed that waterborne exposure to PS MPs significantly delayed the hatching time, altered the heartbeat and decreased the hatching rate of embryos. Furthermore, the genes involved in cardiac development, encoding for embryo-hatching enzymes, as well as inflammatory responses were significantly upregulated. The transcriptome results showed that mainly the pathways involved in metabolism, immune response, genetic information processing and diseases were significantly enriched. These results demonstrate that PS MPs negatively impact embryogenesis and the immune response of O. melastigma.
Collapse
Affiliation(s)
- Jin-Can Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Meng-Yun Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Rong-Hui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Yu-Lu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Yu-Sheng Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005 Xiamen, China
| | - Christyn Bailey
- Fish Immunology and Pathology Laboratory, Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361102, China.
| |
Collapse
|
43
|
Potent Impact of Plastic Nanomaterials and Micromaterials on the Food Chain and Human Health. Int J Mol Sci 2020; 21:ijms21051727. [PMID: 32138322 PMCID: PMC7084205 DOI: 10.3390/ijms21051727] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
Plastic products are inexpensive, convenient, and are have many applications in daily life. We overuse plastic-related products and ineffectively recycle plastic that is difficult to degrade. Plastic debris can be fragmented into smaller pieces by many physical and chemical processes. Plastic debris that is fragmented into microplastics or nanoplastics has unclear effects on organismal systems. Recently, this debris was shown to affect biota and to be gradually spreading through the food chain. In addition, studies have indicated that workers in plastic-related industries develop many kinds of cancer because of chronic exposure to high levels of airborne microplastics. Microplastics and nanoplastics are everywhere now, contaminating our water, air, and food chain. In this review, we introduce a classification of plastic polymers, define microplastics and nanoplastics, identify plastics that contaminate food, describe the damage and diseases caused by microplastics and nanoplastics, and the molecular and cellular mechanisms of this damage and disease as well as solutions for their amelioration. Thus, we expect to contribute to the understanding of the effects of microplastics and nanoplastics on cellular and molecular mechanisms and the ways that the uptake of microplastics and nanoplastics are potentially dangerous to our biota. After understanding the issues, we can focus on how to handle the problems caused by plastic overuse.
Collapse
|
44
|
Mohsen M, Zhang L, Sun L, Lin C, Wang Q, Yang H. Microplastic fibers transfer from the water to the internal fluid of the sea cucumber Apostichopus japonicus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113606. [PMID: 31761598 DOI: 10.1016/j.envpol.2019.113606] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) are small plastic particles less than 5 mm in diameter. MPs in the form of microfibers (MFs) are widely detected in aquatic habitats and are of high environmental concern. Despite many reports on the effects of MFs on marine animals, their effect on sea cucumbers is still unclear. In addition, our previous filed study has shown that MFs may transfer to the coelomic fluid of the sea cucumber Apostichopus japonicus (A. japonicus). Here, we show how MFs transfer to the coelomic fluid of the sea cucumber. We captured the MFs during their transfer from the water to the coelomic fluid through the respiratory tree. A. japonicus ingested in the MFs along with the water during respiration; the MFs got stuck in the respiratory tree or transferred to the coelomic fluid. The transferred MFs increased during 72 h of exposure and persisted for 72 h after the transfer to clean water. Among the immunity indices, lysozyme (LZM) levels increased in response to the transferred MFs, which confirms the defensive role of LZMs against strange substances. Additionally, non-significantly decreased levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), peroxidase (POD) and phenol oxidase (PPO) were observed at 24 h and 48 h post-exposure, suggesting minimal oxidative imbalance. Furthermore, there were no significant changes in the speed and the total distance moved by A. japonicus post MFs transfer. This study revealed that MFs transfer and accumulate in the coelomic fluid of A. japonicus.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
45
|
Alimba CG, Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:61-74. [PMID: 30877952 DOI: 10.1016/j.etap.2019.03.001] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 05/12/2023]
Abstract
The global plastics production has increased from 1.5 million tons in the 1950s to 335 million tons in 2016, with plastics discharged into virtually all components of the environment. Plastics rarely biodegrade but through different processes they fragment into microplastics and nanoplastics, which have been reported as ubiquitous pollutants in all marine environments worldwide. This study is a review of trend in marine plastic pollution with focus on the current toxicological consequences. Microplastics are capable of absorbing organic contaminants, metals and pathogens from the environment into organisms. This exacerbates its toxicological profile as they interact to induced greater toxic effects. Early studies focused on the accumulation of plastics in the marine environment, entanglement of and ingestions by marine vertebrates, with seabirds used as bioindicators. Entanglement in plastic debris increases asphyxiation through drowning, restrict feeding but increases starvation, skin abrasions and skeletal injuries. Plastic ingestion causes blockage of the guts which may cause injury of the gut lining, morbidity and mortality. Small sizes of the microplastics enhance their translocation across the gastro-intestinal membranes via endocytosis-like mechanisms and distribution into tissues and organs. While in biological systems, microplastics increase dysregulation of gene expression required for the control of oxidative stress and activating the expression of nuclear factor E2-related factor (Nrf) signaling pathway in marine vertebrates and invertebrates. These alterations are responsible for microplastics induction of oxidative stress, immunological responses, genomic instability, disruption of endocrine system, neurotoxicity, reproductive abnormities, embryotoxicity and trans-generational toxicity. It is possible that the toxicological effects of microplastics will continue beyond 2020 the timeline for its ending by world environmental groups. Considering that most countries in African and Asia (major contributors of global plastic pollutions) are yet to come to terms with the enormity of microplastic pollution. Hence, majority of countries from these regions are yet to reduce, re-use or re-circle plastic materials to enhance its abatement.
Collapse
Affiliation(s)
- Chibuisi Gideon Alimba
- Cell Biology and Genetics unit, Department of Zoology, University of Ibadan, Nigeria; Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139 Dortmund, Germany
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres 31 98166, S Agata, Messina, Italy.
| |
Collapse
|