1
|
Zhao Y, Zhu Y, Huang J, Song Z, Tang W. Influence of in situ biochar capping on microbial dynamics and ammonia nitrogen release in sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123524. [PMID: 39644550 DOI: 10.1016/j.jenvman.2024.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
To study the influence of in situ biochar (BC) capping technique on the release of ammonia nitrogen (NH4+-N) from sediments, a field mesocosm experiment was conducted in Baiyangdian Lake (BYDL), a critical water body often referred to as the "kidney of North China" where sediment pollution poses a significant threat to water quality. This study also assessed the impact of BC on sediment microorganisms. The results showed that the NH4+-N concentration in the overlying water of the BC-treated mesocosms was the lowest among four treatments, decreasing to 0.051 mg L-1 by the 60th day. More importantly, the BC treatment showed the least increase in NH4+-N concentrations in sediments compared to other treatments. For sediments capped with a 4 cm layer of BC, the potential release flux of NH4+-N was reduced from 1.84 mg m-2 d-1 to -0.76 mg m-2 d-1. This reduction is likely due to the negatively charged surfaces of biochar, which enhance NH4+-N adsorption through electrostatic interactions. Additionally, BC modified the physical and chemical properties of the surface sediment, improving pH and increasing both organic content and the carbon/nitrogen (C/N) ratio. These changes influenced the microbial community structure within the sediments, enhancing NH4+-N removal. After 60 days, a significant alteration in the microbial community was observed in the BC-treated surface sediments. The addition of BC significantly increased the abundance of Proteobacteria and Firmicutes of the phyla in the sediments. Furthermore, BC enhanced the expression of functional genes including amoA, amoB, nirK, nirS, hzsB, nrfA and ureC, which are likely the primary microbial mechanisms promoting NH4+-N conversion in sediments for final removal.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaoyao Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Enterprises Water Group Limited, Beijing, 100102, China
| | - Jianyin Huang
- Sustainable Infrastructure and Resource Management (SIRM), STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| | - Zhixin Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Yang C, Chen Y, Zhang Q, Qie X, Chen J, Che Y, Lv D, Xu X, Gao Y, Wang Z, Sun J. Mechanism of microbial regulation on methane metabolism in saline-alkali soils based on metagenomics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118771. [PMID: 37591100 DOI: 10.1016/j.jenvman.2023.118771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Saline-alkali soils constitute a globally important carbon pool that plays a critical role in soil carbon dioxide (CO2) and methane (CH4) fluxes. However, the relative importance of microorganisms in the regulation of CH4 emissions under elevated salinity remains unclear. Here, we report the composition of CH4 production and oxidation microbial communities under five different salinity levels in the Yellow River Delta, China. This study also obtained the gene number of microbial CH4 metabolism via testing the soil metagenomes, and further investigated the key soil factors to determine the regulation mechanism. Spearman correlation analysis showed that the soil electrical conductivity, salt content, and Na+, and SO42- concentrations showed significantly negative correlations with the CO2 and CH4 emission rates, while the NO2--N concentration and NO2-/NO3- ratio showed significantly positive correlations with the CO2 and CH4 emission rates. Metabolic pathway analysis showed that the mcrA gene for CH4 production was highest in low-salinity soils. By contrast, the relative abundances of the fwdA, ftr, mch, and mer genes related to the CO2 pathway increased significantly with rising salinity. Regarding CH4 oxidation processes, the relative abundances of the pmoA, mmoB, and mdh1 genes transferred from CH4 to formaldehyde decreased significantly from the control to the extreme-salinity plot. The greater abundance and rapid increase of methanotrophic bacteria compared with the lower abundance and slow increase in methanogenic archaea communities in saline-alkali soils may have increased CH4 oxidation and reduced CH4 production in this study. Only CO2 emissions positively affected CH4 emissions from low- to medium-salinity soils, while the diversities of CH4 production and oxidation jointly influenced CH4 emissions from medium- to extreme-salinity plots. Hence, future investigations will also explore more metabolic pathways for CH4 emissions from different types of saline-alkali lands and combine the key soil enzymes and regulated biotic or abiotic factors to enrich the CH4 metabolism pathway in saline-alkali soils.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yitong Chen
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xihu Qie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Jinxia Chen
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yajuan Che
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Dantong Lv
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinyu Xu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yuxuan Gao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Juan Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
3
|
Vigderovich H, Eckert W, Elvert M, Gafni A, Rubin-Blum M, Bergman O, Sivan O. Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments. Front Microbiol 2023; 14:1206414. [PMID: 37577416 PMCID: PMC10415106 DOI: 10.3389/fmicb.2023.1206414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.
Collapse
Affiliation(s)
- Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Marcus Elvert
- MARUM—Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Oded Bergman
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
Xin Q, Saborimanesh N, Greer CW, Farooqi H, Dettman HD. The effect of temperature on hydrocarbon profiles and the microbial community composition in North Saskatchewan River water during mesoscale tank tests of diluted bitumen spills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160161. [PMID: 36379338 DOI: 10.1016/j.scitotenv.2022.160161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Despite many studies of diluted bitumen (DB) behavior during spills in saltwater, limited information is available on DB behavior in fresh water. This study examined the collective weathering processes on changes of fresh DB spilled in the North Saskatchewan River water and sediment mixture in a mesoscale spill tank under average air/water temperatures of 14 °C/15 °C and 6 °C/2 °C. Temporal changes of the hydrocarbon and microbial community compositions in the water column were assessed during the two 35-day tests under intermittent wave action. The contents of total organic carbon (TOC), benzene/toluene/ethylbenzene/xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in water decreased with time during both tests. The final contents remained at higher values in warm water (15 °C) than in cold water (2 °C) after the collective weathering processes. A quick response of the main phyla, Proteobacteria and Actinobacteria, was observed, where the members of Proteobacteria enriched during both DB spills. In contrast, the members of Actinobacteria reduced with time. The microbial shifts coincided with the changes of PAHs in the waters at both temperatures. A comparison of the physical properties and chemical compositions of fresh and weathered DBs at both temperatures showed that the oil had undergone weathering that increased oil density and viscosity due to losing the light oil fraction with boiling points < 204 °C and emulsifying with water. This corresponded to losses of 19.0 wt% and 17.2 wt% of the fresh DB at 15 °C and 2 °C tests, respectively. For organic compounds in the DB with boiling points > 204 °C, there were small losses of saturates and 2- & 3-ring PAH aromatics (more during the 15 °C test than the 2 °C test), and negligible losses in the subfractions of resins and asphaltenes by the ends of the tests. <1.0 wt% of the DB was recovered from the bottom sediment, regardless of the temperature.
Collapse
Affiliation(s)
- Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Nayereh Saborimanesh
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada; McGill University, Natural Resource Sciences, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Hena Farooqi
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Heather D Dettman
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| |
Collapse
|
5
|
Wang J, Zhang Y, Ding Y, Song H, Liu T, Zhang Y, Xu W, Shi Y. Comparing the indigenous microorganism system in typical petroleum-contaminated groundwater. CHEMOSPHERE 2023; 311:137173. [PMID: 36356804 DOI: 10.1016/j.chemosphere.2022.137173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The environmental conditions at a contaminated site will impact on the indigenous microbial communities, with implications for the removal of pollutants. An analysis of the characteristics of microbial communities in petroleum-contaminated groundwater can give insights into the relationships between microbial community and environmental factors, and provide guidance about how microbes can be used to remediate and regulate petroleum-contaminated groundwater. This study focuses on two petroleum-contaminated sites in northeast China, the physico-chemical-biological changes in petroleum-contaminated groundwater were analyzed, the response relationship between hydro-chemical indicators and microbial communities was characterized, and the bioindicator that can reflect the petroleum contamination status were established for environmental monitoring and management. The results showed that Proteobacteria was the dominant bacteria in petroleum-contaminated groundwater, with a relative abundance of 42.45%-91.19%. pH, TDS, DO, NO3-, NO2-, SO42-, NH4+, Al, and Mn have significant effects on microbial community. The effect of petroleum pollutants on microbial communities is not only related to the concentration and composition of the pollutants themselves, but also could indirectly affect microbial communities by changing the content of inorganic electron acceptor components such as iron, manganese, sulfate and nitrate in groundwater, and this indirect effect is significantly greater than the direct impact of pollutants on microbial communities. In petroleum-contaminated groundwater, the dominant genera (Polaromonas, Caulobacter) and microbial metabolic functions (methanol oxidation, methylotrophy, ureolysis, and reductive biosynthesis) of the indigenous microbial community can be used as bioindicators to indicate petroleum contamination status. The higher abundance of these bioindicators in petroleum-contaminated groundwater, the more serious petroleum pollution in groundwater.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
6
|
Fang J, Deng Y, Che R, Han C, Zhong W. Bacterial community composition in soils covered by different vegetation types in the Yancheng tidal marsh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21517-21532. [PMID: 32279258 DOI: 10.1007/s11356-020-08629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Coastal wetland vegetation plays an important role in maintaining ecological function and is a key factor affecting the soil bacterial community. Spartina alterniflora was introduced to the Yancheng tidal marsh to stabilize the sediments and gradually replaced the native plants. However, the changes in the soil bacterial community profile caused by S. alterniflora invasion are poorly characterized. Here, we used MiSeq sequencing to compare the composition of the bacterial community in soil at different depths under exotic S. alterniflora (SA), native Phragmites australis (PA), and native Suaeda salsa (SS). The results showed that the pH value was lower, but the salinity, soil organic carbon, total nitrogen, and number of 16S rRNA genes were higher in SA soils than in PA and SS soils. Overall, Proteobacteria was the dominant bacterial phylum, followed by Chloroflexi, Acidobacteria, Planctomycetes, Gemmatimonadetes, and Nitrospirae. Anaerolineae in the Chloroflexi phylum showed the greatest difference based on vegetation, accounting for 14.4% of the overall bacterial community in SA soils but only about 3.8% of those in PA and SS soils. The composition, interaction, and predicted functional profiles of the bacterial community in SA soils were significantly different from those in PA and SS soils, especially for functions related to the sulfur and nitrogen cycles. Salinity was negatively correlated with the Shannon index and accounted for 37.7% of the total variation in the bacterial community, making it the most important environmental factor. Our results showed the differences in bacterial community composition among different vegetation types and soil depths in the Yancheng tidal marsh, which provides a microbial basis for a better understanding of the ecological functions in this ecosystem.
Collapse
Affiliation(s)
- Jie Fang
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Yongcui Deng
- School of Geography Science, Nanjing Normal University, Nanjing, China.
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing, China.
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Cheng Han
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Wenhui Zhong
- School of Geography Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing, China
| |
Collapse
|
7
|
McCue MD, Javal M, Clusella‐Trullas S, Le Roux JJ, Jackson MC, Ellis AG, Richardson DM, Valentine AJ, Terblanche JS. Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marshall D. McCue
- Sable Systems International Las Vegas NV USA
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Marion Javal
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Susana Clusella‐Trullas
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Biological Sciences Macquarie University NSW Australia
| | - Michelle C. Jackson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Life Sciences Imperial College London Ascot UK
- Department of Zoology Oxford University Oxford UK
| | - Allan G. Ellis
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - David M. Richardson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
8
|
Wang M, Deng B, Fu X, Sun H, Xu Z. Characterizations of microbial diversity and machine oil degrading microbes in machine oil contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113190. [PMID: 31541828 DOI: 10.1016/j.envpol.2019.113190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Microbial diversity in machine oil contaminated soil was determined by high-throughput amplicon sequencing technology. The diversity of culturable microbes in the contaminated soil was further characterized using polymerase chain reaction method. Proteobacteria and Bacteroidetes were the most dominant phyla and occupied 52.73 and 16.77%, respectively, while the most abundant genera were Methylotenera (21.62%) and Flavobacterium (3.06%) in the soil. In the culturable microbes, the major phyla were Firmicutes (46.15%) and Proteobacteria (37.36%) and the most abundant genera were Bacillus (42.86%) and Aeromonas (34.07%). Four isolated microbes with high machine oil degradation efficiency were selected to evaluate their characteristics on the oil degradation. All of them reached their highest oil degradation rate after 7 days of incubation. Most of them significantly increased their oil degradation rate by additional carbon or organic nitrogen source in the incubation medium. The oil degradation rate by combination of the four microbes at the same inoculation level was also higher than the rate from each individual microbe. The protocol and findings of this study are very useful for developing micro-bioremediation method to eliminate machine oil contaminants from soil.
Collapse
Affiliation(s)
- Mengjiao Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China; Shaanxi Provincial Engineering Research Center of Edible and Medicinal Microbes, Shaanxi University of Technology, Hanzhong, Shaanxi, China; Shaanxi Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Baiwan Deng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China; Shaanxi Provincial Engineering Research Center of Edible and Medicinal Microbes, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xun Fu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Haiyan Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China; Shaanxi Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|