1
|
Zhang C, Bai Z, Liu X, Xia D, Li X, Long J, Sun Z, Li Y, Sun Y. Co-incineration of medical waste in municipal solid waste incineration increased emission of chlorine/brominated organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173544. [PMID: 38802016 DOI: 10.1016/j.scitotenv.2024.173544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Co-incineration of medical waste (MW) in municipal solid waste incinerators (MSWIs) is a crucial disposal method for emergency disposal of MW and the management of MW in small and medium-sized towns. This study aims to analyze and compare the levels and distribution patterns of chlorine/brominated dioxins and their precursors in fly ash from MSWIs and medical waste incinerators (MWIs) while also focusing on identifying the new pollution concerns that may arise from the co-incineration of municipal solid waste (MSW) mixed with MW (MSW/MW). The concentration of chlorobenzene (CBzs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in fly ash from co-incineration of MSW/MW are 887.4, 134.4 and 27.6 μg/kg, respectively, which are 5.1, 2.0 and 2.9 times higher than that from MSWIs. The levels of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) are about three orders of magnitude lower than that of PCDD/Fs. For the fly ash from MSWIs, the predominant PCDD/Fs congener is OCDD, which prefers synthesis and adsorption on fine-grained fly ash. For fly ash from MWIs, the major PCDD/Fs congeners are 1, 2, 3, 4, 6,7, 8-HpCDF, and OCDF, which prefer synthesis and adsorption on coarse-grained fly ash. Correlation analysis exhibited that both 1,2,3-TriCBz and 1,2,4-TriCBz in fly ash have a markedly linear correlation with PCDD/Fs and PCBs, but PBDD/Fs shows a poor negative correlation with PCDD/Fs.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Ziang Bai
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xingshuang Liu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Dan Xia
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Jisheng Long
- Shanghai SUS Environment Co., LTD., Shanghai 201703, PR China
| | - Zhongtao Sun
- Shanghai SUS Environment Co., LTD., Shanghai 201703, PR China
| | - Yaojian Li
- Headquarters, China Tianying Inc., Jiangsu 226600, PR China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Nguyen TTT, Vuong XT, Tu MB, Trinh MH, Hoang AQ. Insights into Full-congener Profiles of Chlorinated Benzenes in Fly and Bottom Ash: Case Study in Vietnamese Industrial and Municipal Waste Incinerators. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:46. [PMID: 38459996 DOI: 10.1007/s00128-024-03874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Chlorinated benzenes (CBzs) are a group of organic pollutants, which have been industrially or unintentionally produced through various chemical and thermal processes. Studies on full congener profiles of CBzs in waste and environmental samples are relatively limited and not updated. In the present study, concentrations of 12 CBzs were determined in fly ash (FA) and bottom ash (BA) samples collected from one municipal waste incinerator (MWI) and one industrial waste incinerator (IWI) in northern Vietnam. Levels of Σ12CBzs were higher in bottom ash (median 25.3; range 1.59-45.7 ng/g) than in fly ash (median 7.30; range 1.04-30.0 ng/g). The CBz profiles were dominated by di- and tri-chlorinated congeners with the major congeners as 1,2,4-TCB, 1,2,3-TCB, 1,2-DCB, and 1,3-DCB. However, CBz profiles varied greatly between sample types and incinerators, implying differences in input materials, formation pathways, and pollutant behaviors. Incomplete combustion is possibly responsible for high levels of CBzs in industrial bottom ash. The emission factors of Σ12CBzs ranged from 21 to 600 µg/ton for fly ash and from 190 to 4570 µg/ton for bottom ash, resulting in annual emissions of about 6 and 3 g/year for the IWI and MWI, respectively. Our results suggest additional investigations on industrial emission and environmental occurrence of all 12 CBzs rather than solely focusing on regulated congeners like hexachlorobenzene and pentachlorobenzene.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Xuan Truong Vuong
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Minh Binh Tu
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Minh Hai Trinh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam.
| |
Collapse
|
3
|
The Separation of Chlorobenzene Compounds from Environmental Water Using a Magnetic Molecularly Imprinted Chitosan Membrane. Polymers (Basel) 2022; 14:polym14153221. [PMID: 35956733 PMCID: PMC9371115 DOI: 10.3390/polym14153221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, a magnetic molecularly imprinted chitosan membrane (MMICM) was synthesized for the extraction of chlorobenzene compounds in environmental water using the membrane separation method. The optimal extraction amount for chlorobenzene (9.64 mg·L−1) was found to be a 1:2 solid to liquid ratio, with a 20 min extraction time and 35 °C extraction temperature. This method proved to be successfully applied for the separation and trace quantification of chlorobenzene compounds in environmental water, with the limit of detection (LOD) (0.0016–0.057 ng·L−1), limit of quantification (LOQ) (0.0026–0.098 ng·L−1), and the recoveries ranging (89.02–106.97%).
Collapse
|
4
|
Hoang AQ, Suzuki G, Michinaka C, Tue NM, Tuyen LH, Tu MB, Takahashi S. Characterization of unsubstituted and methylated polycyclic aromatic hydrocarbons in settled dust: Combination of instrumental analysis and in vitro reporter gene assays and implications for cancer risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147821. [PMID: 34029822 DOI: 10.1016/j.scitotenv.2021.147821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of 34 unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) and AhR-mediated activities in settled dust samples were determined by a combination of gas chromatography-mass spectrometry and an in vitro reporter gene assay (PAH-CALUX). The levels of Σ34PAHs and bioassay-derived benzo[a]pyrene equivalents (CALUX BaP-EQs) were significantly higher in workplace dust from informal end-of-life vehicle dismantling workshops than in common house dust and road dust. In all the samples, the theoretical BaP-EQs of PAHs (calculated using PAH-CALUX relative potencies) accounted for 28 ± 19% of the CALUX BaP-EQs, suggesting significant contribution of aryl hydrocarbon receptor (AhR) agonists and/or mixture effects. Interestingly, the bioassay-derived BaP-EQs in these samples were significantly correlated with not only unsubstituted PAHs with known carcinogenic potencies but also many Me-PAHs, which should be included in future monitoring and toxicity tests. The bioassay responses of many sample extracts were substantially reduced but not suppressed with sulfuric acid treatment, indicating contribution of persistent AhR agonists. Cancer risk assessment based on the CALUX BaP-EQs has revealed unacceptable level of risk in many cases. The application of bioassay-derived BaP-EQs may reduce underestimation in environmental management and risk evaluation regarding PAHs and their derivatives (notably Me-PAHs), suggesting a consideration of using in vitro toxic activity instead of conventional chemical-specific approach in such assessment practices.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Chieko Michinaka
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Le Huu Tuyen
- Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
5
|
Ji R, Wu Y, Bian Y, Song Y, Sun Q, Jiang X, Zhang L, Han J, Cheng H. Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124785. [PMID: 33348203 DOI: 10.1016/j.jhazmat.2020.124785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen-doped porous biochar (NPB) with a large specific surface area, wide pore size distribution, graphitized structure, nitrogen doping, and hydrophobicity was fabricated by high-temperature modification of algal biochar with potassium carbonate. This NPB was then uniformly coated on stainless steel wire as a novel solid-phase microextraction (SPME) fiber. The extraction efficiency of NPB-coated fiber for seven chlorobenzenes (CBs) was excellent; it was 1.0-112.2 times higher than that of commercial SPME fibers. A trace determination method was developed for seven CBs in water with the optimized extraction conditions by NPB-coated fiber and gas chromatography-electron capture detector, which showed wide linear ranges (1-1000 ng L-1), low detection limits (0.007-0.079 ng L-1), great repeatability (2.5-6.5% for intra-day, and 3.1-6.8% for inter-day), and excellent reproducibility (3.5-6.3%, n = 5). The practicality of the developed method was evaluated using real water samples and showed great recoveries (89.55-105.19%). This study showed that low-cost biomass wastes could be converted to advanced biochar materials by a facile method, and displayed excellent performance in SPME applications.
Collapse
Affiliation(s)
- Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yarui Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| |
Collapse
|
6
|
Nguyen TTT, Hoang AQ, Nguyen VD, Nguyen HT, Van Vu T, Vuong XT, Tu MB. Concentrations, profiles, emission inventory, and risk assessment of chlorinated benzenes in bottom ash and fly ash of municipal and medical waste incinerators in northern Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13340-13351. [PMID: 33184790 DOI: 10.1007/s11356-020-11385-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Concentrations and congener profiles of seven di- to hexachlorinated benzenes (CBzs) were characterized in bottom ash and fly ash samples collected simultaneously from one medical waste incinerator (MEWI) and one municipal waste incinerator (MUWI) in northern Vietnam. Total concentrations of seven CBzs in the fly ash samples ranged from 6.98 to 34.4 (median 19.1) ng g-1 in the MEWI, and ranged from 59.1 to 391 (median 197) ng g-1 in the MUWI. Concentrations of CBzs in the bottom ash samples of the MEWI (median 1.95; range 1.53-5.98 ng g-1) were also lower than those measured in the MUWI samples (median 17.4; range 14.5-42.6 ng g-1). Levels of CBzs in the fly ash samples were significantly higher than concentrations measured in the bottom ash samples, partially indicating the low-temperature catalytic formation of these pollutants in post-combustion zone. In general, higher chlorinated congeners (e.g., hexachlorobenzene, pentachlorobenzene, and 1,2,4,5-tetrachlorobenzene) were more abundant than lower chlorinated compounds. However, compositional profiles of CBzs were different between the ash types and incinerators and even between the same sample types of different sampling days, suggesting that the formation of CBzs in these incinerators is complicated and influenced by many factors. Emission factors and annual emission amounts of CBzs were estimated for the two incinerators by using actually measured data of CBz concentrations in the ash. Daily intake doses and cancer risks of ash-bound CBzs estimated for workers in the two incinerators were generally lower than critical values, but cancer risks caused by other relevant pollutants (e.g., polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and dioxin-related compounds) were not considered.
Collapse
Affiliation(s)
- Thu Thuy Thi Nguyen
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam.
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Vinh Dinh Nguyen
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Hue Thi Nguyen
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
- University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Tu Van Vu
- Institute of Environmental Technology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Xuan Truong Vuong
- Faculty of Chemistry, TNU University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam.
| |
Collapse
|
7
|
Zhou X, Zhou Y, Liu J, Song S, Sun J, Zhu G, Gong H, Wang L, Wu C, Li M. Study on the pollution characteristics and emission factors of PCDD/Fs from disperse dye production in China. CHEMOSPHERE 2019; 228:328-334. [PMID: 31039539 DOI: 10.1016/j.chemosphere.2019.04.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
According to an analysis of the input and output of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) of two disperse dye manufacturers, the average PCDD/F emission factor was 56.3 μg I-TEQ/T product, and dioxin was mainly emitted with products and solid waste. The PCDD/F concentrations of different series of disperse dyes varied from 2.87 to 323 pg I-TEQ/g, and the dominant congener was OCDD or 2,3,7,8-TCDF with the highest ratio of 83.4% or 79.3%, respectively. The distributions of PCDD/F congeners in raw materials and the products were different, indicating that the structure of PCDD/Fs greatly changed in the synthesis process. PCDD/Fs in the wastewater and sludge of the companies are mainly from the production process of a product with dominant emission factors. Our results confirm that disperse dyes may be a source of PCDD/Fs, resulting in human exposure and environmental contamination.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Yanxiao Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinsong Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China.
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjun Sun
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Guohua Zhu
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Hongping Gong
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Ling Wang
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Chenwang Wu
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| | - Mufei Li
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, China
| |
Collapse
|
8
|
Pham MTN, Hoang AQ, Nghiem XT, Tu BM, Dao TN, Vu DN. Residue concentrations and profiles of PCDD/Fs in ash samples from multiple thermal industrial processes in Vietnam: Formation, emission levels, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17719-17730. [PMID: 31030397 DOI: 10.1007/s11356-019-05015-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The residue concentrations and congener profiles of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) were examined in fly ash and bottom ash released from different thermal industrial processes in Vietnam. PCDD/F concentrations and toxic equivalents (TEQs) in the ash samples varied greatly and decreased in the following order: steel making > aluminum recycling > medical waste incinerator > boilers > municipal waste incinerator > tin production > brick production > coal-fired power plant. Both the precursor and de novo synthesis were estimated as possible formation mechanisms of dioxins in the ash, but the latter pathway was more prevalent. The highest emission factors were estimated for the ash released from some steel-making plants, aluminum-recycling facilities, and a medical waste incinerator. The emission factors of PCDD/Fs in ash released from some steel plants of this study were two to six times higher than the UNEP Toolkit default value. The annual emission amount of ash-bound dioxins produced by 15 facilities in our study was estimated to be 26.2 to 28.4 g TEQ year-1, which mainly contributed by 3 steel plants. Health risk related to the dioxin-containing ash was evaluated for workers at the studied facilities, indicating acceptable risk levels for almost all individuals. More comprehensive studies on the occurrence and impacts of dioxins in waste streams from incineration and industrial processes and receiving environments should be conducted, in order to promote effective waste management and health protection scheme for dioxins and related compounds in this rapidly industrializing country.
Collapse
Affiliation(s)
- Mai Thi Ngoc Pham
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam.
| | - Anh Quoc Hoang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam.
- Center of Advanced Technology for the Environment (CATE), The United Graduate School of Agricultural Sciences (UGAS), Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
| | - Xuan Truong Nghiem
- Vietnam-Russia Tropical Center, Ministry of National Defence, Nguyen Van Huyen, Cau Giay, Hanoi, Vietnam
| | - Binh Minh Tu
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Thi Nhung Dao
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Duc Nam Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|