1
|
Cheraghalikhani M, Niroumand H, Balachowski L. Micro- and nano-Illite to improve strength of untreated-soil as a nano soil-improvement (NSI) technique. Sci Rep 2024; 14:10862. [PMID: 38740896 DOI: 10.1038/s41598-024-61812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Soil stabilization is a technique of improving the geotechnical properties of soils for various engineering applications. However, conventional stabilizers such as cement and lime have some limitations, such as high cost, environmental impact, and durability issues. Therefore, there is a need for alternative and innovative stabilizers that can overcome these challenges. This study introduces nano-Illite, a type of clay mineral, as a novel and effective soil stabilizer. Nano-Illite can form nano-cementation (NC) in soil, which is a process of enhancing the durability of various building materials. NC is also known as nano soil-improvement (NSI), a technique that has been developed in recent years. Four formulations of micro- and nano-Illite with concentrations of 0, 1, 2, and 3% were separately added to soil samples. The unconfined compressive strength (UCS) and the secant modulus at 50% of peak stress (E50) of the treated samples were measured and compared with the untreated samples. The results showed that 3% nano-Illite increased the UCS of soil by more than 2.2 times and the E50 by more than 1.5 times after 7 days of curing. Micro-Illite also improved the UCS and E50 of soil, but to a lesser extent. X-ray fluorescence (XRF), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses revealed the micro- and nano-structures of the soil specimens and the performance of Illite as a nano-additive. This research demonstrates the effectiveness of nano-Illite in soil improvement as a NSI technique, and its potential to replace or reduce the use of conventional stabilizers. This study also contributes to the understanding of the mechanisms and factors that influence the NC process in soil.
Collapse
Affiliation(s)
- Mohadeseh Cheraghalikhani
- Department of Civil Engineering, Faculty of Engineering, Buein Zahra Technical University, Qazvin, Iran
| | - Hamed Niroumand
- Department of Civil Engineering, Faculty of Engineering, Buein Zahra Technical University, Qazvin, Iran.
- Department of Geotechnical and Hydraulic Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdańsk, Poland.
| | - Lech Balachowski
- Department of Geotechnical and Hydraulic Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
2
|
De A, Mishra S. Synthesis of fenugreek gum-based metal-organic framework (FG/Zr-AIPA MOF) composite beads for sequestration of heavy metal ions from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32571-32587. [PMID: 38656722 DOI: 10.1007/s11356-024-33315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Metal-organic frameworks (MOFs) are a prominent class of materials due to their large surface area and customized structures. This gives them specificity and high adsorption capacity while they lack mechanical strength and reusability. Integrating MOFs with polysaccharide matrix may retain MOF characteristics along with imparting structural integrity. In the present study, zirconium MOF-based fenugreek composite (FG/Zr-AIPA) beads were synthesised by a single droplet method and utilised for removal of Cr(VI), Pb(II) and Fe(III) from aqueous solution. The structure, morphology and composition of beads were evaluated by FTIR, XRD, TGA, BET, FESEM, EDX, XPS and zeta potential analysis. Adsorption isotherm, kinetics and thermodynamics were studied for Cr(VI), Pb(II) and Fe(III) adsorption. Adsorption kinetics and isotherm study revealed that all the metal ions were adsorbed through a monolayer chemisorption process. The maximum adsorption capacity was 344.43, 270.02 and 223.21 mg g-1 for Cr(VI), Pb(II) and Fe(III), respectively, based on the Langmuir isotherm study. The thermodynamics study revealed that the interaction between the metal ions and the composite beads was spontaneous and endothermic. The FG/Zr-AIPA composite beads exhibited good reusability for the removal of Cr(VI), Pb(II) and Fe(III). The results open new possibilities for the preparation of polysaccharide MOF-based composite beads which exhibit substantial potential for water treatment applications.
Collapse
Affiliation(s)
- Asmita De
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
3
|
Pei K, Liu T. Enhanced Cr (VI) removal with Pb (II) presence by Fe 2+-activated persulfate and zero-valent iron system. ENVIRONMENTAL TECHNOLOGY 2023; 44:2215-2229. [PMID: 34986747 DOI: 10.1080/09593330.2022.2026483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/18/2021] [Indexed: 06/04/2023]
Abstract
Combined heavy metals such as chromium (Cr (VI)) and lead (Pb (II)) in natural water have globally posed severe environmental and public health risk. Here the removal of Cr (VI) and Pb (II) mixed pollutants using Fe2+-activated persulfate (PS) with extra zero-valent iron (ZVI), which was not only a supplementary Fe2+ source, but also a high-efficiency absorbent, was investigated. During removal, pivotal factors of initial pollutant concentration, dosages of ZVI and PS, initial pH and temperatures were examined. Interestingly, generating a lot of H+ in the process of Fe (II) activating persulfate were helpful to the corrosion of ZVI over a large range of pH (1-9). Under the optimum condition, removal efficiency of Pb (II) and Cr (VI) have reached 100% and 94.26% respectively. The removal mechanism was suggested as a three-step reaction that the Pb (II) boosted the removal of Cr (VI) by co-precipitated in wastewater, and the Pb (II) and Cr (VI) were adsorbed and subsequently reduced to Pb0 and Cr3+ as Cr(OH)3 or Cr3+-Fe3+ hydroxides on ZVI surface. Cr (VI) and Pb (II) adsorption kinetics agreed with the pseudo-second-order reaction rate expression. In addition, we were surprised to found that the contribution effect of chromium and lead co-precipitation for their removal by Fe (II) - PS-ZVI has strong dependence on initial pH and concentration ratio of Cr (VI) and Pb (II). The result indicated that Fe (II)-PS-ZVI system should be a favourable removal technology for Cr (VI) and Pb (II).
Collapse
Affiliation(s)
- Kaijie Pei
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, People's Republic of China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Huang G, Wu H, Liu Z, Hu H, Guo S. Study on the Adsorption Behavior of Polymeric Dispersants to S-ZnF Particles during Grinding Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1287. [PMID: 36770300 PMCID: PMC9920609 DOI: 10.3390/ma16031287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Three sodium polyacrylate copolymers PD0x (Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate or PD01; Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD02 and Poly methyl methacrylate-co-acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD03) were synthesized as water-based dispersants for grinding red-brown pigment ZnFe1.2Cr0.8O4 particles prepared by the solid phase method (S-ZnF). The particle size distribution, viscosity of suspensions, and adsorption capacity of dispersants were explored by laser particle size analysis, viscometer, and thermogravimetry (TG), respectively. The application of 2 wt.% dispersant PD02 in the S-ZnF suspension ground for 90 min can deliver a finer product with the narrower particle size distribution. The added dispersant PD02 in the grinding process of the S-ZnF particles exhibits a suitable viscosity of the suspension and generates more hydrogen bonds on the S-ZnF particle surface. The sulfonic acid groups (SO3-) and carboxylic acid groups (-COO-) in the dispersant PD02 can also provide a strong charge density, which is favorable for the dispersion and grinding of the S-ZnF particles in the suspensions. Furthermore, the adsorption behavior of polymeric dispersant PD02 adsorbed on the S-ZnF particles surface was simulated and analyzed by adsorption thermodynamic models and adsorption kinetic models. It is indicated that the adsorption thermodynamic behavior of dispersant PD02 adsorbed on the S-ZnF particles surface follows the Langmuir model, and the adsorption process is endothermic and a random process with increased confusion during the grinding process. In addition, the adsorption kinetics of dispersant PD02 adsorbed on the S-ZnF particles surface are more in line with the pseudo-first-order kinetic models. Therefore, the adsorption process of dispersant PD02 on the S-ZnF particles surface can be considered as a single-surface adsorption process.
Collapse
Affiliation(s)
- Guanghua Huang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Haohan Wu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Zhijun Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| |
Collapse
|
5
|
Lu Y, Lin H, Zhang Y, Dong Y. Highly efficient preferential adsorption of Pb(II) and Cd(II) from aqueous solution using sodium lignosulfonate modified illite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26191-26207. [PMID: 36355240 DOI: 10.1007/s11356-022-23807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, sodium lignosulfonate modified illite (LS-ILT), an environmentally friendly adsorbent, was prepared by hydrothermal modification. An extensive study of Pb(II) and Cd(II) adsorption behavior and the mechanisms were conducted by evaluating the effects of initial pH value, sorbents dosage, and initial concentration of Pb(II) and Cd(II). Results showed that the adsorption characteristics of Pb(II) and Cd(II) by LS-ILT were well described by quasi-second-order kinetics and the Freundlich model, and the maximum adsorption capacity of Pb(II) and Cd(II) was 42.3 mg/g and 17.0 mg/g, respectively. The optimal application conditions for adsorption equilibrium were the dosage of 4 g/L and reaction pH = 5.5-5.8. The adsorption stability of Pb(II) by LS-ILT was better than that of Cd(II), and most of the existence of coexisting cations had no obvious inhibitory effect on the removal of Pb(II) and Cd(II). Furthermore, the dynamic adsorption results showed that LS-ILT can meet the ultra-low emission standard, and the adsorption capacity could maintain over 50% after four cycles, further providing certain guiding significance for the treatment of wastewater with ultra-low concentrations of heavy metals Pb(II) and Cd(II).
Collapse
Affiliation(s)
- Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Ye Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
6
|
Peng W, Cui Z, Fu H, Cao H, Chen M, Zhang D, Luo W, Ren S. Grafting of R 4N +-Bearing Organosilane on Kaolinite, Montmorillonite, and Zeolite for Simultaneous Adsorption of Ammonium and Nitrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12562. [PMID: 36231863 PMCID: PMC9566248 DOI: 10.3390/ijerph191912562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Modification of aluminosilicate minerals using a R4N+-bearing organic modifier, through the formation of covalent bonds, is an applicable way to eliminate the modifier release and to maintain the ability to remove cationic pollutants. In this study, trimethyl [3-(trimethoxysilyl) propyl] ammonium chloride (TM) and/or dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMO) were used to graft three aluminosilicate minerals, including calcined kaolinite (Kaol), montmorillonite (Mt), and zeolite (Zeol), and the obtained composites were deployed to assess their performance in regard to ammonium (NH4+) and nitrate (NO3-) adsorption. Grafting of TM and/or DMO had little influence on the crystal structures of Kaol and Zeol, but it increased the interlayer distance of Mt due to the intercalation. Compared to Kaol and Zeol, Mt had a substantially greater grafting concentration of organosilane. For Mt, the highest amount of loaded organosilane was observed when TM and DMO were used simultaneously, whereas for Kaol and Zeol, this occurred when only DMO was employed. 29Si-NMR spectra revealed that TM and/or DMO were covalently bonded on Mt. As opposed to NO3-, the amount of adsorbed NH4+ was reduced after TM and/or DMO grafting while having little effect on the adsorption rate. For the grafted Kaol and Zeol, the adsorption of NH4+ and NO3- was non-interfering. This is different from the grafted Mt where NH4+ uptake was aided by the presence of NO3-. The higher concentration of DMO accounted for the larger NO3- uptake, which was accompanied by improved affinity. The results provide a reference for grafting aluminosilicate minerals and designing efficient adsorbents for the co-adsorption of NH4+ and NO3-.
Collapse
Affiliation(s)
- Wang Peng
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhanpeng Cui
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hongyan Fu
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hongkai Cao
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Ming Chen
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Dachao Zhang
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Ganzhou Technology Innovation Center for Mine Ecology Remediation, Ganzhou 341000, China
| | - Wuhui Luo
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Ganzhou Technology Innovation Center for Mine Ecology Remediation, Ganzhou 341000, China
| | - Sili Ren
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
7
|
Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. WATER 2022. [DOI: 10.3390/w14142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study focuses on the adsorption of Pb(II) by the H-form of titanosilicates (ETS-4, GTS-1) and clinoptilolite. The H-forms were prepared by first exchanging the extra-framework cations—Na+, K+, Ca2+, etc.—with NH4+, and by subsequent thermal treatment for obtaining H-forms. The purity and thermal behaviour of the initial, NH4+, and H-forms of ETS-4, GTS-1, and clinoptilolite were analysed by powder XRD, while the morphology and size of the particles were determined by SEM. The chemical composition of the solids and the solutions was obtained by WDXRF and ICP-OES, respectively. The kinetics research of the Pb(II) adsorption processes was based on WDXRF and ICP-OES. The H-forms of the materials displayed favourable properties for the adsorption of Pb(II). The best behaviour in this respect was demonstrated by GTS-1 when compared to ETS-4 and clinoptilolite.
Collapse
|
8
|
Xia Y, Li Y, Xu Y. Adsorption of Pb(II) and Cr(VI) from Aqueous Solution by Synthetic Allophane Suspension: Isotherm, Kinetics, and Mechanisms. TOXICS 2022; 10:291. [PMID: 35736900 PMCID: PMC9230429 DOI: 10.3390/toxics10060291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023]
Abstract
The adsorption of heavy metals on allophane has been extensively studied due to the properties of allophane special. However, the difference in adsorption behaviors and mechanisms of a metal cation and metal anion on allophane remains uncertain. The present study aimed to investigate the removal of Pb(II) and Cr(VI) onto synthetic allophane under variable pH, initial Pb(II) and Cr(VI) concentrations, and contact time. The results showed that the maximum adsorption capacity of allophane for Pb(II) and Cr(VI) was 88 and 8 mg/g, respectively. Equilibrium adsorption for Pb(II) was achieved in <2 min, but it took >12 h for Cr(VI). The response to changes in pH indicated the occurrence of electrostatic adsorption occurred during Cr(VI) absorption. XPS analysis suggested that reactions between predominant surface functional groups of allophane (Al-O- and Si-O-) and Pb(II) occurred through the formation of P-O bonds. The uptake mechanism of Pb(II) was based on a chemical reaction rather than a physical adsorption process. Synthetic allophane holds great potential to effectively remove aqueous metal ions for special wastewater treatment applications.
Collapse
Affiliation(s)
- Yan Xia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China;
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Yang Li
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
9
|
Teymourian T, Alavi Moghaddam MR, Kowsari E. Performance of novel GO-Gly/HNTs and GO-GG/HNTs nanocomposites for removal of Pb(II) from water: optimization based on the RSM-CCD model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9124-9141. [PMID: 34494195 DOI: 10.1007/s11356-021-16297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
For the first time, in this study, two novel glycogen-graphene oxide/halloysite nanotubes (GO-Gly/HNTs) and guar gum-graphene oxide/halloysite nanotubes (GO-GG/HNTs) nanocomposites were synthesized as the adsorbents for removal of Pb(II) from water, and the ionic liquid was used in the synthesis as a green solvent. According to the SEM, TEM, EDS, BET, zeta potential, FTIR, and XRD results, GO-Gly/HNTs and GO-GG/HNTs were synthesized successfully. Response surface methodology (RSM) was applied to optimize the experimental conditions. Nanocomposites followed the Langmuir equilibrium model and were best fitted to the pseudo-second-order model. According to the thermodynamic model, the adsorption process was endothermic. Due to several features, these two novel nanocomposites can be considered the proper candidate for Pb(II) removal from water and wastewater. First, these nanocomposites have good adsorption capacity for Pb(II) removal, which is 219 mg/g for GO-Gly/HNTs and 315 mg/g for GO-GG/HNTs. Moreover, nanocomposites can be recycled with proper adsorption capacity after four repeated cycles. These materials can be used to remove Pb(II) from water in the presence of other contaminants because nanocomposites have selective tendency toward Pb(II) in the presence of other pollutants such as Cd2+, Cu2+, Cr2+, and Co2+. In addition, the presence of Ca2+, Mg2+, Na+, and K+ improve Pb(II) removal. Finally, possible mechanisms for each nanocomposite were represented.
Collapse
Affiliation(s)
- Targol Teymourian
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St, Tehran, 15875-4413, Iran
| | - Mohammad Reza Alavi Moghaddam
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St, Tehran, 15875-4413, Iran.
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St, Tehran, 15875-4413, Iran
| |
Collapse
|
10
|
Eltaweil AS, El-Monaem EMA, Mohy-Eldin MS, Omer AM. Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions. Sci Rep 2021; 11:16598. [PMID: 34400760 PMCID: PMC8368087 DOI: 10.1038/s41598-021-96145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient composite was constructed based on aminated chitosan (NH2Cs), attapulgite (ATP) clay and magnetic Fe3O4 for adsorptive removal of Cr(VI) ions. The as-fabricated ATP@Fe3O4-NH2Cs composite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Zeta potential (ZP), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller method (BET) and X-ray photoelectron spectroscope (XPS). A significant improve in the adsorption profile was established at pH 2 in the order of ATP@Fe3O4-NH2Cs(1:3) > ATP@Fe3O4-NH2Cs(1:1) > ATP@Fe3O4-NH2Cs(3:1) > Fe3O4-NH2Cs > ATP. The maximum removal (%) of Cr(VI) exceeded 94% within a short equilibrium time of 60 min. The adsorption process obeyed the pseudo 2nd order and followed the Langmuir isotherm model with a maximum monolayer adsorption capacity of 294.12 mg/g. In addition, thermodynamics studies elucidated that the adsorption process was spontaneous, randomness and endothermic process. Interestingly, the developed adsorbent retained respectable adsorption properties with acceptable removal efficiency exceeded 58% after ten sequential cycles of reuse. Besides, the results hypothesize that the adsorption process occurs via electrostatic interactions, reduction of Cr(VI) to Cr(III) and ion-exchanging. These findings substantiate that the ATP@Fe3O4-NH2Cs composite could be effectively applied as a reusable adsorbent for removing of Cr(VI) ions from aqueous solutions.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
11
|
|
12
|
Cheng J, Leng Y, Gu R, Yang G, Wang Y, Tuo X. Adsorption of uranium(VI) from groundwater by amino-functionalized clay. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07617-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Efficient removal of Cr (VI) from aqueous solution by halloysite/poly(amidoamine) dendritic nano-hybrid materials: kinetic, isotherm and thermodynamic studies. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Li Z, Pan Z, Wang Y. Preparation of ternary amino-functionalized magnetic nano-sized illite-smectite clay for adsorption of Pb(II) ions in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11683-11696. [PMID: 31975003 DOI: 10.1007/s11356-020-07766-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Ternary amino-functionalized magnetic illite-smectite (AMNI/S) nanocomposites were prepared via integrating two-dimensional illite-smectite nanoflakes (NI/S), magnetite nanoparticles (Fe3O4), and 3-aminopropyltriethoxysilane (APTES). The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). The results show that Fe3O4 nanoparticles can be well dispersed on NI/S flakes and the hydrolyzed APTES molecules can simultaneously bond to the hydroxyl groups of Fe3O4 and NI/S. Due to the synergetic effect, magnetic NI/S composite can graft more amount of APTES molecules rather than Fe3O4 nanoparticles or NI/S alone. When the mass ratio of NI/S:Fe3O4 is 1:1, the saturation magnetization of AMNI/S-1 is 17.4 emu/g, facilitating the efficient magnetic separation in aqueous solution. Also, AMNI/S-1 shows a maximal adsorption amount of Pb(II) ions of 227.8 mg/g calculated by the Langmuir model. The effects of initial concentration of Pb(II) ions, pH value, adsorption time, and temperature on the adsorption amount of Pb(II) ions were investigated. The adsorption kinetic models and isotherm models were applied to analyze the adsorption of Pb(II) ions, respectively. The thermodynamic analysis reveals that the adsorption of Pb(II) onto AMNI/S-1 is spontaneous and endothermic in nature. The mechanism for the adsorption of Pb(II) ions onto AMNI/S-1 is due to the surface complexation of Fe3O4 and NI/S, and the chelation of amine groups (-NH2). AMNI/S-1 can be efficiently reused and the regenerated AMNI/S-1 remains 82.91% of initial adsorption capacity after 6-cycle adsorption/desorption process. Thus, ternary AMNI/S-1 could be used as a prospective effective adsorbent.
Collapse
Affiliation(s)
- Zhenyuan Li
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhidong Pan
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yanmin Wang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
15
|
Zhou S, Gao J, Wang S, Fan H, Huang J, Liu Y. Highly efficient removal of Cr(VI) from water based on graphene oxide incorporated flower-like MoS 2 nanocomposite prepared in situ hydrothermal synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13882-13894. [PMID: 32036519 DOI: 10.1007/s11356-020-07978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
An efficient adsorbent for the treatment of Cr(VI) was simply fabricated by combining graphene oxide with MoS2 nanosheets via in situ hydrothermal process with CTAB as the surfactant. The experimental results indicated that the agglomeration of the MoS2 nanosheets are reduced and uniformly grown on the graphene sheet during the in situ hydrothermal process, and the introduction of graphene oxide provided higher specific surface area and abundant oxygenic groups. Based on this, the removal efficiency of Cr(VI) onto MoS2/rGO was 75.9% at pH 2.0, which was higher than that of bulk MoS2 (61.0%). On account of Sips adsorption isotherm model, the highest uptake capacity of MoS2/rGO toward Cr(VI) reached 80.8 mg g-1. The adsorption kinetic consequences showed that the chemisorption process was the control step, and the removal mechanism for Cr(VI) is redox and adsorption; in this way, the adsorbed Cr(VI) was partially reduced to Cr(III). Furthermore, this as-prepared adsorbent also presented satisfying reusability for removal of Cr(VI) and can be used for the selective removal of Cr(VI) in the presence of NO3-. In short, it may provide a potential route to enhance the adsorption property of MoS2 toward heavy metals through incorporating with GO, which would expand the applications of MoS2 in the field of treatment of the heavy metal wastewater.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Shanxi Province Key Laboratory of Functional Nanocomposites, Shanxi Province School of Materials Science and Engineering, Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Jingjing Gao
- Shanxi Province Key Laboratory of Functional Nanocomposites, Shanxi Province School of Materials Science and Engineering, Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Shuzhan Wang
- Shanxi Province Key Laboratory of Functional Nanocomposites, Shanxi Province School of Materials Science and Engineering, Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Honglei Fan
- Shanxi Province Key Laboratory of Functional Nanocomposites, Shanxi Province School of Materials Science and Engineering, Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaqing Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites, Shanxi Province School of Materials Science and Engineering, Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
16
|
Su Y, Wang J, Li S, Zhu J, Liu W, Zhang Z. Self-templated microwave-assisted hydrothermal synthesis of two-dimensional holey hydroxyapatite nanosheets for efficient heavy metal removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30076-30086. [PMID: 31418146 DOI: 10.1007/s11356-019-06160-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Heavy metals have caused serious environmental problems and threat to human health. Ultrathin and holey two-dimensional (2D) nanosheets have recently drawn significant attention as superb adsorbent material to remove heavy metal ions due to their unique physicochemical properties. Herein, we report a self-template-directed ultrafast reaction route to synthesis porous hydroxyapatite (Ca10(PO4)6(OH)2) nanosheets via a microwave-assisted hydrothermal method using poly(allylamine hydrochloride) as an additive. The resulting hydroxyapatite nanosheets showed a high specific surface area (92.9 m2 g-1) and excellent adsorption performance for various heavy metal ions including Pb(II), Cu(II), and Cd(II), with maximum adsorption capacities of 210.5, 31.6, and 24.9 mg g-1, respectively. The adsorption kinetics fitted well with the pseudo-second-order equation and the equilibrium data showed a high correlation coefficient with the Langmuir model. Based on the experimental results and analysis, we can conclude that the sorption of heavy metal ions with the hydroxyapatite nanosheets mainly attributes to surface complexation and cation exchange. The present synthetic strategy allows the fast and massive production of porous hydroxyapatite ultrathin nanosheets and may also potentially be applicable to the fabrication of other metal phosphates with assembled or hierarchical porous structures towards various applications such as water purification.
Collapse
Affiliation(s)
- Yiping Su
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Beijing Key Lab of New Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Shun Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Jianhua Zhu
- Anhui Province Key Laboratory of Metallurgical Emission Reduction and Resources, Metallurgical Reduction and Comprehensive Utilization of Resources of Key Laboratory of Ministry of Education, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Weishu Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
17
|
Removal of Pb(II) from Acid Mine Drainage with Bentonite-Steel Slag Composite Particles. SUSTAINABILITY 2019. [DOI: 10.3390/su11164476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abandoned lead and zinc (Pb-Zn) mines around the world produce large amounts of acid mine drainage (AMD) containing Pb(II), which is toxic and accumulates in the environment and in living organisms. Bentonite-steel slag composite particles (BSC) are a new type of acid mine drainage (AMD) treatment material that can remove heavy metal ions and reduce acidity. To date, there have been no reports on the treatment of Pb(II)-containing AMD using BSC. Therefore, the effects of pH, reaction time, temperature, and Pb(II) concentration on the adsorption of Pb(II) onto BSC were studied. Moreover, the BSC before and after the reaction, as well as the precipitation after the reaction, were characterized by scanning electron microscopy and X-ray diffraction analyses. The effect of pH on the adsorption process is similar to that of the formation of soluble and insoluble hydrolysates of Pb(II) on pH. The adsorption mechanism includes ion exchange, complexation, precipitation, and synergistic adsorption–coagulation effect. Adsorption kinetics are best-fit with the pseudo-second order kinetics model ( R 2 > 0.98). Furthermore, the total adsorption rate is controlled by liquid film diffusion and in-particle diffusion, the liquid film diffusion rate being higher than the in-particle diffusion rate. The isothermal adsorption of Pb(II) onto BSC fit well with Langmuir and Brunauer Emmett Teller (BET) isotherms ( R 2 > 0.995), and both single layer adsorption and local multilayer adsorption were observed. Thermodynamic analysis revealed that the adsorption process is spontaneous and endothermic, and that the degree of freedom increases with time. In summary, this study provides a theoretical basis for the use of BSC in treating AMD containing Pb(II).
Collapse
|