1
|
Abdulhaq NA, Elnady DA, Abo El-atta HM, El-Morsi DA, Gad El-Hak SA. Assessment of reproductive toxicity of gold nanoparticles and its reversibility in male albino rats. Toxicol Res 2024; 40:57-72. [PMID: 38223672 PMCID: PMC10786773 DOI: 10.1007/s43188-023-00203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 01/16/2024] Open
Abstract
Nanotechnology has become a trending area in science all over the world. Although gold nanoparticles (AuNPs) have been utilized widely in biomedical fields, potential toxicities may arise from their interactions with biological systems. The current study aimed at evaluating the toxic effects of AuNPs on the reproductive system of adult male albino rats and assessing the recovery probability. In this study, AuNPs (13 ± 4 nm in diameter) were synthesized, and the experimental work was conducted on 60 adult male albino rats divided into the following groups: control group (received deionized water daily intraperitoneally (IP) for 28 days), test group, and withdrawal groups I and II (received 570 μg/kg of 13 ± 4 nm AuNPs daily IP for 28 days). Withdrawal groups I and II were left for another 30 and 60 days without sacrification, respectively. The test group showed significant decreases in final body and absolute testicular weights, testosterone hormone level, sperm count and motility, and spermatogenesis score, as well as significant increase in the percentage of sperms of abnormal morphology compared to the control group, associated with significant light and electron microscopic histopathological changes. Partial improvement of all studied reproductive parameters was detected after one month of withdrawal in withdrawal group I, and significant improvement and reversibility of all these parameters were reported after two months of withdrawal in withdrawal group II. So, AuNPs induce male reproductive toxicity, which partially improves after one month of withdrawal and significantly improves and reverses after two months of withdrawal. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00203-2.
Collapse
Affiliation(s)
- Nancy A. Abdulhaq
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dina A. Elnady
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hend M. Abo El-atta
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Education Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa A. El-Morsi
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Education Department, Faculty of Medicine, Delta University for Science and Technology, Belqas, Egypt
| | - Seham A. Gad El-Hak
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
3
|
Karabulut S, Korkmaz S, Güneş E, Kabil E, Keskin İ, Usta M, Omurtag GZ. Seminal trace elements and their relationship with sperm parameters. Andrologia 2022; 54:e14610. [PMID: 36175375 DOI: 10.1111/and.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Male reproductive problems may derive from many reasons including the environmental toxicants which may either intaken by occupational exposure, nutrition or bad air quality. The increased exposure to these substances due to rapid industrial development and technology has raised the questions: Is there a relationship between sperm parameters and these substances, and if so, in what extent? Results of studies on the subject reported conflicting results, many of which were not investigated in the seminal plasma. The aim of the current study was to evaluate the relationship between 23 metals and trace elements in human seminal plasma and semen parameters many of which were not investigated before. Levels of 23 metals in human seminal plasma were assessed by inductively coupled plasma mass spectrometry (ICP-MS). We examined the differences between subjects with normal ejaculate (normozoospermia) and pathologic ejaculate (with at least one abnormal semen parameter) according to the WHO criteria. The only significant difference was detected for Se while the other element's difference was not statistically significant. Se was statistically significantly increased in normal semen group suggesting the positive effect of this element on semen parameters.
Collapse
Affiliation(s)
- Seda Karabulut
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Serol Korkmaz
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Ertuğrul Güneş
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Erol Kabil
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Melek Usta
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Gülden Zehra Omurtag
- Department of Pharmaceutical Toxicology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
4
|
Fadia B, Mokhtari-Soulimane N, Meriem B, Wacila N, Zouleykha B, Karima R, Soulimane T, Tofail SAM, Townley H, Thorat ND. Histological Injury to Rat Brain, Liver, and Kidneys by Gold Nanoparticles is Dose-Dependent. ACS OMEGA 2022; 7:20656-20665. [PMID: 35755394 PMCID: PMC9219072 DOI: 10.1021/acsomega.2c00727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Gold nanoparticles (GNPs) possess various interesting plasmonic properties that can provide a variety of diagnostic and therapeutic functionalities for biomedical applications. Compared to other inorganic metal nanoparticles (NPs), GNPs are less toxic and more biocompatible. However, the in vivo toxicity of gold nanoparticles on humans can be significant due to the size effect. This work aims to study the effect of multiple doses of small-size (≈20 nm) GNPs on the vital organs of Wistar rats. The study includes the oxidative stress in vital organs (liver, brain, and kidney) caused by GNPs and histopathology analysis. The rats were given a single caudal injection of NPs dispersed in PBS at 25, 50, 100, and 250 mg/kg of body weight. After sacrifice, both plasma and organs were collected for the determination of oxidant/antioxidant markers and histological studies. Our data show the high sensitivity of oxidative stress parameters to the GNPs in the brain, liver, and kidneys. However, the response to this stress is different between the organs and depends upon the antioxidant defense, where GSH levels control the MDA and PCO levels. Histological alterations are mild at 25, 50, and 100 mg/kg but significant at higher concentrations of 250 mg/kg. Therefore, histological impairments are shown to be dependent on the dose of GNPs. The results contribute to the understanding of oxidative stress and cellular interaction induced by nanoparticles.
Collapse
Affiliation(s)
- Bekhti
Sari Fadia
- Laboratory
of Physiology, Pathophysiology and Biochemistry of Nutrition, Department
of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria
| | - Nassima Mokhtari-Soulimane
- Laboratory
of Physiology, Pathophysiology and Biochemistry of Nutrition, Department
of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria
| | - Bensalah Meriem
- Laboratory
of Physiology, Pathophysiology and Biochemistry of Nutrition, Department
of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria
| | - Nacer Wacila
- Laboratory
of Physiology, Pathophysiology and Biochemistry of Nutrition, Department
of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria
| | - Badi Zouleykha
- Laboratory
of Physiology, Pathophysiology and Biochemistry of Nutrition, Department
of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria
| | - Rouigueb Karima
- Laboratory
of Physiology, Pathophysiology and Biochemistry of Nutrition, Department
of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria
| | - Tewfik Soulimane
- Modelling
Simulation and Innovative Characterisation (MOSAIC), Department of
Chemical Engineering, and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Syed A. M. Tofail
- Modelling
Simulation and Innovative Characterisation (MOSAIC), Department of
Physics, School of Natural Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Helen Townley
- Nuffield
Department of Women’s & Reproductive Health, John Radcliffe
Hospital, Medical Sciences Division, University
of Oxford, Oxford OX3 9DU, U.K.
| | - Nanasaheb D. Thorat
- Nuffield
Department of Women’s & Reproductive Health, John Radcliffe
Hospital, Medical Sciences Division, University
of Oxford, Oxford OX3 9DU, U.K.
- Faculty
of Engineering and Sciences, MIT Art, Design
and Technology University, Pune 412201, Maharashtra, India
| |
Collapse
|
5
|
Mehanna ET, Kamel BSA, Abo-Elmatty DM, Elnabtity SM, Mahmoud MB, Abdelhafeez MM, Abdoon ASS. Effect of gold nanoparticles shape and dose on immunological, hematological, inflammatory, and antioxidants parameters in male rabbit. Vet World 2022; 15:65-75. [PMID: 35369578 PMCID: PMC8924392 DOI: 10.14202/vetworld.2022.65-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Gold nanorods (AuNRs) have gained much attention recent years due to their promising optical and chemical properties and are hence used in applied research and industrial nanotechnology. This study was designed to investigate the effect of gold nanoparticle shape (Gold nanorods vs. gold nanosphere) on immune response in rabbit. Materials and Methods: Thirty New Zealand white rabbits were divided into six groups (n=5 rabbits). The first group is the control negative received an intravenous (IV) injection of normal saline 0.9%; the second group (vaccinated) is the control positive, and the other four groups were vaccinated and received a single-dose or repeated five consecutive IV doses of 300 mg/kg body weight 50 nm AuNRs or 50 nm gold nanosphere (50 nm AuNSs) dissolved in ultrapure water. Blood and serum were collected for the hematological and biochemical analysis. Results: White blood cells (WBCs) count, lymphocytes, monocytes, eosinophils, and basophils showed significantly (p<0.05) higher values with the repeated-dose AuNRs. g-globulin levels showed a significant difference after 15 days in the single-dose AuNSs. Single-dose AuNSs significantly (p<0.05) increased the immunoglobulin G (IgG) and significantly (p<0.05) decreased the tumor necrosis factor-alpha. In addition, it elicited a significant (p<0.05) decrease in the malondialdehyde levels and a significant (p<0.05) increase of the superoxide dismutase, glutathione peroxidase, and catalase levels. Moreover, evoked red blood cells count, mean corpuscular volume, and mean corpuscular hemoglobin were significantly (p<0.05) lower than the control group. The platelet count, lysozymes, and nitric oxide were significantly (p<0.05) higher in repeated-dose AuNRs. Conclusion: The effect of AuNPs is shape and dose-dependent. The repeated 5 days IV 50 nm AuNRs doses over 15 days showed a significant antioxidant effect, with no considerable toxicity or vascular reactions.
Collapse
Affiliation(s)
- Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh M. Elnabtity
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Manal B. Mahmoud
- Department of Immunology, Animal Reproduction Research Institute, ARC, Haram, Giza, Egypt
| | - Mostafa M. Abdelhafeez
- Department of Food Science and Technology, Faculty of Agriculture, Misurata University, Libya
| | - Ahmed Sabry S. Abdoon
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|