1
|
Chen X, Zhang G, Hou F, Zhu J. Highly effective removal of basic fuchsin dye using carboxymethyl konjac glucomannan grafted acrylic acid-acrylamide/montmorillonite composite hydrogel. Int J Biol Macromol 2024; 277:134163. [PMID: 39059536 DOI: 10.1016/j.ijbiomac.2024.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
This study developed a nanocomposite hydrogel, CAM4-MMT, for efficiently removing basic fuchsin dye from water. The hydrogel was prepared by grafting a copolymer of acrylic acid (AA) and acrylamide (AM) onto carboxymethyl konjac glucomannan (CMKGM), and doped with montmorillonite (MMT), exhibited excellent thermal stability, a porous inner structure, large specific surface area (1.407 m2/g), and high swelling capacity (107.3 g/g). The hydrogel achieved a maximum adsorption capacity of 694.1 mg/g and a removal rate of 99.5 %. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption process. Regeneration and reuse tests confirmed that the hydrogel has excellent recyclability. In conclusion, the CAM4-MMT composite hydrogel efficiently removed basic fuchsin from water solutions, offering a new scheme for eliminating basic fuchsin using natural polysaccharides with promising applications.
Collapse
Affiliation(s)
- Xing Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Feifan Hou
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
2
|
Borham A, Okla MK, El-Tayeb MA, Gharib A, Hafiz H, Liu L, Zhao C, Xie R, He N, Zhang S, Wang J, Qian X. Decolorization of Textile Azo Dye via Solid-State Fermented Wheat Bran by Lasiodiplodia sp. YZH1. J Fungi (Basel) 2023; 9:1069. [PMID: 37998874 PMCID: PMC10672102 DOI: 10.3390/jof9111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Textile dyes are one of the major water pollutants released into water in various ways, posing serious hazards for both aquatic organisms and human beings. Bioremediation is a significantly promising technique for dye decolorization. In the present study, the fungal strain Lasiodiplodia sp. was isolated from the fruiting bodies of Schizophyllum for the first time. The isolated fungal strain was examined for laccase enzyme production under solid-state fermentation conditions with wheat bran (WB) using ABTS and 2,6-Dimethoxyphenol (DMP) as substrates, then the fermented wheat bran (FWB) was evaluated as a biosorbent for Congo red dye adsorption from aqueous solutions in comparison with unfermented wheat bran. A Box-Behnken design was used to optimize the dye removal by FWB and to analyze the interaction effects between three factors: fermentation duration, pH, and dye concentration. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were applied to study the changes in the physical and chemical characteristics of wheat bran before and after fermentation. An additional experiment was conducted to investigate the ability of the Lasiodiplodia sp. YZH1 to remove Congo red in the dye-containing liquid culture. The results showed that laccase was produced throughout the cultivation, reaching peak activities of ∼6.2 and 22.3 U/mL for ABTS and DMP, respectively, on the fourth day of cultivation. FWB removed 89.8% of the dye (100 mg L-1) from the aqueous solution after 12 h of contact, whereas WB removed only 77.5%. Based on the Box-Behnken design results, FWB achieved 93.08% dye removal percentage under the conditions of 6 days of fermentation, pH 8.5, and 150 mg L-1 of the dye concentration after 24 h. The fungal strain removed 95.3% of 150 mg L-1 of the dye concentration after 8 days of inoculation in the dye-containing liquid culture. These findings indicate that this strain is a worthy candidate for dye removal from environmental effluents.
Collapse
Affiliation(s)
- Ali Borham
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China; (A.B.); (J.W.)
- Agriculture Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou 225127, China
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.K.O.); (M.A.E.-T.)
| | - Mohamed A. El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.K.O.); (M.A.E.-T.)
| | - Ahmed Gharib
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
| | - Hanan Hafiz
- Biotechnology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Lei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (C.Z.); (R.X.); (N.H.); (S.Z.)
| | - Chen Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (C.Z.); (R.X.); (N.H.); (S.Z.)
| | - Ruqing Xie
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (C.Z.); (R.X.); (N.H.); (S.Z.)
| | - Nannan He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (C.Z.); (R.X.); (N.H.); (S.Z.)
| | - Siwen Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (C.Z.); (R.X.); (N.H.); (S.Z.)
| | - Juanjuan Wang
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China; (A.B.); (J.W.)
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (C.Z.); (R.X.); (N.H.); (S.Z.)
| | - Xiaoqing Qian
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China; (A.B.); (J.W.)
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (L.L.); (C.Z.); (R.X.); (N.H.); (S.Z.)
| |
Collapse
|
3
|
Mandjewil A, Ngueagni PT, Siewe JM, Fadimatou NM, Vieillard J, Dotto GL, Fotsing PN, Woumfo ED. Correlation between cocoa shell modifications by CTAB and its dye adsorption properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94474-94484. [PMID: 37535279 DOI: 10.1007/s11356-023-28671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Cocoa shell was modified whit sodium hydroxide (NaOH) and cationic surfactant cetyltrimethylammonium bromide (CTAB) to increase surface functionality, surface area, and positive charge density. The prepared adsorbent CC-OH-CTAB was used to remove indigo carmine (IC) and bromocresol green (BCG) dyes from water. The optimal pH for IC and BCG adsorption were 2 and 4, respectively. The equilibrium was attained after a contact time of 30 min for IC and 120 min for BCG. The maximum adsorption capacity (Qmax) of IC and BCG obtained was 85.1 mg g-1 and 192.7 mg g-1, respectively. The Liu isotherm model best described the equilibrium results. The adsorption kinetics model showed that IC and BCG adsorption onto CC-OH-CTAB followed the pseudo-first-order and pseudo-second-order model, respectively. The regeneration and reusability experiments indicated that CC-OH-CTAB had much stability and excellent performance meanwhile repeatedly used. Finally, the insertion of CTAB on the CC-OH surface proved to be an excellent way to improve the adsorption performance of this material concerning dyes.
Collapse
Affiliation(s)
- Albert Mandjewil
- Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, 812, Yaounde, Cameroon
| | - Patrick Tsopbou Ngueagni
- Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, 812, Yaounde, Cameroon
| | - Jean Mermoz Siewe
- Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, 812, Yaounde, Cameroon
| | | | - Julien Vieillard
- Université de Rouen Normandie, 55, rue Saint Germain, 27000, Rouen, Evreux, France
| | - Guilherme Luiz Dotto
- Université de Rouen Normandie, 55, rue Saint Germain, 27000, Rouen, Evreux, France
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, 1000-7, Brazil
| | - Patrick Nkuigue Fotsing
- Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, 812, Yaounde, Cameroon
- Université de Rouen Normandie, 55, rue Saint Germain, 27000, Rouen, Evreux, France
| | - Emmanuel Djoufac Woumfo
- Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, 812, Yaounde, Cameroon.
| |
Collapse
|
4
|
Grassi P, Georgin J, S P Franco D, Sá ÍMGL, Lins PVS, Foletto EL, Jahn SL, Meili L, Rangabhashiyam S. Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:82-97. [PMID: 37345434 DOI: 10.1080/15226514.2023.2225615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The objective of this study is to develop a low-cost biosorbent using residual seeds of the Citrullus lanatus fruit for the removal of cationic dyes. Physicochemical parameters such as pH, adsorbent mass, contact time, and temperature were evaluated for their effects on dye removal. The biosorbent is composed of lignin and cellulose, exhibiting a highly heterogeneous surface with randomly distributed cavities and bulges. The adsorption of both dyes was most effective at natural pH with a dosage of 0.8 g L-1. Equilibrium was reached within 120 min, regardless of concentration, indicating rapid kinetics. The Elovich model and pseudo-second-order kinetics were observed for crystal violet and basic fuchsin dye, respectively. The Langmuir model fitted well with the equilibrium data of both dyes. However, the increased temperature had a negative impact on dye adsorption. The biosorbent also demonstrated satisfactory performance (R = 43%) against a synthetic mixture of dyes and inorganic salts, with a small mass transfer zone. The adsorption capacities for crystal violet and basic fuchsin dye were 48.13 mg g-1 and 44.26 mg g-1, respectively. Thermodynamic studies confirmed an exothermic nature of adsorption. Overall, this low-cost biosorbent showed potential for the removal of dyes from aqueous solutions.
Collapse
Affiliation(s)
- Patricia Grassi
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Dison S P Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Ícaro M G L Sá
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - Pollyanna V S Lins
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Sérgio L Jahn
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
5
|
Janner NN, Tholozan LV, Maron GK, Carreno NLV, Valério Filho A, da Rosa GS. Novel Adsorbent Material from Plinia cauliflora for Removal of Cationic Dye from Aqueous Solution. Molecules 2023; 28:molecules28104066. [PMID: 37241806 DOI: 10.3390/molecules28104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The food industry is responsible for the generation of large amounts of organic residues, which can lead to negative environmental and economic impacts when incorrectly disposed of. The jaboticaba peel is an example of organic waste, widely used in industry due to its organoleptic characteristcs. In this study, residues collected during the extraction of bioactive compounds from jaboticaba bark (JB) were chemically activated with H3PO4 and NaOH and used to develop a low-cost adsorbent material for the removal of the cationic dye methylene blue (MB). For all adsorbents, the batch tests were carried out with the adsorbent dosage of 0.5 g L-1 and neutral pH, previously determined by 22 factorial design. In the kinetics tests, JB and JB-NaOH presented a fast adsorption rate, reaching equilibrium in 30 min. For JB-H3PO4, the equilibrium was reached in 60 min. JB equilibrium data were best represented by the Langmuir model and JB-NaOH and JB-H3PO4 data by the Freundlich model. The maximum adsorption capacities from JB, JB-NaOH, and JB-H3PO4 were 305.81 mg g-1, 241.10 mg g-1, and 122.72 mg g-1, respectively. The results indicate that chemical activations promoted an increase in the volume of large pores but interacted with functional groups responsible for MB adsorption. Therefore, JB has the highest adsorption capacity, thus presenting as a low-cost and sustainable alternative to add value to the product, and it also contributes to water decontamination studies, resulting in a zero-waste approach.
Collapse
Affiliation(s)
| | - Luana Vaz Tholozan
- Chemical Engineering, Federal University of Pampa, Bagé 96413-172, Brazil
| | - Guilherme Kurz Maron
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - Neftali Lenin Villarreal Carreno
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas 96010-610, Brazil
| | | |
Collapse
|
6
|
Dos Reis GS, Schnorr CE, Dotto GL, Vieillard J, Netto MS, Silva LFO, De Brum IAS, Thyrel M, Lima ÉC, Lassi U. Wood waste-based functionalized natural hydrochar for the effective removal of Ce(III) ions from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64067-64077. [PMID: 37060415 DOI: 10.1007/s11356-023-26921-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
In this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C-O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g-1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L-1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal.
Collapse
Affiliation(s)
- Glaydson S Dos Reis
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Carlos E Schnorr
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 27000, Evreux, France.
| | - Julien Vieillard
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 27000, Evreux, France
| | - Matias S Netto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Irineu A S De Brum
- Institute of Chemistry, Federal University of Rio Grande Do Sul, P.O.15003, Porto Alegre, 91501-970, Brazil
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Éder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul, P.O.15003, Porto Alegre, 91501-970, Brazil
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
- Unit of Applied Chemistry, University of Jyvaskyla, Kokkola University Consortium Chydenius, Talonpojankatu 2B, 67100, Kokkola, Finland
| |
Collapse
|
7
|
Tholozan LV, Valério Filho A, Maron GK, Carreno NLV, da Rocha CM, Bordin J, da Rosa GS. Sphagnum perichaetiale Hampe biomass as a novel, green, and low-cost biosorbent in the adsorption of toxic crystal violet dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52472-52484. [PMID: 36840883 DOI: 10.1007/s11356-023-26068-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In this study, the Sphagnum perichaetiale Hampe biomass was collected, characterized, and used as a biosorbent in the removal of crystal violet from water. The chemical and morphological results suggest that even after minimal experimental procedures, the biomass presented interesting properties regarding the adsorption of contaminants. Results of adsorption showed that the pH was not a relevant parameter and the best adsorbent dosage was 0.26 g L-1. The kinetic results presented an initial fast step and the equilibrium was reached after 180 min. For the equilibrium data, the best adjustment occurred for the Sips model, reaching a maximum adsorption capacity of 271.05 mg g-1 and the removal percentage obtained in the maximum adsorbent dosage was 97.11%. The thermodynamic studies indicated a reversible process and that the mass-transfer phenomena is governed by the physisorption mechanism. In addition to its great performance as a biosorbent, Sphagnum perichaetiale biomass also presents economic and sustainable benefits, as its production does not require costs with reagents or energy, usually used in chemical and physical activation. The reversible process indicated that the biosorbent could be reused, decreasing the costs related to the treatment of the effluents. Thus, Sphagnum perichaetiale biomass can be considered an efficient low-cost and eco-friendly biosorbent.
Collapse
Affiliation(s)
- Luana Vaz Tholozan
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul, 96413-172, Brazil
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Guilherme Kurz Maron
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Neftali Lenin Villarreal Carreno
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas, Rio Grande do Sul, 96010-610, Brazil
| | - Cacinele Mariana da Rocha
- Center for Coastal Studies, Limnology and Marine, Federal University of Rio Grande do Sul, 976 Tramandaí, Imbé, Rio Grande do Sul, 95625-000, Brazil
| | - Juçara Bordin
- State University of Rio Grande do Sul, North Coast Unit, 1456 Machado de Assis, Osório, Rio Grande do Sul, 95520-000, Brazil
| | - Gabriela Silveira da Rosa
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, Bagé, Rio Grande do Sul, 96413-172, Brazil.
| |
Collapse
|
8
|
Manzar MS, Ahmad T, Zubair M, Ullah N, Alqahtani HA, da Gama BMV, Georgin J, Nasir M, Mu'azu ND, Al Ghamdi JM, Aziz HA, Meili L. Comparative adsorption of Tetracycline onto unmodified and NaOH-modified Silicomanganese fumes: Kinetic and process modeling. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
9
|
Stracke Pfingsten Franco D, Georgin Vizualization J, Gindri Ramos C, S. Netto M, Lobo B, Jimenez G, Lima EC, Sher F. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Grassi P, Netto MS, Jahn SL, Georgin J, Franco DSP, Sillanpää M, Meili L, Silva LFO. Conversion of foliar residues of Sansevieria trifasciata into adsorbents: dye adsorption in continuous and discontinuous systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9688-9698. [PMID: 36057705 DOI: 10.1007/s11356-022-22857-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The study analyzed the potential of leaf powder prepared from the residual leaves of the species Sansevieria trifasciata, as a potential adsorbent for methylene blue (MB) removal. The equilibrium was reached fast for almost all concentrations after 60 min, obtaining the maximum capacity of 139.98 mg g-1 for 200 mg L-1. The increase in temperature disfavored the dye adsorption, with the maximum adsorption capacity of 225.8 mg g-1, observed for 298 K. The thermodynamic parameters confirmed that the adsorption process is spontaneous and exothermic. A direct sloping curve was established for the fixed bed, with breakthrough time (tb), column stoichiometric capacities (qeq), and the mass transfer zone lengths (Zm) were 1430, 1130, and 525 min; 60.48, 187.01, and 322.65 mg g-1; and 8.81, 11.28, and 10.71 cm, for 100, 200, and 500 mg L-1, respectively. Furthermore, in a mixture of several dyes, the adsorbent obtained the removal of 51% of the color.
Collapse
Affiliation(s)
- Patrícia Grassi
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Sérgio Luiz Jahn
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Civil and Environmental Department, Federal University of Santa Maria, UFSM, Santa Maria, Brazil
| | - Dison S P Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Lucas Meili
- Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas, Maceio, Alagoas, 57072-970, Brazil.
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
11
|
Sehar S, Rasool T, Syed HM, Mir MA, Naz I, Rehman A, Shah MS, Akhter MS, Mahmood Q, Younis A. Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes. 3 Biotech 2022; 12:186. [PMID: 35875175 PMCID: PMC9304469 DOI: 10.1007/s13205-022-03247-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/02/2022] [Indexed: 11/01/2022] Open
Abstract
Organic nature of dyes and their commercially made products are widely utilized in many industries including paper, cosmetics, pharmaceuticals, photography, petroleum as well as in textile manufacturing. The textile industry being the top most consumer of a large variety of dyes during various unit processes operation generates substantial amount of wastewater; hence, nominated as "Major Polluter of Potable Water". The direct discharge of such effluents into environment poses serious threats to the functioning of biotic communities of natural ecosystems. The detection of these synthetic dyes is considered as relatively easy, however, it is extremely difficult to completely eliminate them from wastewater and freshwater ecosystems. Aromatic chemical structure seems to be the main reason behind low biodegradability of these dyes. Currently, various physiochemical and biological methods are employed for their remediation. Among them, microbial degradation has attracted greater attention due to its sustainability, high efficiency, cost effectiveness, and eco-friendly nature. The current review presents recent advances in biodegradation of industrial dyes towards a sustainable and tangible technological innovative solutions as an alternative to existing conventional physicochemical treatment processes.
Collapse
Affiliation(s)
- Shama Sehar
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Tabassum Rasool
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Hasnain M. Syed
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952 Kingdom of Saudi Arabia
| | - M. Amin Mir
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952 Kingdom of Saudi Arabia
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452 Kingdom of Saudi Arabia
| | - Abdul Rehman
- Department of Microbiology, Kohat University of Science & Technology (KUST), Khyber Pakhtunkhwa, Kohat, 26000 Pakistan
| | - Mir Sadiq Shah
- Department of Zoology, University of Science and Technology, Bannu, 28100 Khyber Pakhtunkhwa Pakistan
| | - Mohammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Qaisar Mahmood
- Department of Biology, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| | - Adnan Younis
- Department of Physics, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Kingdom of Bahrain
| |
Collapse
|
12
|
Oliveira EN, Meneses AT, de Melo SF, Dias FMR, Perazzini MTB, Perazzini H, Meili L, Soletti JI, Carvalho SHV, Bispo MD. Highly effective adsorption of caffeine by a novel activated carbon prepared from coconut leaf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50661-50674. [PMID: 35235121 DOI: 10.1007/s11356-022-18788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The disposal of coconut wastes is costly and damaging to the environment, but its uses are advantageous activated carbons production. Coconut leaves waste were used for activated carbon production by pyrolysis at 500° C and activation with potassium carbonate. The activated carbon was used for caffeine removal from aqueous solution. The coconut leaves activated carbon showed a predominantly amorphous structure from X-ray diffraction analysis and a pH at the zero charge point of 7.9. From the N2 adsorption/desorption method, the adsorbent showed a predominance of mesopores, with average pore size of 45.48 ηm and a surface area of 678.03 m2/g. From kinetic studies the data followed the pseudo-second order, where the intraparticle diffusion can be neglected. The adsorption isotherms were satisfactorily adjusted for the Redlich-Peterson model and a type curve L was identified. The thermodynamic parameters showed that adsorption occurred spontaneously, was exothermic and governed by physical adsorption. The artificial neural networks developed were capable of predicting both kinetics and equilibrium adsorption data under different operating conditions and was comparable to the traditional models available in literature in the training experiments, encouraging its use for data generalization when an efficient dataset is used. In conclusion, coconut leaves waste showed to be a promising feedstock to produce activated carbon aiming caffeine removal from water and wastewater.
Collapse
Affiliation(s)
- Elvio N Oliveira
- Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - Alex T Meneses
- Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - Samara F de Melo
- Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - Franciele M R Dias
- Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - Maisa T B Perazzini
- Institute of Natural Resources, Federal University of Itajubá-UNIFEI, Itajubá, MG, Brazil
| | - Hugo Perazzini
- Institute of Natural Resources, Federal University of Itajubá-UNIFEI, Itajubá, MG, Brazil
| | - Lucas Meili
- Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - João I Soletti
- Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - Sandra H V Carvalho
- Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - Mozart D Bispo
- Laboratory of Separation Systems and Process Optimization (LASSOP), Center of Technology, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil.
| |
Collapse
|
13
|
Saood Manzar M, Ahmad T, Ullah N, Velayudhaperumal Chellam P, John J, Zubair M, Brandão RJ, Meili L, Alagha O, Çevik E. Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: Kinetic and process modeling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Hernandes PT, Franco DSP, Georgin J, Salau NPG, Dotto GL. Adsorption of atrazine and 2,4-D pesticides on alternative biochars from cedar bark sawdust (Cedrella fissilis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22566-22575. [PMID: 34796439 DOI: 10.1007/s11356-021-17590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Bark residues of the forest species Cedrela fissilis were physically and chemically modified with zinc chloride (ZnCl2) as an activating agent. The two modified materials were analyzed as adsorbents in removing atrazine and 2,4-D herbicides from effluents. Firstly, the precursor material and the modified ones were characterized by different techniques to identify the structural changes that occurred in the surfaces. Through TGA, it was observed that both modified materials have thermal stability close to each other and are highly superior to the precursor. X-ray diffractions proved that the amorphous structure was not altered, the three materials being highly heterogeneous and irregular. The micrographs showed that the treatments brought new spaces and cavities on the surface, especially for the material carbonized with ZnCl2. The pHPZC of the modified materials was close to 7.5. The physically modified material had a surface area of 47.31 m2 g-1 and pore volume of 0.0095 cm3 g-1, whereas the carbonized material had a surface area of 98.12 m2 g-1 and pore volume of 0.0099 cm3 g-1. Initial tests indicated that none of the adsorbents were efficient in removing 2,4-D. However, they showed good potential for removing atrazine. The Koble-Corrigan isothermal model best fits the experimental data, with a maximum capacity of 3.44 mg g-1 and 2.70 mg g-1 for physically modified and with ZnCl2, respectively. The kinetic studies showed that the system tends to enter into equilibrium after 120 min, presenting good statistical indicators to the linear driving force model (LDF). The surface diffusion coefficients were 2.18×10-9 and 2.37×10-9 cm2 s-1 for atrazine adsorption on the physically and chemically modified materials. These results showed that the application of residues from the processing of cedar bark is promising. However, new future studies must be carried out to improve the porous development of the material and obtain greater adsorption capacities.
Collapse
Affiliation(s)
- Paola T Hernandes
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Civil Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Nina P G Salau
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
15
|
Volcanic ashe and its NaOH modified adsorbent for superb cationic dye uptake from water: Statistical evaluation, optimization, and mechanistic studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Rangabhashiyam S, Lins PVDS, Oliveira LMTDM, Sepulveda P, Ighalo JO, Rajapaksha AU, Meili L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118581. [PMID: 34861332 DOI: 10.1016/j.envpol.2021.118581] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The production of biochar from sewage sludge pyrolysis is a promising approach to transform the waste resultant from wastewater treatment plants (WWTPs) to a potential adsorbent. The current review provides an up-to-date review regarding important aspects of sewage sludge pyrolysis, highlighting the process that results major solid fraction (biochar), as high-value product. Further, the physio-chemical characteristics of sewage-sludge derived biochar such as the elemental composition, specific surface area, pore size and volume, the functional groups, surface morphology and heavy metal content are discussed. Recent progress on adsorption of metals, emerging pollutants, dyes, nutrients and oil are discussed and the results are examined. The sewage sludge-derived biochar is a promising material that can make significant contributions on pollutants removal from water by adsorption and additional benefit of the management of huge volume of sewage. Considering all these aspects, this field of research still needs more attention from the researchers in the direction of the technological features and sustainability aspects.
Collapse
Affiliation(s)
- S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | | | | | - Pamela Sepulveda
- Centro para el Desarrollo de Nanociencia y Nanotecnología CEDENNA, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; Departamento de Física, Facultad de Ciencias, Universidad de Santiago de Chile, Santiago, Chile
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Anushka Upamali Rajapaksha
- Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Lucas Meili
- Laboratory of Process, Technology Center, Federal University of Alagoas, Maceió-AL, Brazil.
| |
Collapse
|
17
|
Netto MS, Georgin J, Franco DSP, Mallmann ES, Foletto EL, Godinho M, Pinto D, Dotto GL. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3672-3685. [PMID: 34389956 DOI: 10.1007/s11356-021-15366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel and effective hydrochar was prepared by hydrothermal treatment of Prunus serrulata bark to remove the pesticide atrazine in river waters. The hydrothermal treatment has generated hydrochar with a rough surface and small cavities, favoring the atrazine adsorption. The adsorption equilibrium time was not influenced by different atrazine concentrations used, being reached after 240 min. The Elovich adsorption kinetic model presented the best adjustment to the kinetic data. The Langmuir model presented the greatest compliance to the isotherm data and indicated a higher affinity between atrazine and hydrochar, reaching a maximum adsorption capacity of 63.35 mg g-1. Thermodynamic parameters showed that the adsorption process was highly spontaneous, endothermic, and favorable, with a predominance of physical attraction forces. In treating three real river samples containing atrazine, the adsorbent showed high removal efficiency, being above 70 %. The hydrochar from Prunus serrulata bark waste proved highly viable to remove atrazine from river waters due to its high efficiency and low precursor material cost.
Collapse
Affiliation(s)
- Matias S Netto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Evandro S Mallmann
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcelo Godinho
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul - UCS, Caxias do Sul, RS, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
- Facultad de Ingeniería y Arquitectura, Universidad de Lima, Lima, Peru.
| | - Guilherme L Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
18
|
Manzar MS, Khan G, dos Santos Lins PV, Zubair M, Khan SU, Selvasembian R, Meili L, Blaisi NI, Nawaz M, Abdul Aziz H, Kayed T. RSM-CCD optimization approach for the adsorptive removal of Eriochrome Black T from aqueous system using steel slag-based adsorbent: Characterization, Isotherm, Kinetic modeling and thermodynamic analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116714] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Georgin J, Franco DSP, Netto MS, de Salomón YLO, Piccilli DGA, Foletto EL, Dotto GL. Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20854-20868. [PMID: 33405150 DOI: 10.1007/s11356-020-11957-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this work, comminuted seedpods of the forest species Luehea divaricata (LDPR) and Inga laurina (ILPR) were used as alternative and environmental-friendly adsorbents for the methylene blue (MB) removal from aqueous solutions. Batch adsorption experiments were carried out at the native pH of the solution (pH = 8.7), with curves of removal and adsorption capacity crossed at 0.75 g L-1, having 125 mg g-1 for LDPR and 115 mg g-1 for ILPR. The kinetic models of pseudo-first-order (PFO) and HSDM-Crank were the most adequate to represent MB dye concentration decay data for both biosorbents. The equilibrium curves were better adjusted by the Langmuir model for both adsorbents, with maximum adsorption capacity increased from 279 to 325 mg g-1 for LDPR, and 199 to 233 mg g-1 for ILPR, as a function of an increase in temperature from 298 to 328 K. The thermodynamic parameters showed that both systems are spontaneous with a dominance of physisorption. Mass transfer analysis indicates that the external mass transfer is the limiting step, with Bi < 0.5. Surface diffusion increased with the adsorption capacity, presenting linear and exponential behavior for the ILPR and PLPR adsorbents, respectively. Both materials proved to be efficient in treating a simulated effluent with similar industrial wastewater characteristics, reaching superior values at 70% of color removal.
Collapse
Affiliation(s)
- Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Yamil L O de Salomón
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Daniel G A Piccilli
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson L Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
20
|
Grassi P, Drumm FC, Georgin J, Franco DSP, Dotto GL, Foletto EL, Jahn SL. Application of Cordia trichotoma sawdust as an effective biosorbent for removal of crystal violet from aqueous solution in batch system and fixed-bed column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6771-6783. [PMID: 33009617 DOI: 10.1007/s11356-020-11005-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
In this work, for the first time, Cordia trichotoma sawdust, a residue derived from noble wood processing, was applied as an alternative biosorbent for the removal of crystal violet by discontinuous and continuous biosorption processes. The optimum conditions for biosorption of crystal violet were 7.5 pH and a biosorbent dosage of 0.8 g L-1. The biosorption kinetics showed that the equilibrium was reached at 120 min, achieving a maximum biosorption capacity of 107 mg g-1 for initial dye concentration of 200 mg L-1. The Elovich model was the proper model for representing the biosorption kinetics. The isotherm assays showed that the rise of temperature causes an increase in the biosorption capacity of the crystal violet, with a maximum biosorption capacity of 129.77 mg g-1 at 328 K. The Langmuir model was the most proper model for describing the behavior. The sign of ΔG0 indicates that the process was spontaneous and favorable, whereas the ΔH0 indicates an endothermic process. The treatment of the colored simulated effluent composed by dyes and salts resulted in 80% of color removal. The application of biosorbent in the fixed-bed system achieved a breakthrough time of 505 min, resulting in 83.35% of color removal. The Thomas and Yoon-Nelson models were able to describe the fixed-bed biosorption behavior. This collection of experimental evidence shows that the Cordia trichotoma sawdust can be applied for the removal of crystal violet and a mixture of other dyes that contain them.
Collapse
Affiliation(s)
- Patrícia Grassi
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Fernanda Caroline Drumm
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison Stracke Pfingsten Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil.
| | - Edson Luiz Foletto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| | - Sérgio Luiz Jahn
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
21
|
Drumm FC, Franco DSP, Georgin J, Grassi P, Jahn SL, Dotto GL. Macro-fungal (Agaricus bisporus) wastes as an adsorbent in the removal of the acid red 97 and crystal violet dyes from ideal colored effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:405-415. [PMID: 32812157 DOI: 10.1007/s11356-020-10521-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The wastes from the macro-fungus Agaricus bisporus were used as an eco-friendly and low-cost adsorbent for the treatment of colored effluents containing the recalcitrant dyes, acid red 97 (AR97) and crystal violet (CV). The macro-fungal waste presented an amorphous structure, composed of particles with different sizes and shapes. Also, it presents typical functional chemical groups of proteins and carbohydrates with a point of zero charge of 4.6. The optimum conditions for the dosage were found to be as follows: 0.5 g L-1 with an initial pH at 2.0 for the AR97 and 8.0 for the CV. From the kinetic test, it was found that it took 210 min and an adsorption capacity of 165 mg g-1 for the AR97. Concerning the CV kinetics, it took 120 min to reach the equilibrium and it achieved an adsorption capacity of 165.9 mg g-1. The Elovich model was the most proper model for describing the experimental data, achieving an R2 ≥ 0.997 and MSE ≤ 36.98 (mg g-1)2. The isotherm curves were best represented by the Langmuir model, predicting maximum adsorption capacity of 372.69 and 228.74 mg g-1 for the AR97 and CV, respectively. The process was spontaneous and favorable for both dyes. The ∆H0 values were 9.53 and 10.69 kJ mol-1 for AR97 and CV, respectively, indicating physical and endothermic adsorption. Overall, the wastes from Agaricus bisporus have the potential to adsorb cationic and anionic dyes, thus solving environmental problems related to water quality and residue disposal.
Collapse
Affiliation(s)
- Fernanda Caroline Drumm
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | | | - Jordana Georgin
- Civil Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Patrícia Grassi
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Sérgio Luiz Jahn
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
22
|
Wazir AH, Waseem I, Qureshi I, Manan A. Saccharum ArundinaceumLeaves as a Versatile Biosorbent for Removal of Methylene Blue Dye from Wastewater. ENVIRONMENTAL ENGINEERING SCIENCE 2020. [DOI: 10.1089/ees.2020.0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Arshad Hussain Wazir
- Carbon Materials Laboratory, Department of Chemistry, University of Science and Technology, Bannu, Khyber Pukhtunkhwa, Pakistan
| | - Imran Waseem
- Carbon Materials Laboratory, Department of Chemistry, University of Science and Technology, Bannu, Khyber Pukhtunkhwa, Pakistan
| | - Imdadullah Qureshi
- Carbon Materials Laboratory, Department of Chemistry, University of Science and Technology, Bannu, Khyber Pukhtunkhwa, Pakistan
| | - Abdul Manan
- Materials Research Laboratory, Department of Physics, University of Science and Technology, Bannu, Khyber Pukhtunkhwa, Pakistan
| |
Collapse
|
23
|
Quintela DU, Henrique DC, dos Santos Lins PV, Ide AH, Erto A, Duarte JLDS, Meili L. Waste of Mytella Falcata shells for removal of a triarylmethane biocide from water: Kinetic, equilibrium, regeneration and thermodynamic studies. Colloids Surf B Biointerfaces 2020; 195:111230. [DOI: 10.1016/j.colsurfb.2020.111230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
|
24
|
de O Salomón YL, Georgin J, Dos Reis GS, Lima ÉC, Oliveira MLS, Franco DSP, Netto MS, Allasia D, Dotto GL. Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33307-33320. [PMID: 32529627 DOI: 10.1007/s11356-020-09471-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Wastes from the Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds were studied as biosorbents for the removal of basic fuchsin from waters. Both biosorbents were prepared and characterized by different analytical methods. The characterization data showed that both materials were mainly composed of lignin, cellulose, and hemicellulose. Both biosorbents exhibited roughened surfaces and surface functional groups such as C-H, C=O, C=C, C-O, C-N, and OH bonds. Furthermore, the XRD pattern shows an amorphous phase with a wide peak from 10 to 30° due to the lignin. In terms of dosage and pH, the use of 1 g L-1 and 9.0, respectively, is recommended. The initial concentrations for the biosorption kinetics ranged from 50 to 500 mg L-1, where the Pacara ear and the Ironwood reached an adsorption capacity of 145.62 and 100.743 mg g-1 for the 500 mg L-1. The pseudo-second-order was found to be the proper model for describing biosorption of basic fuchsin onto Pacara Earpod tree and Ironwood, respectively. For the isotherm experiments, the maximum experimental biosorption capacity was found to be 166.858 and 110.317 mg g-1 for the Pacara Earpod and Ironwood for the initial concentration of 500 mg L-1 at 328 K. The Langmuir and the Tóth models were the best for representing the equilibrium curves for the basic fuchsin on the Pacara Earpod and the Ironwood, respectively. Maximum adsorption capacities of 177.084 mg g-1 and 136.526 mg g-1 were achieved for the Pacara Earpod tree and Ironwood, respectively. The biosorption process was spontaneous, endothermic, and favorable for both biosorbents. The biosorbents were also applied for coloration removal of simulated textile effluents, reaching 66% and 54% for the Pacara Earpod and Ironwood, respectively. For the final application, the materials were used in fixed-bed biosorption, with an initial concentration of 200 mg L-1, reaching breakthrough times of 710 and 415 min, leading to biosorption capacities of the column of 124.5 and 76.5 mg g-1, for the Pacara Earpod and Ironwood, respectively.
Collapse
Affiliation(s)
- Yamil L de O Salomón
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Glaydson Simões Dos Reis
- Graduate Program in Metallurgical, Mine, and Materials Engineering (PPGE3M), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Éder Claudio Lima
- Graduate Program in Metallurgical, Mine, and Materials Engineering (PPGE3M), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, Barranquilla, 080002, Atlántico, Colombia.
- Faculdade Meridional IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Daniel Allasia
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
25
|
Melo LLA, Ide AH, Duarte JLS, Zanta CLPS, Oliveira LMTM, Pimentel WRO, Meili L. Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27048-27060. [PMID: 32388754 DOI: 10.1007/s11356-020-09053-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The palm (Elaeis guineensis), known as dendê, is an important oleaginous Brazilian plant with a high performance of oil production. In this work, a 23 full experimental design was performed and the response surface method (RSM) was used to indicate the optimum parameter of caffeine adsorption on Elaeis guineensis endocarp activated carbon, since the endocarp is the main by-product from dendê oil production. It was set the adsorbent point of zero charge (pHpzc), and the material was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The RSM results indicate removal efficiency (%) at the optimal conditions, 0.20 g of adsorbent, and caffeine initial concentration of 20 mg/L, and acidic medium was about 95%. Based on ANOVA and F test (Fcalculated > Fstandard), the mathematical/statistical model obtained fits well to the experimental data. The overall kinetic studies showed time was achieved after 5 h and caffeine adsorption followed the pseudo-second-order model suggesting chemisorption is a predominant mechanism. Redlich-Peterson and Sips models best represented the experimental data (0.967 < R2 < 0.993). Thermodynamic revealed that caffeine adsorption was spontaneous at all temperatures studied, exothermic, and probably with changes in the adsorbate-adsorbent complex during the process. The tests conducted in different water matrixes corroborate the suitability of this adsorbent to be used in caffeine removal even in a complex solution.
Collapse
Affiliation(s)
- Larissa L A Melo
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Alessandra H Ide
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - José Leandro S Duarte
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
- Laboratorio de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Carmem Lucia P S Zanta
- Laboratorio de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Leonardo M T M Oliveira
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Wagner R O Pimentel
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Lucas Meili
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil.
| |
Collapse
|
26
|
Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL. Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25727-25739. [PMID: 32350844 DOI: 10.1007/s11356-020-08854-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The Ocotea puberula bark powder (OPBP) was evaluated as an effective adsorbent for the removal of crystal violet (CV) from colored effluents. OPBP was characterized and presented a surface with large cavities, organized as a honeycomb. The main functional groups of OPBP were O-H, N-H, C=O, and C-O-C. The adsorption of CV on OPBP was favorable at pH 9 with a dosage of 0.75 g L-1. The Avrami model was the most suitable to represent the adsorption kinetic profile, being the estimated equilibrium concentration value of 3.37 mg L-1 for an initial concentration of 50 mg L-1 (CV removal of 93.3%). The equilibrium was reached within 90 min. The data were better described by the Langmuir isotherm, reaching a maximum adsorption capacity of 444.34 mg g-1 at 328 K. The Gibbs free energy ranged from - 26.3554 to - 27.8055 kJ mol-1, and the enthalpy variation was - 11.1519 kJ mol-1. The external mass transfer was the rate-limiting step, with Biot numbers ranging from 0.0011 to 0.25. Lastly, OPBP application for the treatment of two different simulated effluents was effective, achieving a removal percentage of 90%.
Collapse
Affiliation(s)
- Jordana Georgin
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Daniel Allasia
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Envirronmental, Universidad De La Costa, Calle 58 #55-66, Barranquilla, Atlántico, 080002, Colombia.
- Faculdade Meridional IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
27
|
Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL. Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20831-20843. [PMID: 32248415 DOI: 10.1007/s11356-020-08496-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Brazilian berry seeds (Eugenia uniflora) were used as an eco-friendly and low-cost biosorbent for the treatment of textile effluents containing methylene blue. Characterization techniques indicated that Brazilian berry seeds are constituted of irregular particles, mainly composed of lignin and holocellulose groups, distributed in an amorphous structure. Methylene blue biosorption was favorable at pH of 8, using a biosorbent dosage of 0.8 g L-1. The equilibrium was reached in the first 20 min for lower M methylene blue concentrations and 120 min for higher methylene blue concentrations. Furthermore, the general and pseudo-second-order models were suitable for describing the kinetic data. Langmuir was the most adequate model for describing the isotherm curves, predicting a biosorption capacity of 189.6 mg g-1 at 328 K. Biosorption was spontaneous (- 9.54 ≤ ΔG0 ≤ -8.06 kJ mol-1) and endothermic, with standard enthalpy change of 6.11 kJ mol-1. Brazilian berry seeds were successfully used to remove the color of two different simulated textile effluents, achieving 92.2% and 73.5% of removal. Last, the fixed-bed experiment showed that a column packed with Brazilian berry seeds can operate during 840 min, attaining biosorption capacity of 88.7 mg g-1. The data here presented indicates that textile effluents containing methylene blue can be easily and successfully treated by an eco-friendly and low-cost biosorbent like Brazilian berry seeds.
Collapse
Affiliation(s)
- Jordana Georgin
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Daniel Allasia
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105900, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia.
- Faculdade Meridional IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
28
|
Franco DSP, Georgin J, Drumm FC, Netto MS, Allasia D, Oliveira MLS, Dotto GL. Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11184-11194. [PMID: 31960236 DOI: 10.1007/s11356-019-07490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Dyes are widely used in many industrial sectors, many contain harmful substances to human health, and their release into the environment entails several environmental problems, generating a major worldwide concern as water resources are increasingly limited. The development of cheap and efficient biosorbents that remove these pollutants is of utmost importance. In this study, powdered seeds of the araticum fruit (Annona crassiflora) were used in the biosorption of crystal violet (CV) dye from aqueous solutions and simulated textile effluents. Through the characterization techniques, it can be observed that the material presented an amorphous structure, containing an irregular surface composed mainly by groups containing carbon, hydrogen, and oxygen. CV biosorption was favored at the natural pH of the solution (7.5) for a dosage of 0.7 g L-1 of araticum seed powder. The pseudo-second-order model was the most suitable to represent the biosorption kinetics in the removal of the CV. Biosorption capacity reached equilibrium in the first minutes at the lowest concentrations, and, at the highest, after 120 min. The equilibrium data were well represented by the Langmuir model, with a maximum biosorption capacity of 300.96 mg g-1 at 328 K. Biosorption had a spontaneous and endothermic nature. In the treatment of a simulated effluent, the biosorbent removed 87.8% of the color, proving to be efficient. Therefore, the araticum seeds powder (ASP) can be used as a low-cost material for the treatment of colored effluents containing the crystal violet (CV) dye.
Collapse
Affiliation(s)
- Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Jordana Georgin
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Fernanda C Drumm
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Daniel Allasia
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, Barranquilla, 080002, Atlántico, Colombia.
- Faculdade Meridional IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
29
|
Santos LC, da Silva AF, Dos Santos Lins PV, da Silva Duarte JL, Ide AH, Meili L. Mg-Fe layered double hydroxide with chloride intercalated: synthesis, characterization and application for efficient nitrate removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5890-5900. [PMID: 31863374 DOI: 10.1007/s11356-019-07364-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Mg-Fe layered double hydroxide intercalated with chloride (Mg-Fe-Cl LDH) was synthetized, characterized, and evaluated as adsorbent to remove nitrate from aqueous solution. The pH, initial nitrate concentration, adsorbent dosage, and particle size were investigated. Kinetic data was best represented by pseudo-second order model indicating that the rate limiting step was chemisorption. Intraparticle diffusion model indicates that adsorption kinetic is limited by external and intraparticle diffusion. Sips model was selected, based on R2, ARE, and AIC, to adequately represent the adsorption isotherms, which permits to affirm that the adsorption occurs in heterogeneous surface, obtaining the maximum adsorption capacity of 18.17 mg.g-1 at 30 oC. Thermodynamics parameters indicate that the adsorption was spontaneous, exothermic, and with structural modification. These findings come up with Mg-Fe-Cl LDH as a suitable adsorbent for nitrate and could contribute to its removal from the water and wastewater.
Collapse
Affiliation(s)
- Luciane Cavalcante Santos
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Anamália Ferreira da Silva
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Pollyanna Vanessa Dos Santos Lins
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - José Leandro da Silva Duarte
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Alessandra Honjo Ide
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil.
| |
Collapse
|
30
|
Hernandes PT, Oliveira MLS, Georgin J, Franco DSP, Allasia D, Dotto GL. Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31924-31933. [PMID: 31487011 DOI: 10.1007/s11356-019-06353-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The golden trumpet tree bark (GTB), a wood-processing residue, was tested as adsorbent material for decontamination of wastewaters containing methylene blue dye (MB). The powdered material was preponderantly amorphous, containing an irregular surface with the presence of lignin and holocellulose. The adsorption was favorable at basic pH of 10 and adsorbent dosage of 0.5 g L-1. The kinetics has finished in only 30 min and fitted by the general order model (GO). The isotherm behaviors were successfully represented by the Langmuir model. The value found for the maximum adsorption capacity was 232.25 mg g-1, being obtained at 328 K. The standard variation of Gibbs free energy (ΔG0) ranged from - 10.77 to - 8.09 kJ mol-1, indicating a spontaneous and favorable adsorption. A variation of standard enthalpy (ΔH0) of 18.58 kJ mol-1 revealed an endothermic adsorption. A sloped forward curve was found in the continuous operation, with breakthrough time (tb) of 325 min. The stoichiometry capacity of the column (qeq) and the length of mass transfer zone (Zm) were, respectively, 23.57 mg g-1 and 11.28 cm. The GTB was efficient in the treatment of a simulated effluent, obtaining color removal of 96%. These results show that GTB can be applied as adsorbent for decontamination of wastewaters containing methylene blue.
Collapse
Affiliation(s)
- Paola T Hernandes
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
- Faculdade Meridional IMED, 304, Passo Fundo, RS, 99070-220, Brazil
| | - Jordana Georgin
- Civil Engineering Post Graduation Program, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Daniel Allasia
- Civil Engineering Post Graduation Program, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|