1
|
Liu J, Yang W, Zhou H, Zia-Ur-Rehman M, Salam M, Ouyang L, Chen Y, Yang L, Wu P. Exploring the mechanisms of organic fertilizers on Cd bioavailability in rice fields: Environmental behavior and effect factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117094. [PMID: 39317071 DOI: 10.1016/j.ecoenv.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The problem of paddy Cadmium (Cd) contamination is currently the focus of global research. Earlier researches have confirmed that utilization of organic fertilizers regulates Cd chemical fraction distribution by increases organic bound Cd. However, environmental behaviours of organic fertilizers in paddy are still lack exploration. Here, we critical reviewed previous publications and proposed a novel research concept to help us better understand it. Three potential impact pathways of utilization of organic fertilizers on the bioavailability of Cd are presented: (i) use of organic fertilizers changes soil physicochemical properties, which directly affects Cd bioavailability by changing chemical form of Cd(II); (ii) use of organic fertilizers increases soil nutrient content, which indirectly regulates Cd supply and bioaccumulation through ion adsorption and competition for ion-transport channels between nutrients and Cd; and (iii) use of organic fertilizers increases activity of microorganisms and efflux of rice root exudates, which indirectly affects Cd bioavailability of through complexation and sequestration of these organic materials with Cd. Meanwhile, dissolved organic matter (DOM) in the rhizosphere of rice is believed to be the key to revealing the effects of organic fertilizers on Cd. DOM is capable of adsorption and complexation-chelation reactions with Cd and the fractionation of Cd(II) is regulated by DOM. Molecular mass, chemical composition, major functional groups and reaction sequence of DOM determine the formation and solubilization of DOM-Cd complexes.
Collapse
Affiliation(s)
- Jingbin Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Wentao Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | | | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Yonglin Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Liyu Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| |
Collapse
|
2
|
Qin L, Yu L, Wang M, Sun X, Wang J, Liu J, Wang Y, White JC, Chen S. The environmental risk threshold (HC 5) for Cd remediation in Chinese agricultural soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121316. [PMID: 38838540 DOI: 10.1016/j.jenvman.2024.121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Given the increasing concern over Cd contamination of agricultural soils in China, reducing the availability of the toxic metal has become an important remedial strategy. However, the lack of a unified evaluation framework complicates the assessment of remediation efficiency of different practices. Here, we evaluated the general extraction method (GEM) of available Cd in nine typical soil types by comparing extraction agents, including CaCl2, EDTA, Mehlich-Ⅲ, HCl and DTPA. The safe grain concentration of different agricultural products from National Food Safety Standards Limits of Contaminants in Food (GB 2762-2022) was then applied to understand soil limited available Cd concentration based on dose-response curves. We also derived environmental risk threshold (HC5) values for Cd remediation in agricultural soils by constructing species sensitivity distribution (SSD) curves. The results showed that Mehlich-Ⅲ best predicted Cd accumulation in crops (with 76.5% of explanation of grain Cd) and was selected as the GEM of soil available Cd for subsequent analyses. The regression coefficient (R2) of dose-response curves fitting between Cd absorption in crop tissues and soil available Cd extracted by GEM based on 30 different crop species varied from 51.0% to 79.5%, and the derived limit concentration of soil available Cd based on standard GB 2762-2022 was 0.18-0.76 mg‧kg-1. An HC5 of 0.19 mg‧kg-1 was then calculated, meaning that a concentration of available Cd in agricultural soil below 0.19 mg‧kg-1 ensures that 95% of agricultural products meet the quality and safety requirements of standard GB 2762-2022. The prediction model was well verified in the field test, indicating that can correctly estimate the soil available Cd based on the content of Cd in plant. This study provides a robust scientific framework for deriving the risk threshold for Cd remediation in agricultural soils and could be quite useful for establishing soil remediation standards.
Collapse
Affiliation(s)
- Luyao Qin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
| | - Lei Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Meng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xiaoyi Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiaxiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
| | - Shibao Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
3
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Efficient Immobilization of heavy metals using newly synthesized magnetic nanoparticles and some bacteria in a multi-metal contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39602-39624. [PMID: 38822962 DOI: 10.1007/s11356-024-33808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Xin J. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123890. [PMID: 38554840 DOI: 10.1016/j.envpol.2024.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Agro-products accumulate Cd from the soil and are the main source of Cd in humans. Their use must therefore be minimized using effective strategies. Large soil beds containing low-to-moderate Cd-contamination are used to produce agro-products in many developing countries to keep up with the demand of their large populations. Improving the health of Cd-contaminated soils could be a cost-effective method for minimizing Cd accumulation in crops. In this review, the latest knowledge on the physiological and molecular mechanisms of Cd uptake and translocation in crops is presented, providing a basis for developing advanced technologies for producing Cd-safe agro-products. Inoculation of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, application of organic matter, essential nutrients, beneficial elements, regulation of soil pH, and water management are efficient techniques used to decrease soil Cd bioavailability and inhibiting the uptake and accumulation of Cd in crops. In combination, these strategies for improving soil health are environmentally friendly and practical for reducing Cd accumulation in crops grown in lightly to moderately Cd-contaminated soil.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang 421002, China.
| |
Collapse
|
5
|
Kim YN, Lee KA, Lee M, Kim KR. Synergetic effect of complex soil amendments to improve soil quality and alleviate toxicity of heavy metal(loid)s in contaminated arable soil: toward securing crop food safety and productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87555-87567. [PMID: 35818018 DOI: 10.1007/s11356-022-21752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Globally, various types of soil amendments have been used to improve the fertility and quality of soils in agricultural lands. In heavy metal(loid) (HM)-contaminated land, the soil amendments can also act as an immobilizing agent, thereby detoxifying HMs. A pot experiment was conducted to investigate the effects of three different complex amendments, including T1 (gypsum + peat moss + steel slag; GPMSS), T2 (GPMSS + lime), and T3 (GPMSS + lime + sulfate), on biogeochemical properties of the HM-contaminated arable soils, including Soil A and Soil B, and the magnitude of HM uptake by Chinese cabbage (Brassica rapa L.) for 6 weeks. All the examined complex amendments improved soils' physical and biological properties by increasing the water-stable aggregate (WSA) ratio by 18-54% and dehydrogenase activity (DHA) by 300-1333 mg triphenyl formazan (TPF) kg-1 24 h-1 in comparison to control soils. The concentrations of HMs accumulated in B. rapa appeared to decrease tremendously, attributed to effectively immobilizing the HMs in soils by incorporating complex amendments mediated by soil pH, dissolved organic carbon (DOC), and complexation with the components of amendments. All these positive changes in soil properties resulted in the elevation of B. rapa productivity. For instance, T1 treatment induced an increase of plant dry weight (DW) by 3.7-3.9 times compared to the controls. Suppose there are no typical differences in the efficiency among the treatments. In that case, our findings still suggest that using complex amendments for the HM-contaminated arable soils would be beneficial by bringing a synergetic effect on improving soil biogeochemical properties and alleviating HM toxicity, which eventually can enhance plant growth performance.
Collapse
Affiliation(s)
- Young-Nam Kim
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Keum-Ah Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Smart Agro-Industry, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Mina Lee
- Agri-Food Bio Convergence Institute , Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Kwon-Rae Kim
- Agri-Food Bio Convergence Institute , Gyeongsang National University, Jinju, 52725, Republic of Korea.
| |
Collapse
|
6
|
Pan SF, Ji XH, Xie YH, Liu SH, Tian FX, Liu XL. Influence of soil properties on cadmium accumulation in vegetables: Thresholds, prediction and pathway models based on big data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119225. [PMID: 35351593 DOI: 10.1016/j.envpol.2022.119225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Soil properties, such as soil pH, soil organic matter (SOM), cation exchange capacity (CEC), are the most important factors affecting cadmium (Cd) accumulation in vegetables. In this study, we conducted big data mining of 31,342 soil and vegetable samples to examine the influence of soil properties (soil pH, SOM, CEC, Zn and Mn content) on the accumulation of Cd in root, solanaceous, and leafy vegetables in Hunan Province, China. Specifically, the Cd accumulation capability was in the following order: leafy vegetables > root vegetables > solanaceous vegetables. The soil property thresholds for safety production in vegetables were determined by establishing nonlinear models between Cd bioaccumulation factor (BCF) and the individual soil property, and were 6.5 (pH), 30.0 g/kg (SOM), 13.0 cmol/kg (CEC), 100-140 mg/kg (Zn), and 300-400 mg/kg (Mn). When soil property values were higher than the thresholds, Cd accumulation in vegetables tended to be stable. Prediction models showed that pH and soil Zn were the leading factors influencing Cd accumulation in root vegetables, explaining 87% of the variance; pH, SOM, soil Zn and Mn explained 68% of the variance in solanaceous vegetables; pH and SOM were the main contributors in leafy vegetables, explaining 65% of the variance. Further, variance partitioning analysis (VPA) revealed that the interaction effect of the corresponding key soil properties contributed mostly to BCF. Meanwhile, partial least squares (PLS) path modeling was employed to analyze the path and the interactive effects of soil properties on Cd BCF. pH and SOM were found to be the biggest two players affecting BCF in PLS-models, and the most substantial interactive influence paths of soil properties on BCF were different among the three types of vegetables.
Collapse
Affiliation(s)
- Shu-Fang Pan
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Xiong-Hui Ji
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Yun-He Xie
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Sai-Hua Liu
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Fa-Xiang Tian
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Xin-Liang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
7
|
Wang X, Cai D, Ji M, Chen Z, Yao L, Han H. Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153242. [PMID: 35051479 DOI: 10.1016/j.scitotenv.2022.153242] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/24/2023]
Abstract
Heavy metal-immobilizing bacteria are normally capable of stabilizing metals and affecting their absorption by plants. However, few studies have elucidated the mechanisms employed by novel heavy metal-immobilizing and plant growth-promoting bacteria to immobilize Cd and Pb and reduce their uptake by vegetables. In this study, polyamine (PA)-producing strains were isolated and their effects on biomass and metal accumulation in water spinach (Ipomoea aquatica Forssk.) and the underlying mechanisms were investigated. Two PA-producing strains, Enterobacter bugandensis XY1 and Serratia marcescens X43, were isolated. Strains XY1 and X43 reduced the aqueous Cd and Pb levels (49%-52%) under 10 mg L-1 Cd and 20 mg L-1 Pb because of metal ion chelation by bacterially produced PAs and cell adsorption. Further evidence showed that Cd and Pb were bound and precipitated on the bacterial cell surface in the form of Cd(OH)2, CdCO3 and PbO. Compared with strain-free water spinach, greens inoculated with strains XY1 and X43 showed 51%-80% lower Cd and Pb contents. The rhizosphere soil pH and PA contents were significantly higher, and lower contents of the rhizosphere soil acid-soluble fractions of Cd (18%-39%) and Pb (31%-37%) were observed compared to the noninoculated control. Moreover, inoculation with XY1 reduced the diversity of the bacterial community, but the relative abundances of plant growth-promoting and PA-producing bacteria in rhizosphere soil were enriched, which enhanced water spinach resistance to Cd and Pb toxicity. Our findings describe novel heavy metal-immobilizing bacteria that could be used to improve the habitat of vegetables and reduce their uptake of heavy metals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Debao Cai
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Mingfei Ji
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Zhaojin Chen
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Hui Han
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| |
Collapse
|
8
|
Ma W, Sun T, Xu Y, Zheng S, Sun Y. In‒situ immobilization remediation, soil aggregate distribution, and microbial community composition in weakly alkaline Cd‒contaminated soils: A field study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118327. [PMID: 34634410 DOI: 10.1016/j.envpol.2021.118327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Biochar has advantages of a large specific surface area and micropore structure, which is beneficial for immobilization remediation of heavy metal‒contaminated soils. A field experiment was conducted to investigate the effects of rice husk biochar (BC) (7.5, 15, and 15 t hm-2) on Cd availability in soils and accumulation in maize (Zea mays L), soil aggregate structure, and microbial community abundance. The results show that BC treatment promoted the formation of large aggregates (5-8 and 2-5 mm) and enhanced aggregate stability, whereas it decreased the proportion of ≤0.25 mm soil aggregates. The geometric mean diameter and mean weight diameter under BC‒treated soils increased by 9.9%-40.5% and 3.6%-32.7%, respectively, indicating that the stability of soil aggregates increased. Moreover, BC facilitated the migration of Cd from large particles (>0.5 mm aggregates) to small particles (<0.25 mm aggregates). The application of BC decreased diethylenetriamine pentaacetic acid ‒extractable Cd by 17.6%-32.12% in contrast with the control. The amount of Cd in maize was reduced by 56.7%-81.1% for zhengdan958, 52.4%-85.9% for Sanbei218, and 73.7%-90.4% for Liyu16. When compared with the control groups, BC addition significantly (P < 0.05) increased the number of Ace observed, Shannon diversity indices, and the relative abundances of Proteobacteria, Acidobacteria, and Bacteroidetes. Therefore, rice husk BC exhibited a certain feasibility in immobilizing remediation of weakly alkaline Cd‒contaminated soils.
Collapse
Affiliation(s)
- Wenyan Ma
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Tong Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing, 100125, China
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
9
|
Xiao X, Pei M, Zhou J, Sun S, Li C, Zhu X, Zhao Y. Soil amendments inhibited the cadmium accumulation in Ligusticum striatum DC. and improved the plant growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67788-67799. [PMID: 34264494 DOI: 10.1007/s11356-021-15332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Soil aggregates display a significant influence on the bioavailability of heavy metals in soil. In this study, we conducted a field experiment in the main producing area of Ligusticum striatum DC. to explore the effects of the amendments on cadmium (Cd) distribution in soil aggregates and plant growth. L. striatum was planted in natural Cd-polluted soils added with mixed amendments, composed of heavy/light calcium carbonate (Type 1/Type 2 amendments), calcium-bentonite, potassium dihydrogen phosphate, biochar, sodium silicate, and attapulgite, with the application rate of 0.5 t ha-1, 1.5 t ha-1, and 5.0 t ha-1. The results demonstrated that the application of the amendments promoted the formation of soil macroaggregates (250-2000 μm and >2000 μm) and, altered soil Cd distribution among aggregates fractions by translocating Cd from macroaggregates into small one (microaggregate; <250 μm). Soil amendments addition greatly alleviated the phytotoxic effects of Cd on plants and promoted the biomass of the rhizome of L. striatum by 14.38-53.47%. Based on the structural equation modeling, the decrease of available Cd in the fraction of large macroaggregates greatly contributed to the less accumulation of Cd in plants (r = 0.70; p < 0.05). In general, the amendments inhibited the plant Cd accumulation by re-distribution of Cd among soil aggregates and, improved the plant growth by supplying available nutrients.
Collapse
Affiliation(s)
- Xian Xiao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, China
| | - Meng Pei
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Junjie Zhou
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Shuo Sun
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Chengcheng Li
- Jiangsu Yiyue Environmental Technology Co., Ltd., Wuxi, 214200, China
| | - Xuesong Zhu
- Jiangsu Puze Environmental Engineering Co., Ltd., Changzhou, 213164, China
| | - Yuan Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
10
|
Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. High-throughput sequencing clarifies the spatial structures of microbial communities in cadmium-polluted rice soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47086-47098. [PMID: 33886056 DOI: 10.1007/s11356-021-13993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Soil microbial communities are affected by environmental factors. Contamination with heavy metals such as cadmium (Cd) can decrease soil microbial species richness and substantially alter soil microbial species composition. Investigations of the microbial communities in Cd-contaminated soils are necessary to obtain data for soil bioremediation efforts. However, depth-associated variations in microbial community composition and structure in Cd-contaminated paddy soils are not well understood. Here, the effects of various degrees of long-term Cd pollution on soil microorganisms were investigated at different soil depths within the plough layer using 16S rRNA gene amplicon sequencing. We found that, in Cd-polluted soils, microbial communities were more similar between the surface soil and the underlying soil. In addition, microbial community richness and/or diversity were significantly reduced in the Cd-polluted underlying soil as compared with the non-polluted underlying soil. However, species richness in the surface layer was significantly greater in the mildly and severely Cd-polluted soils. The soil microbial communities in the same soil layer differed significantly between the non-polluted and polluted soils. Furthermore, Cd contamination affected the microbial communities of different soil layers differently. Soil pH had a synergistic effect on microbial community abundance and composition. The potential functions of the soil microbiota were mainly related to environmental processing, genetic processing, and metabolic pathways. Notably, our identification of the phyla that were differently abundant among sites with different levels of Cd pollution will provide experimental guidance for further explorations of the effects of Cd on soil microbes in natural environments. Our results not only demonstrate that long-term Cd pollution leads to a marked reduction in microbial richness and diversity in the underlying soil layer, but they also help to clarify how long-term heavy metal contamination affects the soil bacterial community.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Zhenzhi Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Qilin Liao
- Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Yang Q, Yang C, Yu H, Zhao Z, Bai Z. The addition of degradable chelating agents enhances maize phytoremediation efficiency in Cd-contaminated soils. CHEMOSPHERE 2021; 269:129373. [PMID: 33387792 DOI: 10.1016/j.chemosphere.2020.129373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 05/27/2023]
Abstract
Chelating agent-induced phytoremediation is a viable approach to completely remove heavy metals from soil. However, little attention has been paid to the interaction mechanisms between the concentration of the chelating agent and the application time on the physiological and biochemical properties of soil and plants. In this study, five chelating agents, namely ethylenediamine tetraacetic acid (EDTA), diethylenetriacetic acid (NTA), tetrasodium N, N-diacetate (GLDA), aspartate dibutyric acid ether (AES), and iminodisuccinic acid (IDSA), were used to support phytoremediation with maize and to explore the removal effect of Cd in soil. The results showed that chelating agent concentrations of 9 mmol kg-1 significantly reduced the biomass of maize. Treatment with AES at a dose of 6 mmol kg-1 significantly increased aboveground biomass, reaching a maximum of 0.92 g pot-1 in all treatments. At an AES concentration of 6 mmol kg-1, the highest shoot and root Cd levels of 7.79 and 9.86 mg kg-1, respectively, were observed, which were 3.05 and 1.60 times higher than those of the control. Total Cd extraction followed the order AES (6 mmol kg-1) > GLDA > NTA > EDTA > IDSA (3 mmol kg-1). Chelating agent treatment significantly increased the activity of antioxidant enzymes and promoted plant growth. The self-degradation of AES significantly reduced soil pH, increased soil Cd activity, and promoted Cd uptake and transportation in maize.
Collapse
Affiliation(s)
- Qiao Yang
- College of Land Science and Technology, China University of Geosciences, Beijing, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chen Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Yu
- College of Land Science and Technology, China University of Geosciences, Beijing, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhongqiu Zhao
- College of Land Science and Technology, China University of Geosciences, Beijing, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China; Key Laboratory of Land Consolidation and Rehabilitation Ministry of Land and Resources, Beijing, 100035, China.
| | - Zhongke Bai
- College of Land Science and Technology, China University of Geosciences, Beijing, No.29, Xueyuan Road, Haidian District, Beijing, 100083, China; Key Laboratory of Land Consolidation and Rehabilitation Ministry of Land and Resources, Beijing, 100035, China
| |
Collapse
|
12
|
Wang M, Chen S, Chen L, Wang D. Microbial mechanisms responsible for the variation of soil Cd availability under different pe+pH environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111057. [PMID: 32905911 DOI: 10.1016/j.ecoenv.2020.111057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to explore potential microbial mechanisms associated with how water management may alter soil Cd availability under changing pe + pH environments. Four water regimes, aerobic [70% MWHC] + dissolved oxygen, aerobic, continuous flooding, and continuous flooding + N2, were applied to Cd-contaminated soil. The results show that the anoxic treatments were effective in decreasing soil pe + pH and in turn decreased Cd availability and increased soil S and Fe availability relative to those of the aerobic treatments. The decreased pe + pH enriched some anaerobic microorganisms such as those in the families Anaerolineaceae and Geobacteraceae. Conversely, other families, such as Gemmatimonadaceae and Sphingomonadaceae, appeared to be sensitive biomarkers that responded to aerobic treatments. Bacterial community structure and network interactions were altered to strengthen bacterial responses to different pe + pH environments as indicated by phylogenetic molecular ecological network (pMEN) analysis. The majority of predicted functional categories, such as metabolism, cell motility, and membrane transport, were affected by different irrigation regimes as indicated by a functional gene profile analysis. The categories were related to important traits that facilitated acclimation of bacteria to their local environment with altered soil pe + pH. Structural equation models revealed that soil pe + pH contributed significantly to soil enzyme activities and differences in bacterial community and function, and consequently, was responsible for the variation of soil Cd availability and iron or sulfur reduction.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Li Chen
- Institute of Plant Protection and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
13
|
Xia Y, Luo H, Li D, Chen Z, Yang S, Liu Z, Yang T, Gai C. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114217. [PMID: 32113109 DOI: 10.1016/j.envpol.2020.114217] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
A novel amino-functionalized hydrochar material (referred to NH2-HCs) was prepared and used as the soil amendment to immobilize multi-contaminated soils for the first time. The results showed that the application of NH2-HCs significantly improved (P < 0.05) soil properties (i.e., pH value, cation exchange capacity and organic content). By introduction of NH2-HCs, the contaminated soil showed the highest value of 96.2%, 52.2% and 15.5% reductions in Cu, Pb and Cd bioavailable concentrations and the leaching toxicity of Cu, Pb and Cd were remarkably reduced by 98.1%, 31.3% and 30.4%, respectively. Most of exchangeable Cu, Pb and Cd reduced were transformed into its less available forms of oxidizable and residual fractions. Potential ecological risk assessment indicated that the element Cd accounted for the most of total risks in NH2-HCs amended soils. The mechanism study indicated that surface complexation, chemical chelating and cation-pi interaction of NH2-HCs played a vital role in the immobilization of heavy metals. Pot experiments further verified that the application of NH2-HCs significantly improved plant growth and reduced metal accumulations. The present study offered a novel approach to prepare amino-functionalized hydrochars with great potential as the green and alternative amendments for efficiently immobilizing heavy metals in multi-contaminated soil.
Collapse
Affiliation(s)
- Yu Xia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hainan Luo
- College of Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Dong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeliang Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengshu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chao Gai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
An S, Zhang F, Chen X, Gao M, Zhang X, Hu B, Li Y. Effects of freeze-thaw cycles on distribution and speciation of heavy metals in pig manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8082-8090. [PMID: 31897986 DOI: 10.1007/s11356-019-07518-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
To understand the potential environmental influence of animal manure under freeze-thaw cycles, pig manure was used to conduct a simulation experiment to explore the effects of freeze-thaw cycles on heavy metal distribution and form transformation. Thirty cycles of freezing and thawing were performed alternately by freezing at - 18 ± 2 °C for 24 h and thawing at 20 ± 2 °C for 24 h. By a serial wet sieving procedure, manure samples were separated into different sizes of 1000, 250, 75, 38, and < 38 μm. Solid samples were collected from the dry matter at each stage of sieve; then the washing waters were collected as liquid samples accordingly. The concentrations of heavy metals in solid/liquid samples and their five forms were analyzed. It showed that the concentrations of heavy metals in the solid and liquid samples gradually increased because of organic matter degradation during freezing and thawing cycles. The distribution of heavy metals on particles of different sizes was also affected by the degradation and breakup of pig manure; the metals showed a tendency to aggregate in small particles (< 38 μm). Among them, the percentage of Cu and Zn on < 38 μm particles increased by 162.3% and 554.1%, respectively. After several freeze-thaw cycles, the concentrations of EXCH-X (metals of exchangeable form) increased significantly, those of CARB-X (carbonate-bound form) and Fe/Mn-X (Fe/Mn oxide-bound form) decreased accordingly. These form transformations may be largely influenced by the enhancement of dissolved organic matter (DOM) and the reduction of pH value. Therefore, frequent freeze-thaw cycles may promote the mobility and bioavailability of heavy metals in pig manure. The results are significant for understanding the pollution risk of pig manure in the freeze-thaw regions.
Collapse
Affiliation(s)
- Siyu An
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Fengsong Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Min Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xuelian Zhang
- Beijing Soil and Fertilizer Extension Service Station, Beijing, 100029, China
| | - Baiyang Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
15
|
Wu J, Wang Q, Zhu X. A new approach to protect tobacco plants from Cd contamination using the attenuated recombinant virus CMV△2b containing the PvSR2 gene. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1777898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Juan Wu
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, PR China
| | - Qiang Wang
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
- Qionghu Academy of Classical Learning, Yuanjiang, Hunan, PR China
| | - Xiwu Zhu
- Institute of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan, PR China
| |
Collapse
|