1
|
Zhi X, Du L, Zhang P, Guo X, Li W, Wang Y, He Q, Wu P, Lei X, Qu B. BPA induces testicular damage in male rodents via apoptosis, autophagy, and ferroptosis. Food Chem Toxicol 2024; 193:114984. [PMID: 39245402 DOI: 10.1016/j.fct.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Bisphenol A (BPA), chemically known as 2,2-bis(4-hydroxyphenyl) propane, is one of the most common endocrine-disrupting chemicals in our environment. Long-term or high-dose exposure to BPA may lead to testicular damage and adversely affect male reproductive function. In vivo studies on rodents have demonstrated that BPA triggers apoptosis in testicular cells through both intrinsic and extrinsic pathways. Further in vitro studies on spermatogonia, Sertoli cells, and Leydig cells have all confirmed the pro-apoptotic effects of BPA. Given these findings, apoptosis is considered a primary mode of cell death induced by BPA in testicular tissue. In addition, BPA promotes autophagy by altering the activity of the Akt/mTOR pathway and upregulating the expression of autophagy-related genes and proteins. Recent studies have also identified ferroptosis as a significant contributing factor to BPA-induced testicular damage, further complicating the landscape of BPA's effects. This review summarizes natural substances that mitigate BPA-induced testicular damage by inhibiting these cell death pathways. These findings not only highlight potential therapeutic strategies but also underscore the need for further research into the underlying mechanisms of BPA-induced toxicity, particularly as it pertains to human health risk assessment and the development of more effective BPA management strategies.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Lehui Du
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingdong Guo
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weiwei Li
- The 81st Group Army Hospital of Chinese PLA, Zhangjiakou, China
| | - Yuan Wang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiduo He
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Peien Wu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Xiao Lei
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Baolin Qu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
3
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
5
|
Xiong YW, Zhu HL, Zhang J, Geng H, Tan LL, Zheng XM, Li H, Fan LL, Wang XR, Zhang XD, Wang KW, Chang W, Zhang YF, Yuan Z, Duan ZL, Cao YX, He XJ, Xu DX, Wang H. Multigenerational paternal obesity enhances the susceptibility to male subfertility in offspring via Wt1 N6-methyladenosine modification. Nat Commun 2024; 15:1353. [PMID: 38355624 PMCID: PMC10866985 DOI: 10.1038/s41467-024-45675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Run Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zong-Liu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yun-Xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiao-Jin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| |
Collapse
|
6
|
Cao Y, Chen S, Lu J, Zhang M, Shi L, Qin J, Lv J, Li D, Ma L, Zhang Y. BPA induces placental trophoblast proliferation inhibition and fetal growth restriction by inhibiting the expression of SRB1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60805-60819. [PMID: 37037937 DOI: 10.1007/s11356-023-26850-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Bisphenol-A (BPA) is a common environmental toxicant that is known to be associated with fetal growth restriction (FGR). However, the mechanisms of how BPA induce FGR is poorly characterized. We conducted proteomics to identify the abnormal expression of SRB1 in female placental tissues with high BPA-induced FGR and further verified its decreased expression in human placenta and BeWo cells. Next, the effect of BPA on fetal development was further confirmed in pregnant C57BL/6 mice. The expression of SRB1 was consistently downregulated in human FGR placentas, BPA-exposed trophoblasts and mouse placentas. In addition, we found that SRB1 interacted with PCNA, and BPA exposure indirectly reduced the expression of PCNA and further inhibited placental proliferation. In vitro studies showed that BPA exposure reduced the expression of CDK1, CDK2, cyclin B and phosphorylated Rb in placental trophoblast cells, indicating cell cycle arrest after exposure to BPA. In addition, the expression of γ-H2AX and phosphorylated ATM was upregulated in BPA-exposed trophoblasts, indicating increased DNA damage. Our results indicate that BPA-induced FGR is achieved by reducing the expression of SRB1, inhibiting placental proliferation and increasing DNA damage. Our findings not only explain the mechanism of BPA-associated developmental toxicity but also shed light upon developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Sihan Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Lu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
| | - Ming Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Shi
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juling Qin
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Lv
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Danyang Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China.
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China.
| |
Collapse
|
7
|
Mao Y, Li D, Yang Q, Pei X, Duan Z, Ma M. Prenatal BPA exposure disrupts male reproductive functions by interfering with DNA methylation and GDNF expression in the testes of male offspring rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53741-53753. [PMID: 36864339 DOI: 10.1007/s11356-023-26154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
BPA is a ubiquitous environmental endocrine-disrupting chemical, and maternal exposure to BPA is associated with impaired male reproductive functions; however, the mechanisms remain to be elucidated. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in maintaining normal spermatogenesis and fertility. However, the effect of prenatal BPA exposure on GDNF expression and its mechanism in the testis has not been reported. In this study, pregnant Sprague-Dawley rats were respectively exposed to 0, 0.05, 0.5, 5, and 50 mg/kg/day BPA via oral gavage from gestational day (GD) 5 to GD 19, with 6 pregnant rats in each group. ELISA, histochemistry, real-time PCR, western blot, and methylation-specific PCR (MSP) were used to detect the sex hormone levels, testicular histopathology, mRNA and protein expression of DNA methyltransferases (DNMTs) and GDNF, and the promoter methylation of Gdnf in the testes of male offspring at postnatal day (PND) 21 and PND 56. Prenatal BPA exposure increased body weight; decreased sperm counts and serum levels of testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH); and induced testicular histological damage, which indicated the damage of male reproductive function. Prenatal BPA exposure also upregulated Dnmt1 in 5 mg/kg group and Dnmt3b in 0.5 mg/kg group, but down-regulated Dnmt1 in 50 mg/kg group at PND 21. At PND 56, Dnmt1 was significantly increased in 0.05 mg/kg group but decreased in 0.5, 5, and 50 mg/kg groups, Dnmt3a was decreased, and Dnmt3b was markedly increased in 0.05 and 0.5 mg/kg groups but decreased in 5 and 50 mg/kg groups. The mRNA and protein expression levels of Gdnf were decreased markedly in 0.5 and 50 mg/kg groups at PND 21. And the methylation level of Gdnf promoter was significantly increased in 0.5 mg/kg group, but decreased in 5 and 50 mg/kg groups at PND 21. In conclusion, our study indicates that prenatal BPA exposure disrupts male reproductive functions, interferes with the expression of DNMTs, and decreases Gdnf expression in the testes of male offspring. Gdnf expression may be regulated by DNA methylation; however, the detailed mechanism needs to be further investigated.
Collapse
Affiliation(s)
- Yaping Mao
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Dan Li
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Qiaoqiao Yang
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Xiucong Pei
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Zhiwen Duan
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China.
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China.
| |
Collapse
|
8
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
9
|
Sahu C, Singla S, Jena G. Studies on male gonadal toxicity of bisphenol A in diabetic rats: An example of exacerbation effect. J Biochem Mol Toxicol 2022; 36:e22996. [DOI: 10.1002/jbt.22996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Chittaranjan Sahu
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Shivani Singla
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
10
|
Mondal S, Bandyopadhyay A. Bisphenol A and male murine reproductive system: finding a link between plasticizer and compromised health. Toxicol Sci 2021; 183:241-252. [PMID: 34320211 DOI: 10.1093/toxsci/kfab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global burden of male infertility is rising at an alarming rate affecting the lives of millions in terms of physical, emotional and societal perspectives. Among several existing endocrine disrupting chemicals, bisphenol A (BPA) has been reported by many to inflict male reproductive toxicity in different experimental models, especially in mice. This review article critically discusses the overall reproductive toxicity of BPA with a special note to its ubiquitous existence, contamination route, effects on the reproductive system and toxicity mechanisms in male mice. Disturbed redox status in germ cells and spermatozoa plays a pivotal role in BPA induced male reproductive toxicity. In this context, the involvement of mitochondria and endoplasmic reticulum is also of grave importance. Induction of caspase-dependent apoptosis is the extreme consequence that leads to deterioration of cellular parameters. Besides the oxidative cellular and histoarchitectural damages, perturbed endocrine regulation, subsequent impaired hormonal and cellular genesis program, epigenetic alterations and inflammation cumulatively reflect poor sperm quality leading to compromised reproduction. Moreover, several key issues have also been highlighted that, if addressed, will strengthen our understanding of BPA mediated male reproductive toxicity.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt College Dhimarkheda (Rani Durgawati Vishwavidyalaya), Madhya Pradesh, Katni, 483332, India
| | - Arindam Bandyopadhyay
- Department of Zoology, Govt Shyam Sundar Agrawal College (Rani Durgawati Vishwavidyalaya), Madhya Pradesh, Sihora, Jabalpur, 483225, India
| |
Collapse
|
11
|
Li X, Ni M, Yang Z, Chen X, Zhang L, Chen J. Bioinformatics analysis and quantitative weight of evidence assessment to map the potential mode of actions of bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116469. [PMID: 33460868 DOI: 10.1016/j.envpol.2021.116469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a classical chemical contaminant in food, and the mode of action (MOA) of BPA remains unclear, constraining the progress of risk assessment. This study aims to assess the potential MOAs of BPA regarding reproductive/developmental toxicity, neurological toxicity, and proliferative effects on the mammary gland and the prostate potentially related to carcinogenesis by using the Comparative Toxicogenomics Database (CTD)-based bioinformatics analysis and the quantitative weight of evidence (QWOE) approach on the basis of the principles of Toxicity Testing in the 21st Century. The CTD-based bioinformatics analysis results showed that estrogen receptor 1, estrogen receptor 2, mitogen-activated protein kinase (MAPK) 1, MAPK3, BCL2 apoptosis regulator, caspase 3, BAX, androgen receptor, and AKT serine/threonine kinase 1 could be the common target genes, and the apoptotic process, cell proliferation, testosterone biosynthetic process, and estrogen biosynthetic process might be the shared phenotypes for different target organs. In addition, the KEGG pathways of the BPA-induced action might involve the estrogen signaling pathway and pathways in cancer. After the QWOE evaluation, two potential estrogen receptor-related MOAs of BPA-induced testis dysfunction and learning-memory deficit were proposed. However, the confidence and the human relevance of the two MOAs were moderate, prompting studies to improve the MOA-based risk assessment of BPA.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Mengmei Ni
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Zhirui Yang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xuxi Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Wei Y, Han C, Li S, Cui Y, Bao Y, Shi W. Cuscuta chinensis flavonoids down-regulate the DNA methylation of the H19/Igf2 imprinted control region and estrogen receptor alpha promoter of the testis in bisphenol A exposed mouse offspring. Food Funct 2020; 11:787-798. [PMID: 31930238 DOI: 10.1039/c9fo02770j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to the emerging contaminant bisphenol A (BPA) is ubiquitous and associated with reproductive disorders. The BPA effect as an endocrine disruptor is widely known but other mechanisms underlying developmental disease, such as epigenetic modifications, still remain unclear. The objective of this study was to investigate whether Cuscuta chinensis flavonoids (CCFs) can be used as a dietary supplement to reverse BPA-induced epigenetic disorders, by analyzing the molecular processes related to BPA impairment of testicular development. BPA and different concentrations of CCFs were administered to the dams at gestation day (GD) 0.5-17.5. The testis and serum of male mice were collected at postnatal day (PND) 21 and PND 56 for the detection of related indicators. Our results showed that compared with the BPA group, CCFs could significantly increase the serum contents of testosterone (T), estradiol (E2) in males at PND 21 and PND 56, as well as the contents and transcription levels of DNA methyltransferase 3A (Dnmt3A), Dnmt3B in males at PND 21 and that of estrogen receptor alpha (ERα) at PND 56. The expressions of Dnmt1 and ERα at PND 21 and ERβ at both PND 21 and PND 56 in males were significantly decreased with the administration of different concentrations of CCFs (P < 0.01 or P < 0.05). CCFs also significantly inhibited the BPA-induced hypermethylated status of the ERα promoter and H19/Igf2 imprinting control region (ICR) in the testis at PND 56. These results indicated that CCFs could decrease the methylation levels of ERα and H19/Igf2 genes by inhibiting the expression of DNA methyltransferases (DNMTs), thereby decreasing the levels of reproductive hormones and receptors in adult males, and ultimately alleviating the negative effect of BPA on testicular development in male mice.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China.
| | | | | | | | | | | |
Collapse
|
13
|
Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 2020; 53:e13646. [PMID: 32447772 DOI: 10.1111/and.13646] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood-testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood-testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function. In light of recent scientific reports, this review discusses the effects of environmental contaminants on the male reproductive function and the possible mechanisms of action.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
14
|
Wu F, Zhao J, Zhang E, Wu Q, Wu X, Zhang D, Liu Y, Wang R, Li W. Bisphenol A affects ovarian development in adolescent mice caused by genes expression change. Gene 2020; 740:144535. [DOI: 10.1016/j.gene.2020.144535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
|
15
|
Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J Clin Med 2020; 9:jcm9020471. [PMID: 32046352 PMCID: PMC7074154 DOI: 10.3390/jcm9020471] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Great attention has been paid in recent years to the harmful effects of various chemicals that interfere with our natural hormone balance, collectively known as endocrine-disrupting chemicals (EDCs) or endocrine disruptors. The effects on the reproductive system of bisphenol A (BPA) and phthalates have received particular attention: while they have a short half-life, they are so widespread that human exposure can be considered as continuous. Evidence is often limited to the animal model, disregarding the likelihood of human exposure to a mixture of contaminants. Data from animal models show that maternal exposure probably has harmful effects on the male fetus, with an increased risk of urogenital developmental abnormalities. After birth, exposure is associated with changes in the hypothalamic-pituitary-testicular axis, hindering the development and function of the male genital pathways through the mediation of inflammatory mechanisms and oxidative stress. The epidemiological and clinical evidence, while generally confirming the association between reproductive abnormalities and some phthalate esters and BPA, is more contradictory, with wildly different findings. The aim of this review is therefore to provide an update of the potential mechanisms of the damage caused by BPA and phthalates to reproductive function and a review of the clinical evidence currently available in the literature.
Collapse
|