1
|
Nand S, Singh PP, Verma S, Mishra S, Patel A, Shukla S, Srivastava PK. Biochar for mitigating pharmaceutical pollution in wastewater: A sustainable solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178743. [PMID: 39923470 DOI: 10.1016/j.scitotenv.2025.178743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Pharmaceutical contaminants (PCs), including antibiotics, analgesics, and other medications, pose a growing threat to aquatic ecosystems and human health due to their persistence and bioaccumulation potential. Biochar, a carbonaceous material derived from biomass pyrolysis, has emerged as a sustainable adsorbent for removing PCs from wastewater. Biochar is reported to remove PCs from water with an average range of 58 to 91 %, depending on the nature of feedstock, pyrolysis conditions, and characteristics of the pharmaceuticals. Biochar's effectiveness is attributed to its unique properties, including high porosity, large surface area and diverse functional groups, which enable the adsorption of various pharmaceutical compounds through physical and chemical interactions. Common PCs such as tetracycline, ciprofloxacin, ibuprofen, paracetamol, sulfamethoxazole, and cephalexin can be effectively removed using biochar. The adsorption process involves different mechanisms such as Van der Waals forces, electrostatic interactions, hydrogen bonding, and surface complexation. This review summarizes the current state of knowledge on biochar-based adsorption mechanisms, highlights successful applications in wastewater treatment, and identifies areas for future research. While promising, a deeper understanding of adsorption mechanisms, optimization of biochar production, and the development of effective regeneration methods are crucial for maximizing biochar's efficacy and ensuring its sustainable implementation in wastewater treatment systems.
Collapse
Affiliation(s)
- Sampurna Nand
- Environmental Technologies Division, CSIR-NBRI, Lucknow 226001, India; Department Environmental Sciences, Dr. RML Avadh University, Ayodhya 224001, India
| | - Prem Prakash Singh
- Plant Ecology and Climate Change Science Division CSIR-NBRI, Lucknow 226001, India
| | - Swati Verma
- Environmental Technologies Division, CSIR-NBRI, Lucknow 226001, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sandhya Mishra
- The Environmental Information, Awareness, Capacity Building and Livelihood Programme (EIACP) centre, CSIR-NBRI, Lucknow 226001, India
| | - Anju Patel
- Environmental Technologies Division, CSIR-NBRI, Lucknow 226001, India.
| | - Siddharth Shukla
- Department Environmental Sciences, Dr. RML Avadh University, Ayodhya 224001, India
| | | |
Collapse
|
2
|
Masrura SU, Abbas T, Bhatnagar A, Khan E. Selective adsorption of antibiotics from human urine using biochar modified by dimethyl sulfoxide, deep eutectic solvent, and ionic liquid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124588. [PMID: 39033844 DOI: 10.1016/j.envpol.2024.124588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Antibiotics present in human urine pose significant challenges for the use of urine-based fertilizers in agriculture. This study introduces a novel two-stage approach utilizing distinct biochar types to mitigate this concern. Initially, a modified biochar selectively adsorbed azithromycin (AZ), ciprofloxacin (CPX), sulfamethoxazole (SMX), trimethoprim (TMP), and tetracycline (TC) from human urine. Subsequently, a separate pristine biochar was employed to capture nutrients. Biochar, derived from sewage sludge and pyrolyzed at 550 and 700 °C, was modified using dimethyl sulfoxide, deep eutectic solvent, and ionic liquid to enhance antibiotic removal in the first stage. The modifications introduced hydrophilic functional groups (-OH/-COOH), which favor antibiotic adsorption. Adsorption kinetics followed the pseudo-second-order model, with the Langmuir isotherm model best describing the adsorption data. The maximum adsorption capacities for AZ, CPX, SMX, TMP, and TC after the modification were 196.08, 263.16, 81.30, 370.37, and 833.33 μg/g, respectively. Pristine biochar exhibited a superior ammonia adsorption capacity compared to the modified biochar. Hydrogen bonding, electrostatic attraction, and chemisorption drove antibiotic adsorption on the modified biochar. Regeneration efficiency declined due to solvent accumulation and potential byproduct formation on the biochar surface (<30% removal capacity after three cycles). This study presents innovative biochar modification strategies for selective antibiotic adsorption, laying the groundwork for environmentally friendly urine-based fertilizers in agriculture.
Collapse
Affiliation(s)
- Sayeda Ummeh Masrura
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Tauqeer Abbas
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI, 50130, Finland.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
3
|
Ngeno E, Ongulu R, Shikuku V, Ssentongo D, Otieno B, Ssebugere P, Orata F. Response surface methodology directed modeling of the biosorption of progesterone onto acid activated Moringa oleifera seed biomass: Parameters and mechanisms. CHEMOSPHERE 2024; 360:142457. [PMID: 38810799 DOI: 10.1016/j.chemosphere.2024.142457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
In this study, chemically activated fat-free powdered Moringa oleifera seed biomass (MOSB) was synthesized, characterized, and utilized as a cost-effective biosorbent for the abstraction of progesterone (PGT) hormone from synthetic wastewater. Natural PGT is a human steroid hormone from the progestogen family. Synthetic PGT is approved for the regulation of the menstrual cycle, aiding contraception, and is administered as a hormone replacement therapy in menopausal and post-menopausal women. PGT is an endocrine disrupting chemical (EDC) with negative health impacts on biota. The X-ray diffractogram (XRD), Scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) analyses displayed a porous, amorphous biosorbent with an elemental composition of 72.5% carbon and 22.5% oxygen and a specific surface area of 210.0 m2 g-1. The process variables including temperature (298-338 K), pH (2-10), contact time (10-180 min), adsorbate concentration (20-500 μg L-1), and adsorbent dosage (0.1-2.0 g) were optimized using response surface methodology (RSM) to obtain the greatest efficacy of MOSB during biosorption of PGT. The optimum parameters for PGT biosorption onto MOSB were: 86.8 min, 500 μg L-1 adsorbate concentration, 298 K, and 0.1 g adsorbent dosage. PGT removal from aqueous solutions was pH-independent. The Langmuir isotherm best fitted the equilibrium data with maximal monolayer biosorption capacity of 135.8 μg g-1. The biosorption rate followed the pseudo-first-order (PFO) kinetic law. The thermodynamic functions (ΔG < 0, ΔH = -9.258 kJ mol-1 and ΔS = +44.16 J mol-1) confirmed that the biosorption of PGT onto MOSB is a spontaneous and exothermic process with increased randomness at the adsorbent surface. The biosorption mechanism was physisorption and was devoid of electrostatic interactions. The findings from this study indicate that MOSB is an inexpensive, low-carbon, and environmentally friendly biosorbent that can effectively scavenge PGT from aqueous solutions.
Collapse
Affiliation(s)
- Emily Ngeno
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya; Department of Physical Sciences, Kaimosi Friends University, P.O Box 385-50309, Kaimosi, Kenya; Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Roselyn Ongulu
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya
| | - Victor Shikuku
- Department of Physical Sciences, Kaimosi Friends University, P.O Box 385-50309, Kaimosi, Kenya
| | - Deo Ssentongo
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Benton Otieno
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P. O Box 7062, Kampala, Uganda; Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany; Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.
| | - Francis Orata
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya.
| |
Collapse
|
4
|
Cheng M, Li R, Du X, Zhang Z, Zhang H. Highly efficient removal of diclofenac sodium with polystyrene supported ionic liquid. ENVIRONMENTAL TECHNOLOGY 2024; 45:3276-3282. [PMID: 37184044 DOI: 10.1080/09593330.2023.2214856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
ABSTRACTDiclofenac sodium (DS) is now recognized as an emerging pollutant, and is one of the most commonly discovered pharmaceuticals in water due to its extensive application in the clinic. This study examined the adsorption performance of a polystyrene-supported ionic liquid material (PS-[Nim][Cl]) for the removal of diclofenac sodium (DS) from water. The data from this study showed that maximum removal of DS can be achieved even in conditions with significant pH and temperature fluctuations. The adsorption process was rapid, more than 90% of DS could be removed within the first 10 min and adsorption equilibrium could be reached in just 30 min with a high removal efficiency (>99.9%). Adsorption reached saturation with a maximum adsorption capacity of approximately 785.2 mg/g. Moreover, the presence of K+, Na+, Ca2+, Mg2+, Cl-, and H2PO4- ions had little influence on DS adsorption, even when concentrations of these ions were 10,000 times higher than that of DS in water samples. The adsorbent also showed promising performance for the treatment of environmental water samples and groundwater containing DS.
Collapse
Affiliation(s)
- Meng Cheng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Xin Du
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Zihao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Hao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| |
Collapse
|
5
|
Comet Manesa K, Dyosi Z. Review on Moringa oleifera, a green adsorbent for contaminants removal: characterization, prediction, modelling and optimization using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1014-1027. [PMID: 38146218 DOI: 10.1080/10934529.2023.2291977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
Moringa oleifera utilization in water treatment to eliminate emerging pollutants such as heavy metal ions, pesticides, pharmaceuticals, and pigments has been extensively evaluated. The efficacy of Moringa oleifera biosorbent has been investigated in diverse research work using various techniques, including its adsorption capacity kinetic, thermodynamic evaluation, adsorbent modifications, and mechanism behind the adsorption process. The Langmuir isotherm provided the most remarkable experimental data fit for batch adsorption investigations, whereas the best fit was obtained with the pseudo-second order kinetic model. Furthermore, only a few papers that combined batch adsorption with fixed-bed column investigations were examined. In the latter articles, the scientists modified the adsorbent to increase the material's adsorption capacity as determined by analytical methods, including IR spectroscopy, scanning electronic microscope (SEM), and X-ray diffraction (XRD). However, the raw material can show appreciable adsorption capacity values, proving moringa's potency as a biosorbent. Hydrogen bonds, electrostatic interaction, and van der Waals forces were the main processes in the found and reported adsorbent-adsorbate interactions. These mechanisms could change depending on the physiochemical nature of adsorption. Although frequently employed for heavy metal ions and dye adsorption, Moringa oleifera can still be explored in pesticide and medication adsorption investigations due to the few publications in this comprehensive review. This study, therefore, examined different Adsorbents from the Moringa oleifera plant, as well as parameters and models for enhancing the adsorption process.
Collapse
Affiliation(s)
| | - Zolani Dyosi
- Knowledge Advancement and Support, National Research Foundation, Pretoria, South Africa
| |
Collapse
|
6
|
Silva JDOS, Dos Santos JF, Granja HS, Almeida WS, Loeser TFL, Freitas LS, Bergamini MF, Marcolino-Junior LH, Sussuchi EM. Simultaneous determination of carbendazim and carbaryl pesticides in water bodies samples using a new voltammetric sensor based on Moringa oleifera biochar. CHEMOSPHERE 2024; 347:140707. [PMID: 37972866 DOI: 10.1016/j.chemosphere.2023.140707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
For the first time, a modified electrochemical sensor based on carbon paste was developed using biochar derived from the husks of Moringa oleifera pods to detect successfully and simultaneously carbendazim (CBZ) and carbaryl (CBR) pesticides. Biochar was obtained via pyrolysis at 400 °C, which required no additional activation or modification processes. The incorporation of the biochar modifier enabled the preconcentration of both pesticides under open potential circuit conditions, resulting in a significant enhancement in sensitivity compared to bare electrode. Under the optimized experimental conditions, the developed sensor exhibited excellent sensitivity to the target analytes, showing a linear relationship within the concentration range of 0.29-6.00 μM for CBZ and 29.9-502 μM for CBR. The limits of detection were calculated to be 0.12 μM for CBZ and 10.4 μM for CBR. The proposed method demonstrated remarkable selectivity for analytes even in the presence of diverse organic and inorganic species. Furthermore, the method was successfully applied to the determination of CBZ and CBR pesticides in various water matrices, including river, sea, drinking, and groundwater samples, without the need for any sample pretreatment, such as extraction or filtration. The observed recoveries ranged from 87% to 111%, indicating the efficiency and reliability of this method.
Collapse
Affiliation(s)
- Jonatas de Oliveira S Silva
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - José Felipe Dos Santos
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Honnara S Granja
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil; Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Wandson S Almeida
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil
| | - Thiago F L Loeser
- Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos - LabSensE, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-000, Brazil.
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos - LabSensE, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-000, Brazil.
| | - Eliana Midori Sussuchi
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
7
|
Shamsudin MS, Taib MHA, Azha SF, Bonilla-Petriciolet A, Ismail S. Preparation and evaluation of a coated smectite clay-based material modified with epichlorohydrin-dimethylamine for the diclofenac removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124596-124609. [PMID: 35608765 DOI: 10.1007/s11356-022-20815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This study reports the analysis of diclofenac removal from aqueous solution using a novel adsorbent coating with amphoteric surface. This adsorbent coating was improved using a new amphoteric ratio to increase its performance for the removal of pharmaceuticals such as diclofenac. The adsorbent coating was formulated using acrylic polymer emulsion, smectite-based clay powder and epichlorohydrin-dimethylamine to obtain a layer form via the implementation of a facile synthesis method. In a previous study, this adsorbent coating was successful to remove cationic and anionic dyes. Therefore, this research aimed to further investigate and test its application in the removal of other emerging water pollutants like pharmaceuticals. SEM, EDX, and FTIR analyses were carried out for the characterization of this novel adsorbent. The effects of adsorbent composition, diclofenac concentration, temperature, and solution pH were studied and modeled. The best conditions to improve the diclofenac adsorption was 303 K and pH 3 where the adsorption capacity was 25.59 mg/g. Adsorption isotherms and kinetics were quantified and modeled, and the corresponding adsorption mechanism was also analyzed. Diclofenac adsorption with this novel material was exothermic and spontaneous. This alternative adsorbent is promising for diclofenac removal from industrial wastewater systems.
Collapse
Affiliation(s)
- Muhamad Sharafee Shamsudin
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Muhammad Haziq Abdul Taib
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Syahida Farhan Azha
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | | | - Suzylawati Ismail
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
8
|
Zhang Y, Ma Q, Chen Z, Shi Y, Chen S, Zhang Y. Enhanced adsorption of diclofenac onto activated carbon derived from PET plastic by one-step pyrolysis with KOH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113790-113803. [PMID: 37851268 DOI: 10.1007/s11356-023-30376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Plastic pollution is a severe threat to the health of ecosystems, and recycling plastics is recognized as a key control strategy. This study used the one-step pyrolysis assisted with KOH activation to recycle the widely used polyethylene terephthalate (PET) plastic as activated carbon (PET-AC) which was subsequently applied to adsorb diclofenac (DCF), a frequently detected emerging contaminant in water, for the first time. It was found that both the pyrolysis temperature and the addition of KOH can effectively regulate the pore sizes and volumes of PET-AC. PET-AC obtained at 700 °C demonstrated a high adsorption capacity of DCF up to 179.42 mg g-1 at 45 °C. The adsorption kinetics was conducted with both static jar and dynamic column tests and analyzed with various models. Thermodynamic results demonstrated that the adsorption of DCF was spontaneous and endothermic. The material also presented an excellent potential to adsorb other pharmaceuticals and personal care products in water. XPS and FTIR analysis indicated that the adsorption might be mainly driven by the physical forces, especially π-π interaction and hydrogen bonding. This study provided a reference for recycling waste plastic as an efficient adsorbent to eliminate organic contaminants from water.
Collapse
Affiliation(s)
- Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Qing Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Zihao Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yuexiao Shi
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Sirui Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
9
|
Khaksarfard Y, Bagheri A, Rafati AA. Synergistic effects of binary surfactant mixtures in the adsorption of diclofenac sodium drug from aqueous solution by modified zeolite. J Colloid Interface Sci 2023; 644:186-199. [PMID: 37105042 DOI: 10.1016/j.jcis.2023.04.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
In this paper, the surfactant-modified clinoptilolite zeolite (with two methods) were used to remove diclofenac sodium (DFS) as a widely used drug in an aqueous solution. Clinoptilolite was modified by using pure cationic surfactant (cetyltrimethylammonium chloride, CTAC) and the mixed surfactants of CTAC + Triton-X100 (TX100). In the new approach, the synergistic effects between CTAC and TX100 were determined by surface tension measurements in different mole fractions and the optimum ratio (y1 ≈ 0.8) was identified with the maximum synergism. According to the mole fraction of this composition, the surface of clinoptilolite was modified by mixed surfactants (MSMZ) for the adsorption of DFS and then results compared with modified zeolite with pure cationic surfactant (SMZ). The raw and modified (SMZ and MSMZ) zeolites were characterized by Fourier transform infrared spectroscopy (FT-IR), BET analysis, the scanning electron microscopy (SEM) images, Zeta potential and X-ray. The experimental data of adsorption in equilibrium conditions were also analyzed using different adsorption isotherm models (Langmuir, Freundlich, Hill, Khan, Sips, Redlich-Peterson and Toth) in non-linear forms, and finally, the best model consistent with experimental data is determined (SMZ:Sips and MSMZ:Toth). According to the best isotherm model, the amount of absorption capacity in MSMZ was obtained almost 57% higher than SMZ. In addition, the kinetic adsorption data were correlated with eight various models in order to selection the best model for these systems. The kinetic adsorption data were well described by fractal-like pseudo-first-order (FL-PFO) and IKL models for SMZ and MSMZ adsorbents, respectively. Eight error functions were used to estimate the best fitted isotherm and kinetic models.
Collapse
Affiliation(s)
- Yasaman Khaksarfard
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran
| | - Ahmad Bagheri
- Department of Chemistry, Semnan University, P.O. Box 35131-19111, Semnan, Iran.
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
10
|
Ahmadian M, Derakhshankhah H, Jaymand M. Recent advances in adsorption of environmental pollutants using metal-organic frameworks-based hydrogels. Int J Biol Macromol 2023; 231:123333. [PMID: 36682661 DOI: 10.1016/j.ijbiomac.2023.123333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Water pollution is increasing significantly owing to industrialization and population growth that lead to serious environmental and health issues. Therefore, the design and development of more effective wastewater treatment approaches are necessary due to a significant upsurge in demand for freshwater. More recently, metal-organic frameworks (MOFs) have attracted attention in environmental science owing to their tunable porosity, unique structure, flexibility, and various composition. Despite these attractive advantages, some drawbacks, including intrinsic fragility, unsatisfied processability, dust formation, and poor reusability, have greatly limited their applications. Therefore, MOFs are often designed as supported-based MOFs (e.g., MOFs-coated composites) or 3D structured composites, such as MOFs-based hydrogels. MOFs-based hydrogels are excellent candidates in the sorption process because of their appropriate adsorption capacity, porous structure, good mechanical properties, durability as well as biodegradable features. In this review, the removal of different pollutants (e.g., synthetic dyes, phosphates, heavy metals, antibiotics, and some organic compounds) from aqueous media has been studied by the adsorption process using MOFs-based hydrogels. The important advancements in the fabrication of MOFs-based hydrogels and their capacities in the adsorption of pollutants under experimental conditions have been discussed. Finally, problems and future perspectives on the adsorption process using MOFs-based hydrogels have been investigated.
Collapse
Affiliation(s)
- Moslem Ahmadian
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Akkari I, Graba Z, Bezzi N, Kaci MM, Merzeg FA, Bait N, Ferhati A, Dotto GL, Benguerba Y. Effective removal of cationic dye on activated carbon made from cactus fruit peels: a combined experimental and theoretical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3027-3044. [PMID: 35941501 DOI: 10.1007/s11356-022-22402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
This article investigates experimentally and theoretically the adsorption of Basic Red 46 cationic dye (BR46) using activated carbon generated from cactus fruit peels (ACCFP). The prepared adsorbent was characterized by different analytical tools showing a good surface for the uptake of pollutants. A maximum batch adsorption capacity of 806.38 mg g-1 was achieved at optimal conditions. The Freundlich model best represented the equilibrium data, although the pseudo-second-order kinetic model best described the adsorption kinetics. The thermodynamic studies demonstrated that the adsorption process was spontaneous (ΔG° < 0) and endothermic (ΔH° = 32.512 kJ mol-1). DFT descriptors were combined with COSMO-RS and AIM theory to provide a complete picture of the adsorbate/adsorbent system and its molecular interactions. Last, the ACCFP was regenerable up to four times, emphasizing the idea of using it as an adsorbent to treat textile wastewaters.
Collapse
Affiliation(s)
- Imane Akkari
- Materials Technology and Process Engineering Laboratory (LTMGP), University of Bejaia, 06000, Bejaia, Algeria
| | - Zahra Graba
- Materials Technology and Process Engineering Laboratory (LTMGP), University of Bejaia, 06000, Bejaia, Algeria
| | - Nacer Bezzi
- Materials Technology and Process Engineering Laboratory (LTMGP), University of Bejaia, 06000, Bejaia, Algeria
| | - Mohamed Mehdi Kaci
- Laboratory of Reaction Engineering, Faculty of Mechanical and Process Engineering (USTHB), BP 32, 16111, Algiers, Algeria
| | - Farid Ait Merzeg
- Materials Technology and Process Engineering Laboratory (LTMGP), University of Bejaia, 06000, Bejaia, Algeria
- Research Unit on Analyses and Technological Development in Environment (UR-ADTE)/Scientific and Technical Research Centre in Physical and Chemical Analyses (CRAPC), BP 384, Zone Industrielle, RP, 42004, Bou-Ismail, Tipaza, Algeria
| | - Nadia Bait
- Research Unit on Analyses and Technological Development in Environment (UR-ADTE)/Scientific and Technical Research Centre in Physical and Chemical Analyses (CRAPC), BP 384, Zone Industrielle, RP, 42004, Bou-Ismail, Tipaza, Algeria
| | - Azedine Ferhati
- Laboratory of Chemistry and Environmental Chemistry (LCCE), University of Batna 1, Batna, Algeria
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
12
|
Chauhan S, Shafi T, Dubey BK, Chowdhury S. Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption. WASTE DISPOSAL & SUSTAINABLE ENERGY 2022; 5:37-62. [PMID: 36568572 PMCID: PMC9757639 DOI: 10.1007/s42768-022-00118-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022]
Abstract
Pharmaceutical is one of the noteworthy classes of emerging contaminants. These biologically active compounds pose a range of deleterious impacts on human health and the environment. This is attributed to their refractory behavior, poor biodegradability, and pseudopersistent nature. Their large-scale production by pharmaceutical industries and subsequent widespread utilization in hospitals, community health centers, and veterinary facilities, among others, have significantly increased the occurrence of pharmaceutical residues in various environmental compartments. Several technologies are currently being evaluated to eliminate pharmaceutical compounds (PCs) from aqueous environments. Among them, adsorption appears as the most viable treatment option because of its operational simplicity and low cost. Intensive research and development efforts are, therefore, currently underway to develop inexpensive adsorbents for the effective abatement of PCs. Although numerous adsorbents have been investigated for the removal of PCs in recent years, biochar-based adsorbents have garnered tremendous scientific attention to eliminate PCs from aqueous matrices because of their decent specific surface area, tunable surface chemistry, scalable production, and environmentally benign nature. This review, therefore, attempts to provide an overview of the latest progress in the application of biochar for the removal of PCs from wastewater. Additionally, the fundamental knowledge gaps in the domain knowledge are identified and novel strategic research guidelines are laid out to make further advances in this promising approach towards sustainable development.
Collapse
Affiliation(s)
- Sahil Chauhan
- grid.429017.90000 0001 0153 2859School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Tajamul Shafi
- grid.429017.90000 0001 0153 2859School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Brajesh Kumar Dubey
- grid.429017.90000 0001 0153 2859Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Shamik Chowdhury
- grid.429017.90000 0001 0153 2859School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
13
|
Saner A, Carvalho PN, Catalano J, Anastasakis K. Renewable adsorbents from the solid residue of sewage sludge hydrothermal liquefaction for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156418. [PMID: 35660599 DOI: 10.1016/j.scitotenv.2022.156418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Solid residue from hydrothermal liquefaction (HTL) of nutrient rich feedstock presents a promising source to recover valuable nutrients, such as phosphorus, in the solid form. The present work shows for the first time the potential of utilizing the waste residue remaining after nutrients extraction from HTL of sewage sludge, as renewable adsorbents. A parametric study was undertaken to investigate the influence of chemical activation conditions (temperature, residence time, activation agent loading, washing after activation) on raw and partially demineralized HTL solids. Kinetic and equilibrium adsorption investigation was undertaken for the removal of methylene blue (MB) from aqueous solution. For comparison purposes, a commercial activated charcoal (AC) was used. Demineralization was found to have a significant influence in the adsorption capacity of the resultant adsorbents. Three adsorbents were found to follow the Langmuir adsorption model, while the acid washed demineralized adsorbent had higher adsorption capacity than AC and was found to follow the Freundlich adsorption model. The superior performance of the acid washed demineralized adsorbent was verified from the kinetic study where all adsorbents were found to best fit the pseudo-second order model. Adsorption capacities for MB at equilibrium were 367.1, 332.3, 297.4 and 87.6 mg/g, for acid washed demineralized adsorbent, AC, demineralized adsorbent, and raw adsorbent, respectively. Finally, the most promising adsorbents were assessed for their adsorption capacity to remove pharmaceuticals present in a real wastewater treatment effluent. Results indicated ultimate concentration for all targeted compounds below the detection limits for acid washed demineralized adsorbent, AC and demineralized adsorbent. Future implementation of HTL technology in wastewater treatment facilities, will not only provide an efficient way to valorize sewage sludge into bio-crude and nutrients, but can also enhance technology integration by providing the precursors for renewable adsorbents needed in tertiary treatment of wastewater.
Collapse
Affiliation(s)
- A Saner
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus 8200, Denmark; Department of Animal Science, Aarhus University, Blicher Allé 20, Tjele 8830, Denmark
| | - P N Carvalho
- Department of Environmental Sciences, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC-Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - J Catalano
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus 8200, Denmark; WATEC-Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - K Anastasakis
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus 8200, Denmark; WATEC-Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark.
| |
Collapse
|
14
|
Nguyen VT, Vo TDH, Nguyen TB, Dat ND, Huu BT, Nguyen XC, Tran T, Le TNC, Duong TGH, Bui MH, Dong CD, Bui XT. Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: Master variables and response surface method optimized adsorption process. CHEMOSPHERE 2022; 288:132577. [PMID: 34662641 DOI: 10.1016/j.chemosphere.2021.132577] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, biochar derived from spent coffee grounds (SCGB) was used to adsorb norfloxacin (NOR) in water. The biochar properties were interpreted by analysis of the specific surface area, morphology, structure, thermal stability, and functional groups. The impacts of pH, NOR, and ion's present on SCGB performance were examined. The NOR adsorption mode of SCGB is best suited to the Langmuir model (R2 = 0.974) with maximum absorption capacity (69.8 mg g-1). By using a Response Surface Method (RSM), optimal adsorption was also found at pH of 6.26, NOR of 24.69 mg L-1, and SCGB of 1.32 g L-1. Compared with biochars derived from agriculture such as corn stalks, willow branches, potato stem, reed stalks, cauliflower roots, wheat straw, the NOR adsorption capacity of SCGB was 2-30 times higher, but less than 3-4 times for biochars made from Salix mongolica, luffa sponge and polydopamine microspheres. These findings reveal that spent coffee grounds biochar could effectively remove NOR from aqueous solutions. Approaching biochar derived from coffee grounds would be a promising eco-friendly solution because it utilizes solid waste, saves costs, and creates adsorbents to deal with emerging pollutants like antibiotics.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam.
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh City, Viet Nam.
| | - Bui Trung Huu
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh City, Viet Nam.
| | - Xuan-Cuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Thanh Tran
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 70000, Viet Nam.
| | - Thi-Ngoc-Chau Le
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Thi-Giang-Huong Duong
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam.
| | - Manh-Ha Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet str., District 10, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
15
|
Sustainable synthesis of rose flower-like magnetic biochar from tea waste for environmental applications. J Adv Res 2022; 34:13-27. [PMID: 35024178 PMCID: PMC8655236 DOI: 10.1016/j.jare.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023] Open
Abstract
Introduction Biochar utilization for adsorption seems to be the most cost-effective, easy/fast approach for pollutants removal from water and wastewater. Due to the high adsorption properties, magnetic biochar proved to be efficient in the sorption of heavy metals and nutrients. Although there are several studies on development of magnetic biochars, there is a lack of research on development of high-performance magnetic biochar from food waste for removal applications. Objectives This study aimed at preparing new classes of magnetic biochar derived from tea waste (TBC) for removal of heavy metals (Ni2+, Co2+), and nutrients (NH4+ and PO43−) from water and effective fertilizer (source of NH4+ and PO43−). Methods Standard carbonization process and ultrafast microwave have been used for fabrication of TBCs. The removal of nickel, cobalt as the representatives of heavy metals, and over-enriched nutrients (NH4+ and PO43−) from water were tested and the removal kinetics, mechanism, and the effect of pH, dissolved organic matter and ionic strength were studied. Simultaneously, possible fertilizing effect of TBC for controlled release of nutrients (NH4+ and PO43−) in soil was investigated. Results Up to 147.84 mg g−1 of Ni2+ and 160.00 mg g−1 of Co2+ were adsorbed onto tested biochars. The process of co-adsorption was also efficient (at least 131.68 mg g−1 of Co2+ and 160.00 mg g−1 of Ni2+). The highest adsorbed amount of NH4+ was 49.43 mg g−1, and the highest amount of PO43− was 112.61 mg g−1. The increase of the solution ionic strength and the presence of natural organic matter affected both the amount of adsorbed Ni2++Co2+ and the reaction mechanism. Conclusions The results revealed that magnetic nanoparticle impregnated onto tea biochar, can be a very promising alternative for wastewater treatment especially considering removal of heavy metals and nutrients and slow-release fertilizer to improve the composition of soil elements.
Collapse
|
16
|
da Costa ML, Pavoski G, Espinosa DCR, de Vasconcellos NJS, da Silva WL. Potential Application of Alternative Materials for Organic Pollutant Removal. WATER, AIR, AND SOIL POLLUTION 2022; 233:65. [PMID: 35194262 PMCID: PMC8852954 DOI: 10.1007/s11270-022-05528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/26/2022] [Indexed: 05/15/2023]
Abstract
The work aims to synthesize and characterize vegetal charcoal (or biochar) from Syzygium cumini (AC-SC), evaluating the adsorption capacity for dexamethasone drug (DEX) removal, using the kinetic and equilibrium adsorption. The samples were characterized by N2 porosimetry, X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, zeta potential, and zero charge point. Adsorption equilibrium was carried out applying the Langmuir, Freundlich, Redlich-Peterson, Sips, and Toth models, and kinetic adsorption applied the pseudo-first order, pseudo-second order, Elovich, Avrami, and Weber-Morris models. AC-SC showed a heterogeneous and porous surface, negatively charged, crystalline structure, specific surface area of the 2.14 m2 g-1 and pHZCP = 7.36. About the effect of the AC-SC concentration, 5.0 g L-1 showed the best DEX removal (53.02%), about the others' concentration (2.0 and 7.5 g L-1). About the equilibrium and kinetic adsorption, the Sips model and pseudo-second order showed the best experimental data adjusted, indicating that the adsorption monolayer was dependent on the ions onto the biosorbent, with a maximum adsorption capacity of 0.744 mg g-1 after 180 min. Therefore, AC-SC can be used as an alternative material in the removal of organic pollutants, such as drug removal.
Collapse
Affiliation(s)
| | - Giovani Pavoski
- Polytechnical School of Chemical Engineering, University of São Paulo, São Paulo, SP Brazil
| | | | | | - William Leonardo da Silva
- Chemical Engineering Course, Franciscan University, Santa Maria, Brazil
- Nanoscience Graduate Program, Franciscan University, Santa Maria, Brazil
| |
Collapse
|
17
|
Processing of fique bagasse waste into modified biochars for adsorption of caffeine and sodium diclofenac. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Developing micro- and nanomaterials for environmental pollution remediation is currently a pertinent topic. Among the plethora of strategies, designing supported nanocatalysts for the degradation of pollutants has achieved prominence. In this context, we are addressing one of the UN Sustainable Development Goals by valorizing agrowaste as a source of biochar, which serves as a support for bimetallic nanocatalysts. Herein, olive pit powder particles were impregnated with copper and nickel nitrates and pyrolyzed at 400 °C. The resulting material consists of bimetallic CuNi-decorated biochar. CuNi nanocatalysts were found to be as small as 10 nm and very well dispersed over biochar with zero valent copper and nickel and the formation of copper–nickel solid solutions. The biochar@CuNi (B@CuNi) exhibited typical soft ferromagnet hysteresis loops with zero remanence and zero coercivity. The biochar@CuNi was found to be an efficient catalyst of the reduction in methyl orange (MO) dye, taken as a model pollutant. In sum, the one-pot method devised in this work provides unique CuNi-decorated biochar and broadens the horizons of the emerging topic of biochar-supported nanocatalysts.
Collapse
|
19
|
Awes H, Zaki Z, Abbas S, Dessoukii H, Zaher A, Abd-El Moaty SA, Shehata N, Farghali A, Mahmoud RK. Removal of Cu 2+ metal ions from water using Mg-Fe layered double hydroxide and Mg-Fe LDH/5-(3-nitrophenyllazo)-6-aminouracil nanocomposite for enhancing adsorption properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47651-47667. [PMID: 33895951 DOI: 10.1007/s11356-021-13685-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/24/2021] [Indexed: 05/27/2023]
Abstract
Herein, a new adsorbent was prepared by modifying Mg-Fe LDH for the removal of Cu2+ metal ions from wastewater. Mg-Fe LDH with 5-(3-nitrophenyllazo)-6-aminouracil ligand has been successfully prepared using direct co-precipitation methods and was fully characterized using FTIR analysis, X-ray diffraction, BET surface area theory, zeta potential, partial size, TGA/DTA, CHN, EDX, FESEM, and HRTEM. The surface areas of Mg-Fe LDH and Mg-Fe LDH/ligand were 73.9 m2/g and 34.7 m2/g respectively. Moreover, Cu2+ adsorption on LDH surfaces was intensively examined by adjusting different parameters like time, adsorbent dosage, pH, and Cu2+ metal ion concentration. Several isotherm and kinetic models were investigated to understand the mechanism of adsorption towards Cu2+ metal ions. Adsorption capacity values of LDH and ligand-LDH rounded about 165 and 425 mg/g respectively, applying nonlinear fitting of Freundlich and Langmuir isotherm equations showing that the ligand-LDH can be considered a potential material to produce efficient adsorbent for removal of heavy metal from polluted water. The adsorption of Cu2+ metal ions followed a mixed 1,2-order mechanism. The isoelectric point (PZC) of the prepared sample was investigated and discussed. The effect of coexisting cations on the removal efficiency of Cu2+ ions shows a minor decrease in the adsorption efficiency. Recyclability and chemical stability of these adsorbents show that using Mg-Fe LDH/ligand has an efficiency removal for Cu2+ ions higher than Mg-Fe LDH through seven adsorption/desorption cycles. Moreover, the recycling of the Cu2+ ions was tested using cyclic voltammetry technique from a neutral medium, and the Cu2+ ion recovery was 68%.
Collapse
Affiliation(s)
- Hanna Awes
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Zinat Zaki
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Safa Abbas
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hassan Dessoukii
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Amal Zaher
- Department of Environmental Science and Industrial Development, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Samah A Abd-El Moaty
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nabila Shehata
- Department of Environmental Science and Industrial Development, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab K Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
20
|
Guo N, Lv X, Yang Q, Xu X, Song H. Effective removal of hexavalent chromium from aqueous solution by ZnCl2 modified biochar: Effects and response sequence of the functional groups. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Wang W, Gao M, Cao M, Dan J, Yang H. Self-propagating synthesis of Zn-loaded biochar for tetracycline elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143542. [PMID: 33190887 DOI: 10.1016/j.scitotenv.2020.143542] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Herein, a novel Zn-loaded biochar (Zn-LBC) originating from Fraxinus pennsylvanica Marsh leaves was successfully prepared through a simple and rapid self-propagating combustion reaction (SHS) and could serve as an efficient adsorbent for tetracycline (TC) elimination from water. The adsorption performance was analyzed via a series of characterizations and batch adsorption experiments. The results showed that the novel adsorbent Zn-LBC exhibited an excellent TC adsorption capacity (159.64 mg/g), which was 2.63 times higher than that of the original biochar (60.78 mg/g). The pseudo-second-order kinetic model and Freundlich isothermal model fit the adsorption data well. It is noteworthy that Zn-LBC had little effect on the adsorption capacity of TC in the 0-10 mg/L various coexisting ion range and presence of humic acid (HA). In addition, the adsorption test of TC using hospital wastewater as the water sample also achieved satisfactory results (raw influent: 52.65 mg/g, final effluent: 85.64 mg/g). FT-IR and XPS investigations showed that the TC adsorption mechanism included surface complexation, π-π interactions, and hydrogen bonds. The results provide new ideas for exploring low-cost and highly efficient modified biochar adsorbent for TC elimination.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, China
| | - Ming Gao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, China
| | - Mengbo Cao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, China
| | - Jianming Dan
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, China.
| | - Hongbing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, China.
| |
Collapse
|
22
|
Adsorptive micellar flocculation (surfactant-based phase separation technique): Theory and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Gujre N, Soni A, Rangan L, Tsang DCW, Mitra S. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115549. [PMID: 33246313 DOI: 10.1016/j.envpol.2020.115549] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Conservation of soil health and crop productivity is the central theme for sustainable agriculture practices. It is unrealistic to expect that the burgeoning crop production demands will be met by a soil ecosystem that is increasingly unhealthy and constrained. Therefore, the present review is focused on soil amendment techniques, using biochar in combination with arbuscular mycorrhizal fungi (AMF), which is an indispensable biotic component that maintains plant-soil continuum. Globally significant progress has been made in elucidating the physical and chemical properties of biochar; along with its role in carbon sequestration. Similarly, research advances on AMF include its evolutionary background, functions, and vital roles in the soil ecosystem. The present review deliberates on the premise that biochar and AMF have the potential to become cardinal to management of agro-ecosystems. The wider perspectives of various agronomical and environmental backgrounds are discussed. The present state of knowledge, different aspects and limitations of combined biochar and AMF applications (BC + AMF), mechanisms of interaction between biochar and AMF, effects on plant growth, challenges and future opportunities of BC + AMF applications are critically reviewed. Given the severely constrained nature of soil health, the roles of BC + AMF in agriculture, bioremediation and ecology have also been examined. In spite of the potential benefits, the functionality and dynamics of BC + AMF in soil are far from being fully elucidated.
Collapse
Affiliation(s)
- Nihal Gujre
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Ankit Soni
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
24
|
Ouyang J, Zhou L, Liu Z, Heng JY, Chen W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117536] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Koike MK, Kochi AK, Pinto DYG. Use of Moringa Oleifera Seeds in Water Treatment. Arq Bras Cardiol 2020; 114:1038-1039. [PMID: 32638901 PMCID: PMC8416126 DOI: 10.36660/abc.20200390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Marcia Kiyomi Koike
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Akimi Kokanj Kochi
- Programa de Pós-graduação em Ciências da Saúde, Instituto de Assistência ao Servidor Público Estadual de São Paulo, São Paulo, SP, Brasil
| | - Denise Yamada Gomes Pinto
- Programa de Pós-graduação em Ciências da Saúde, Instituto de Assistência ao Servidor Público Estadual de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
26
|
Luo M, Huang C, Chen F, Chen C, Li H. Removal of aqueous Cr(VI) using magnetic-gelatin supported on Brassica-straw biochar. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1785889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mina Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Chao Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Changcheng Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Huan Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Correa-Navarro YM, Giraldo L, Moreno-Piraján JC. Biochar from Fique Bagasse for Remotion of Caffeine and Diclofenac from Aqueous Solution. Molecules 2020; 25:molecules25081849. [PMID: 32316491 PMCID: PMC7221906 DOI: 10.3390/molecules25081849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Caffeine and diclofenac are molecules with high human intake, and both belong to the ‘emergent’ class of contaminants. These compounds have been found at different concentrations in many sources of water worldwide and have several negative impacts on aquatic life systems; that is why the search for new alternatives for their removal from aqueous media is of transcendental importance. In this sense, adsorption processes are an option to attack this problem and for this reason, biochar could be a good alternative. In this regard, were prepared six different biochar from fique bagasse (FB), a useless agroindustry by-product from fique processing. The six biochar preparations were characterized through several physicochemical procedures, while for the adsorption processes, pH, adsorption time and concentration of caffeine and diclofenac were evaluated. Results showed that the biochar obtained by pyrolysis at 850 °C and residence time of 3 h, labeled as FB850-3, was the material with the highest adsorbent capacity with values of 40.2 mg g−1 and 5.40 mg g−1 for caffeine and diclofenac, respectively. It was also shown that the experimental data from FB850-3 fitted very well the Redlich–Peterson isotherm model and followed a pseudo-first and pseudo-second-order kinetic for caffeine and diclofenac, respectively.
Collapse
Affiliation(s)
- Yaned Milena Correa-Navarro
- Departamento de Química, Universidad de Caldas, Calle 65 No. 26–10, Manizales 170004, Caldas, Colombia;
- Departamento de Química, Universidad de los Andes, Carrera 1 No. 18 A–12, Bogotá D.C. 111711, Colombia
| | - Liliana Giraldo
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá. Carrera 30 No. 45–03, Bogotá D.C. 11001, Colombia;
| | - Juan Carlos Moreno-Piraján
- Departamento de Química, Universidad de los Andes, Carrera 1 No. 18 A–12, Bogotá D.C. 111711, Colombia
- Correspondence: ; Tel.: +571-339-4949 (ext. 3465-3478-4753)
| |
Collapse
|