1
|
Mohan H, Muthukumar Sathya P, Acharya S, Jeong HJ, Lee GM, Park JH, Seralathan KK, Oh BT. Harnessing landfill-derived Bacillus subtilis (LLS-04) for bio-electrodegradation of di-butyl phthalate: Comprehensive toxicity assessment across multiple biological models. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136480. [PMID: 39556914 DOI: 10.1016/j.jhazmat.2024.136480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
Di-butyl phthalate (DBP), a pervasive environmental contaminant, poses significant ecological and health risks due to its persistence and toxicity. This study investigates the potential of a landfill-derived Bacillus subtilis strain (LLS-04) in bio-electrodegradation of DBP, alongside a comprehensive toxicity assessment across multiple biological models. Bio-electrodegradation efficiency was compared to biodegradation and electrodegradation, revealing that bio-electrodegradation achieved a remarkable 98.57 % reduction in DBP concentration significantly outperforming the other methods. This enhanced degradation was attributed to improved microbial activity and enzyme production, as indicated by higher protein content and increased esterase and dehydrogenase activities in the bio-electrodegradation system. The optimized conditions facilitated efficient degradation, with HPLC-MS/MS analysis confirming the breakdown of DBP into non-toxic end products via a proposed metabolic pathway. A comprehensive toxicity assessment, including in-silico analysis, in-vitro cytotoxicity and brine shrimp lethality assays, demonstrated a significant reduction in toxicity of BES treated effluent compared to DBP untreated effluent. Furthermore, in-vivo toxicity studies using animal model supported these findings, demonstrating reduced toxicity in the BES treated effluent compared to the DBP untreated effluent. Overall, these findings highlight the potential application of bio-electrodegradation in bioremediation strategies for phthalate pollution, offering an effective solution for reducing both DBP concentration and its environmental toxicity.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Satabdi Acharya
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk State, 54896 Republic of Korea
| | - Hyeon-Jin Jeong
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Gwang-Min Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| |
Collapse
|
2
|
Beretta G, Sangalli M, Sezenna E, Tofalos AE, Franzetti A, Saponaro S. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2033-2049. [PMID: 38953765 DOI: 10.1002/ieam.4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Microbial electrochemical technologies represent innovative approaches to contaminated soil and groundwater remediation and provide a flexible framework for removing organic and inorganic contaminants by integrating electrochemical and biological techniques. To simulate in situ microbial electrochemical treatment of groundwater plumes, this study investigates Cr(VI) reduction within a bioelectrochemical continuous flow (BECF) system equipped with soil-buried electrodes, comparing it to abiotic and open-circuit controls. Continuous-flow systems were tested with two chromium-contaminated solutions (20-50 mg Cr(VI)/L). Additional nutrients, buffers, or organic substrates were introduced during the tests in the systems. With an initial Cr(VI) concentration of 20 mg/L, 1.00 mg Cr(VI)/(L day) bioelectrochemical removal rate in the BECF system was observed, corresponding to 99.5% removal within nine days. At the end of the test with 50 mg Cr(VI)/L (156 days), the residual Cr(VI) dissolved concentration was two orders of magnitude lower than that in the open circuit control, achieving 99.9% bioelectrochemical removal in the BECF. Bacteria belonging to the orders Solirubrobacteriales, Gaiellales, Bacillales, Gemmatimonadales, and Propionibacteriales characterized the bacterial communities identified in soil samples; differently, Burkholderiales, Mycobacteriales, Cytophagales, Rhizobiales, and Caulobacterales characterized the planktonic bacterial communities. The complexity of the microbial community structure suggests the involvement of different microorganisms and strategies in the bioelectrochemical removal of chromium. In the absence of organic carbon, microbial electrochemical removal of hexavalent chromium was found to be the most efficient way to remove Cr(VI), and it may represent an innovative and sustainable approach for soil and groundwater remediation. Integr Environ Assess Manag 2024;20:2033-2049. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gabriele Beretta
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Michela Sangalli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Elena Sezenna
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Anna Espinoza Tofalos
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
- Environmental Research and Innovation (ERIN) Department, Institute of Science and Technology (LIST), Luxembourg, Luxembourg
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Sabrina Saponaro
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
3
|
Tang Z, Yang S, Li Y, Du J, Xiong Y, Fu S. Effects of copper and lead on the sorption and desorption behaviors of benzene onto humic acids and black carbons. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2947-2960. [PMID: 39612184 DOI: 10.2166/wst.2024.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Due to rapid urbanization and industrialization, combined pollution caused by BTEX (benzene, toluene, ethylbenzene, and xylene) and heavy metals has become ubiquitous in soils, which would pose serious health risks to humans. However, the effects of heavy metals on the sorption and desorption behaviors of BTEX have not been fully elucidated. In this study, the effects of Cu2+ and Pb2+ ions on the sorption and desorption of benzene onto humic acids and black carbons were investigated. The results showed that Cu2+ and Pb2+ ions significantly reduced the sorption capacity, slowed down the sorption rate, and made the desorption less hysteretic of benzene on both humic acids and black carbons. Furthermore, the inhibitory effects by Pb2+ were significantly stronger than those of Cu2+. By combining the results of Fourier transform infrared spectroscopy and the site energy distribution model, it can be speculated that the hydration shells of Cu2+ and Pb2+ ions partially cover the surface of humic acids and black carbons, blocking their micropores and shielding sorption sites, consequently inhibiting the sorption of benzene. This study highlights that coexisting metal cations can significantly influence the fate of BTEX in soils.
Collapse
Affiliation(s)
- Zhi Tang
- Six Geological Team of Hubei Geological Bureau, Xiaogan 432000, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Resources and Eco-Environment Geology, Xiaogan 432000, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China E-mail:
| | - Juan Du
- Six Geological Team of Hubei Geological Bureau, Xiaogan 432000, China; Hubei Key Laboratory of Resources and Eco-Environment Geology, Xiaogan 432000, China
| | - Yangfu Xiong
- Six Geological Team of Hubei Geological Bureau, Xiaogan 432000, China; Hubei Key Laboratory of Resources and Eco-Environment Geology, Xiaogan 432000, China
| | - Shengbo Fu
- Six Geological Team of Hubei Geological Bureau, Xiaogan 432000, China; Hubei Key Laboratory of Resources and Eco-Environment Geology, Xiaogan 432000, China
| |
Collapse
|
4
|
Sathya PM, Mohan H, Park JH, Seralathan KK, Oh BT. Integrated bio-electrochemical approach to Norfloxacin (NFX) degradation: Efficacy, degradation mechanisms, and toxicological insights. CHEMOSPHERE 2024; 366:143479. [PMID: 39369744 DOI: 10.1016/j.chemosphere.2024.143479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Norfloxacin (NFX), a widely used fluoroquinolone antibiotic, poses significant environmental concerns due to its persistence in ecosystems and its potential to foster antibiotic resistance. This study explores the degradation of NFX using a bio-electrochemical system (BES) facilitated by Bacillus subtilis isolated from animal waste sludge. Experimental parameters were optimized to maximize removal efficiency, with the optimal conditions determined as an NFX concentration of 200 mg/L, pH 7, and an applied potential of 1.2 V. The degradation pathway was elucidated through the identification of intermediate products, ultimately leading to the complete mineralization of NFX. To assess the environmental impact of BES-treated water, a series of eco-toxicity assays were conducted. Microbial diversity analysis revealed that soil exposed to BES-treated water maintained a balanced microbial community, contrasting with the disruptions observed in soils exposed to untreated NFX-contaminated water. Phytotoxicity tests, earthworm toxicity assay, and Artemia hatchability & lethality assays further confirmed the reduced toxicity of the BES-treated water. These findings highlight the efficacy of BES in the degradation of NFX, demonstrating its potential as a sustainable strategy for the remediation of antibiotic-contaminated environments and the mitigation of associated ecological risks.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| |
Collapse
|
5
|
Zhao K, Liu S, Feng Y, Li F. Bioelectrochemical remediation of soil antibiotic and antibiotic resistance gene pollution: Key factors and solution strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174517. [PMID: 38977104 DOI: 10.1016/j.scitotenv.2024.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yimeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Sathya PM, Mohan H, Park JH, Seralathan KK, Cho M, Oh BT. Bio-electrochemical degradation of carbamazepine (CBZ): A comprehensive study on effectiveness, degradation pathway, and toxicological assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121161. [PMID: 38761626 DOI: 10.1016/j.jenvman.2024.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Recent attention on the detrimental effects of pharmaceutically active compounds (PhACs) in natural water has spurred researchers to develop advanced wastewater treatment methods. Carbamazepine (CBZ), a widely recognized anticonvulsant, has often been a primary focus in numerous studies due to its prevalence and resistance to breaking down. This study aims to explore the effectiveness of a bio-electrochemical system in breaking down CBZ in polluted water and to assess the potential harmful effects of the treated wastewater. The results revealed bio-electro degradation process demonstrated a collaborative effect, achieving the highest CBZ degradation compared to electrodegradation and biodegradation techniques. Notably, a maximum CBZ degradation efficiency of 92.01% was attained using the bio-electrochemical system under specific conditions: Initial CBZ concentration of 60 mg/L, pH level at 7, 0.5% (v/v) inoculum dose, and an applied potential of 10 mV. The degradation pathway established by identifying intermediate products via High-Performance Liquid Chromatography-Mass Spectrometry, revealed the complete breakdown of CBZ without any toxic intermediates or end products. This finding was further validated through in vitro and in vivo toxicity assays, confirming the absence of harmful remnants after the degradation process.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
7
|
Thimmarayan S, Mohan H, Murali Krishna Vasamsetti B, Kim G, Natesan K, Jayaprakash A, Shin T. Ni/Co/Carbon nitride derived from ZIF-67 (MOF) nanocomposite: Enhanced light-driven photocatalytic degradation of methylparaben, mechanism & toxicity. CHEMOSPHERE 2024; 347:140680. [PMID: 37951398 DOI: 10.1016/j.chemosphere.2023.140680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
A nickel oxide/cobalt/carbon nitride (Ni/Co/CN) nanocomposite synthesized via co-precipitation was used for the degradation of methylparaben (MEP). Various analytical techniques were used to ascertain the structural, optical, and electrochemical characteristics of the synthesized nanocomposite. The unique nature of the compound without any free particles over the CN was established. Photocatalytic degradation studies demonstrated the superiority of 3-Ni/Co/CN over bare NiO, Co/CN, 1-Ni/Co/CN, and 5-Ni/Co/CN. Near complete MEP degradation (100%) was achieved after 120 min of incubation with MEP 75 mg L-1 in acidic medium pH (3) for an initial concentration of 3-Ni/Co/CN (10 mg/100 mL). HPLC-MS/MS analysis was used to elucidate the degradation pathway, and the catalyst was found stable for four subsequent cycles. Hence, our nanocatalyst effectively degraded MEP. Furthermore, microbial, aquatic, and animal studies demonstrated the environmental efficiency of the synthesized nanomaterials.
Collapse
Affiliation(s)
- Srivalli Thimmarayan
- PG & Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur- 635 601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 55365, Republic of Korea
| | - Gitae Kim
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Karthi Natesan
- Department of Biochemistry, School of Applied Sciences, REVA University, Bengaluru, Karnataka, 560064, India
| | - Arul Jayaprakash
- PG & Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur- 635 601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India.
| | - Taeho Shin
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Thimmarayan S, Mohan H, Manasa G, Natesan K, Mahendran S, Muthukumar Sathya P, Oh BT, Ravi Kumar R, Sigamani Gandhimathi R, Jayaprakash A, Seralathan KK. Biodegradation of naphthalene - Ecofriendly approach for soil pollution mitigation. ENVIRONMENTAL RESEARCH 2024; 240:117550. [PMID: 37931735 DOI: 10.1016/j.envres.2023.117550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Naphthalene (NPT), a widely used household pest repellent and insecticide obtained from crude oil, serves as a toxic pollutant to non-target living matter. The stable and resistant nature of NPT makes it difficult to degrade through the physiochemical processes. The present study investigated the bacterial degradation of NPT isolated from crude oil-contaminated soil. Initially, the potent bacteria, Bacillus sp. GN 3.4, were isolated by enrichment culture method and subsequently assessed for NPT biodegradation. The optimum conditions for NPT biodegradation were pH 7.0 at 37 °C, 80 mg/L (initial NPT), 3% v/v (inoculum dose), and 7 days of treatment which showed 100% biodegradation. Furthermore, GC-MS analysis revealed the presence of degradation metabolites, namely, salicylate and hydroquinone indicating potential metabolic pathways. Considering the water-solubility and non-toxic nature of these metabolites, the results imply that Bacillus sp. GN 3.4. could potentially play a role in bioremediation by aiding in eliminating NPT from the soil.
Collapse
Affiliation(s)
- Srivalli Thimmarayan
- PG & Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, (Affiliated to Thiruvalluvar University, Serkkadu, Vellore-632115, Tamil Nadu, India)
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea
| | - Gaddapara Manasa
- Department of Biochemistry, School of Applied Sciences, REVA University, Bengaluru, Karnataka, 560064, India
| | - Karthi Natesan
- Department of Biochemistry, School of Applied Sciences, REVA University, Bengaluru, Karnataka, 560064, India; Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, South Korea
| | - Shanmugam Mahendran
- Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi, 626124, Tamil Nadu, India
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea
| | - R Ravi Kumar
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Arul Jayaprakash
- PG & Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur, 635601, (Affiliated to Thiruvalluvar University, Serkkadu, Vellore-632115, Tamil Nadu, India).
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea.
| |
Collapse
|
9
|
Muthukumar Sathya P, Mohan H, Park JH, Seralathan KK, Oh BT. Applied potential assisted biodegradation of amoxicillin (AMX) using bacterial consortium isolated from a waste dump site. CHEMOSPHERE 2023; 343:140230. [PMID: 37734496 DOI: 10.1016/j.chemosphere.2023.140230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Antibiotics have revolutionized modern day living with their ability to effectively treat infectious diseases in humans and animals. However, the release of antibiotic compounds into the environment has led to toxic consequences. To reduce this environmental impact, it is important to employ an inexpensive and rational technology to reduce the amount of antibiotics released into the ecosystem. This study aims to explore the potential of using a bio-electrochemical system (BES) to remove Amoxicillin (AMX) from artificially contaminated soil using a microbial consortium and pure culture isolates. Under desired conditions, including an initial AMX concentration of 150 mg/L, 5 mg/L tryptone as the nitrogen source, pH of 7, temperature of 29 °C, an applied potential of 0.8 V, and an inoculum dose of 1% w/v, the BES showed a maximum degradation of 97.9% of AMX with the microbial consortium (HP03, HP09, and HP10). High performance liquid chromatography-mass spectrometry was used to analyse the intermediates formed during the degradation process, and the pathway elucidated revealed complete degradation of AMX. Phytotoxicity studies and degradation efficiency against multiple antibiotics confirmed the environmental significance of the BES with microbial consortium. Overall, this study highlights the potential of BES as a cost-effective and efficient method for reducing the release of antibiotics into the environment and provides valuable insights into the mechanisms and pathways of antibiotic degradation.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
10
|
Tempestti JCM, Mohan H, Muthukumar Sathya P, Lee SW, Venkatachalam J, Oh BT, Seralathan KK. Detoxification of p-nitrophenol (PNP) using Enterococcus gallinarum JT-02 isolated from animal farm waste sludge. ENVIRONMENTAL RESEARCH 2023; 231:116289. [PMID: 37263467 DOI: 10.1016/j.envres.2023.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Enterococcus gallinarum (JT-02) isolated and identified from the animal farm waste sludge was found to be capable of biodegrading p-nitrophenol (PNP), an organic compound used to manufacture drugs, fungicides, insecticides, dyes, and to darken leather. The intention of this study was to optimize the biodegradation by finding the optimal conditions for the specific strain through single-factor experiments. The bacterial strain was grown in Luria Bertani broth and various parameters were optimized to achieve the prime settings for the p-nitrophenol (PNP) biodegradation. The results indicated that the best setups for the biodegradation by the strain JT-02 was 100 mg/L of PNP; pH 7; 30 °C; 150 rpm in a shaker incubator and 3% (v/v) of inoculum dose. Once the optimal conditions were found, the bacteria were capable of degrading p-nitrophenol (98.21%) in 4 days. Intermediates produced during PNP biodegradation were identified using High Performance Liquid Chromatography (HPLC) analysis and the biodegradation pathway was elucidated. Phytotoxicity studies were carried out with Vigna radiata seeds to confirm the applicability and efficiency of PNP biodegradation.
Collapse
Affiliation(s)
- Julieta Celeste Martín Tempestti
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Luján de Cuyo, Mendoza M5528AHB, Argentina; Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea
| | - Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea
| | - Janaki Venkatachalam
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Jeonbuk, South Korea.
| |
Collapse
|
11
|
Li C, Cui C, Zhang J, Shen J, He B, Long Y, Ye J. Biodegradation of petroleum hydrocarbons based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114673. [PMID: 36827898 DOI: 10.1016/j.ecoenv.2023.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Microbial remediation is an eco-friendly and promising approach for the restoration of sites contaminated by petroleum hydrocarbons (PHCs). The degradation of total petroleum hydrocarbons (TPHs), semi volatile organic compounds (SVOCs) and volatile organic compounds (VOCs) of the soil samples collected from a petrochemical site by indigenous microbiome and exogenous microbes (Saccharomyces cerevisiae ATCC 204508/S288c, Candida utilis AS2.281, Rhodotorula benthica CBS9124, Lactobacillus plantarum S1L6, Bacillus thuringiensis GDMCC1.817) was evaluated. Community structure and function of soil microbiome and the mechanism involved in degradation were also revealed. After bioremediation for two weeks, the concentration of TPHs in soil samples was reduced from 17,800 to 13,100 mg/kg. The biodegradation efficiencies of naphthalene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, 1,2,3-trichloropropane, 1,2-dichloropropane, ethylbenzene and benzene in soil samples with the addition of S. cerevisiae were 38.0%, 35.7%, 36.2%, 40.4%, 33.6%, 36.2%, 12.0%, 43.9%, 43.3% and 43.0%, respectively. The microbial diversity and community structure were improved during the biodegradation process. S. cerevisiae supplemented soil samples exhibited the highest relative abundance of the genus Acinetobacter for bacteria and Saccharomyces for yeast. The findings offer insight into the correlation between microbes and the degradation of PHC-based pollutants during the bioremediation process.
Collapse
Affiliation(s)
- Chongshu Li
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; CAS Testing Technical Services (Guangzhou) Co., Ltd., Guangzhou 510650, China
| | - Jing Shen
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Baoyan He
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan Long
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Muthukumar Sathya P, Mohan H, Venkatachalam J, Seralathan KK. A hybrid technique for sulfamethoxazole (SFM) removal using Enterobacter hormaechei HaG-7: Bio-electrokinetic degradation, pathway and toxicity. CHEMOSPHERE 2023; 313:137485. [PMID: 36526143 DOI: 10.1016/j.chemosphere.2022.137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Prolonged exposure to antibiotics would likely favor the development of antibiotic resistance and their gene transfer among bacterial communities that are responsible for enriched antibiotic resistant microbes. Sulfamethoxazole (SFM) is a commonly used antibiotic that is released into the environment through human and animal wastes. Improper degradation of SFM poses severe threats to mankind and all life forms. The present study aims in analyzing the process and the probability of utilizing bio-electrokinetic degradation for elimination of SFM from artificially contaminated soil employing Enterobacter hormaechei HaG-7. The desired optimal conditions for SFM degradation (∼98%) were observed at SFM initial concentration (100 mg/L) with an inoculum dose (1% v/v) and applied potential voltage (1.5 V) at pH (7). The results indicated efficient and complete degradation of SFM when compared with the conventional biodegradation.
Collapse
Affiliation(s)
| | - Harshavardhan Mohan
- Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Janaki Venkatachalam
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
13
|
Mohan H, Vadivel S, Lee SW, Lim JM, Lovanh N, Park YJ, Shin T, Seralathan KK, Oh BT. Improved visible-light-driven photocatalytic removal of Bisphenol A using V 2O 5/WO 3 decorated over Zeolite: Degradation mechanism and toxicity. ENVIRONMENTAL RESEARCH 2022; 212:113136. [PMID: 35351453 DOI: 10.1016/j.envres.2022.113136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
WO3/Zeolite/V2O5 (TZV) composite synthesized through co-precipitation was used for the degradation of Bisphenol-A (BpA). XRD and Raman spectra were employed to ascertain the crystallinity of the composite. The pristine nature of the compound without any free particles over the zeolite surface was established through FESEM, thus, substantiating the composite character of the material. The enhancement in activity after doping with WO3 was ascertained by DRS-UV. Photocatalytic degradation studies clearly established the superiority of TZV 10 over bare V2O5. Complete BpA degradation (100%) was attained at 50 min of incubation with 0.75 g/L TZV-10 in acidic medium (pH 3) for an initial BpA concentration of 100 mg/L. HPLC-MS/MS analysis was used to decipher the degradation pathway. The catalyst was stable even after 9 cycles. Phytotoxicity studies and lake water treatment results proved the environmental efficiency of the synthesized material.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea; Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju, Jeonbuk, 54930, South Korea
| | - Sethumathavan Vadivel
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Nanh Lovanh
- USDA-ARS, AWMRU, 230 Bennett Lane, Bowling Green, KY, 42104, USA
| | - Yool-Jin Park
- Department of Ecology Landscape Architecture-Design, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Taeho Shin
- Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju, Jeonbuk, 54930, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
14
|
Hemdan B, Garlapati VK, Sharma S, Bhadra S, Maddirala S, K M V, Motru V, Goswami P, Sevda S, Aminabhavi TM. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. ENVIRONMENTAL RESEARCH 2022; 204:112346. [PMID: 34742708 DOI: 10.1016/j.envres.2021.112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.
Collapse
Affiliation(s)
- Bahaa Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Vijay Kumar Garlapati
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Swati Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Shivani Maddirala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Varsha K M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Vineela Motru
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
15
|
Szentgyörgyi F, Benedek T, Fekete D, Táncsics A, Harkai P, Kriszt B. Development of a bacterial consortium from Variovorax paradoxus and Pseudomonas veronii isolates applicable in the removal of BTEX. AMB Express 2022; 12:4. [PMID: 35075552 PMCID: PMC8787013 DOI: 10.1186/s13568-022-01349-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, we report on the development of a novel bacterial consortium, consisting of Variovorax paradoxus and Pseudomonas veronii isolates, applicable in the biodegradation of all six BTEX compounds (benzene, toluene, ethylbenzene, o-, m- and p-xylene) and the bioremediation of contaminated sites. The co-cultivability of the selected bacterial isolates was determined in nutrient-rich medium, as well as in BTEX amended mineral salts solution using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and CFU determinations. BTEX biodegradation capacity of the two-strain consortium was assessed in mineral salts solution, where a series of BTEX depletions and supplementations occurred, as well as in a real, BTEX polluted environmental sample (contaminated groundwater) in the presence of the autochthonous bacterial community. The obtained results indicated that the developed bacterial consortium is very efficient in BTEX biodegradation. Under laboratory conditions, the acclimatized bacterial consortium completely degraded the BTEX mixture with a concentration as high as 20 mg l-1 in a mineral salt medium within a short span of 6 h. Close to in situ groundwater conditions (incubated at 15 °C under static conditions in the absence of light), groundwater microcosms containing the autochthonous bacterial community inoculated with the developed bacterial consortium showed more efficient toluene, o-, m-and p-xylene biodegradation capacity than microcosms containing solely the native microbial population originally found in the groundwater. In the inoculated microcosms, after 115 h of incubation the concentration (~ 1.7 mg l-1 each) of o-, m- and p-xylene decreased to zero, whereas in the non-inoculated microcosms the concentration of xylene isomers was still 0.2, 0.3 and 0.3 mg l-1, respectively. The allochthonous bioaugmentation of the contaminated groundwater with the obtained inoculant was successful and manifested in a better BTEX degradation rate. Our results suggest that the obtained bacterial consortium can be a new, stable and efficient bioremediation agent applicable in the synergistic elimination of BTEX compounds from contaminated sites.
Collapse
|
16
|
Potential of Variovorax paradoxus isolate BFB1_13 for bioremediation of BTEX contaminated sites. AMB Express 2021; 11:126. [PMID: 34487274 PMCID: PMC8421498 DOI: 10.1186/s13568-021-01289-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/07/2022] Open
Abstract
Here, we report and discuss the applicability of Variovorax paradoxus strain BFB1_13 in the bioremediation of BTEX contaminated sites. Strain BFB1_13 was capable of degrading all the six BTEX-compounds under both aerobic (O2 conc. 8 mg l−1) and micro-aerobic/oxygen-limited (O2 conc. 0.5 mg l−1) conditions using either individual (8 mg‧l−1) or a mixture of compounds (~ 1.3 mg‧l−1 of each BTEX compound). The BTEX biodegradation capability of SBP-encapsulated cultures (SBP—Small Bioreactor Platform) was also assessed. The fastest degradation rate was observed in the case of aerobic benzene biodegradation (8 mg l−1 per 90 h). Complete biodegradation of other BTEX occurred after at least 168 h of incubation, irrespective of the oxygenation and encapsulation. No statistically significant difference was observed between aerobic and microaerobic BTEX biodegradation. Genes involved in BTEX biodegradation were annotated and degradation pathways were predicted based on whole-genome shotgun sequencing and metabolic analysis. We conclude that V. paradoxus strain BFB1_13 could be used for the development of reactive biobarriers for the containment and in situ decontamination of BTEX contaminated groundwater plumes. Our results suggest that V. paradoxus strain BFB1_13—alone or in co-culture with other BTEX degrading bacterial isolates—can be a new and efficient commercial bioremediation agent for BTEX contaminated sites.
Collapse
|
17
|
Simultaneous removal of hydrocarbons and sulfate from groundwater using a “bioelectric well”. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Mohan H, Ramalingam V, Karthi N, Malathidevi S, Shin T, Venkatachalam J, Seralathan KK. Enhanced visible light-driven photocatalytic activity of reduced graphene oxide/cadmium sulfide composite: Methylparaben degradation mechanism and toxicity. CHEMOSPHERE 2021; 264:128481. [PMID: 33045558 DOI: 10.1016/j.chemosphere.2020.128481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Reduced graphene oxide/cadmium sulfide (RGOCdS) nanocomposite synthesized through solvothermal process was used for methylparaben (MeP) degradation. The crystallinity of the nanocomposite was ascertained through X-ray diffraction. High resolution transmission electron microscope (HRTEM) results proved the absence of any free particle beyond the catalyst surface ensuring the composite nature of the prepared material. The enhancement in the activity on doping with RGO was substantiated by diffuse reflectance spectroscopy (DRS-UV). It is evident from the photocatalytic degradation experiments that RGOCdS is more efficient than pure CdS. Maximum MeP degradation (100%) was achieved after 90 min of irradiation with 750 mg/L RGOCdS dosage at an acidic pH of 3, for an initial MeP concentration of 30 mg/L. The degradation mechanism substantiated through HPLC-MS/MS analysis showed the complete degradation of MeP without any residual intermediaries. The catalyst could be sustained and reused for up to 9 cycles of usage. Phytotoxicity and mycotoxicity results evidently ascertain the environmental implications of the photocatalyst material.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Dynamics and Spectroscopy Laboratory, Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54930, South Korea
| | - Vaikundamoorthy Ramalingam
- Center for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
| | - Natesan Karthi
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India; Genomic Division, National Academy of Agricultural Science, RDA Jeonju 54875, Jeollabuk, South Korea
| | | | - Taeho Shin
- Dynamics and Spectroscopy Laboratory, Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54930, South Korea
| | - Janaki Venkatachalam
- Department of Chemistry, Sri Sarada College for Women, Salem, Tamil Nadu 636 016, India.
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
19
|
Feng S, Gong L, Zhang Y, Tong Y, Zhang H, Zhu D, Huang X, Yang H. Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage. BIORESOURCE TECHNOLOGY 2021; 320:124329. [PMID: 33142251 DOI: 10.1016/j.biortech.2020.124329] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Bioaugmentation was conducted using a bacterial consortium of Pseudomonas putida SW-3 and Rhodococcus ruber SS-4, to test their ability to degrade benzene, toluene, and styrene (BTS). SW-3 and SS-4 were isolated from domestic sludge and sewage samples to establish a synthetic consortium with an optimized ratio of 2:1 to reach a degradation efficiency of 82.5-89.8% of BTS. The bacterial consortium was inoculated with sludge and sewage samples at a ratio of 2:1, resulting in a degradation efficiency of 97.9% and 92.7%, respectively, at a BTS concentration of 1800 mg·L-1. Analysis of bacterial community structure following bioaugmentation indicated an increase in abundance of BTS-degrading bacteria, particularly Acinetobacter and Pseudoxanthomonas in sludge and Pseudomonas in sewage, enhancing the collective BTS degradation ability of the bacterial community. Principal component analysis demonstrated that a more balanced bacterial community structure was established following intervention. This indicated that the selected bacteria are excellent candidates for bioaugmentation.
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Liangqi Gong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Yanke Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Yanjun Tong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong 408100, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xing Huang
- WUXI City Environmental Technology Co., Ltd, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, China.
| |
Collapse
|