1
|
Esmaeilbeigi M, P Duncan R, J Kefford B, Ezaz T, Clulow S. Evidence for a metal disease refuge: The amphibian-killing fungus (Batrachochytrium dendrobatidis) is inhibited by environmentally-relevant concentrations of metals tolerated by amphibians. ENVIRONMENTAL RESEARCH 2024; 261:119752. [PMID: 39117053 DOI: 10.1016/j.envres.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu + Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 μg/L and 250 μg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 μg/L and 1.19 μg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.
Collapse
Affiliation(s)
- Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Richard P Duncan
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Ben J Kefford
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Tariq Ezaz
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| | - Simon Clulow
- Center for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Bruce ACT, 2617, Australia.
| |
Collapse
|
2
|
Wang Y, Fabuleux Tresor Baniakina L, Chai L. Response characteristic and potential molecular mechanism of tail resorption in Bufo gargarizans after exposure to lead and copper, alone or combined. ENVIRONMENTAL RESEARCH 2024; 259:119505. [PMID: 38945509 DOI: 10.1016/j.envres.2024.119505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Tail resorption during amphibian metamorphosis is one of the most dramatic processes that is obligatorily dependent on thyroid hormone (TH). Heavy metals could result in thyroid gland damages and disturb TH homeostasis. Lead (Pb) and copper (Cu) often co-exist in natural aquatic ecosystems. However, there is still little information on how tail resorption responds to alone or combined exposure to Pb and Cu. Our study investigated the effects of Pb and Cu alone or combined exposure on the morphological parameters of the tail, histological changes of thyroid gland and tail, and gene expression programs involved in cell death of the tail in Bufo gargarizans tadpoles at the climax of metamorphosis. Results demonstrated that Pb, Cu and Pb-Cu mixture exposure resulted in a significantly longer tail compared with control. Damages to notochord, muscle, skin and spinal cord of the tail were found in Pb and Cu exposure groups. The colloid area, the height of follicular cells and number of phagocytic vesicles of thyroid gland in Pb-Cu mixture exposure groups were significantly reduced. In addition, the expression levels of TH, apoptosis, autophagy, degradation of cellular components and oxidative stress-related genes in the tail were significantly altered following Pb and Cu exposure. The present work revealed the relationship between environmental pollutants and tail resorption, providing scientific basis for amphibian protection.
Collapse
Affiliation(s)
- Yaxi Wang
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lod Fabuleux Tresor Baniakina
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang' an University, Xi'an, 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang' an University, Xi'an, 710054, China.
| |
Collapse
|
3
|
Park JK, Do Y. Combined effect of seasons and life history in an anuran strengthens the response and relationship between their physiology and gut microbiota. Sci Rep 2024; 14:10137. [PMID: 38698108 PMCID: PMC11066060 DOI: 10.1038/s41598-024-60105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Gut microbiota impact host physiology, though simultaneous investigations in ectothermic vertebrates are rare. Particularly, amphibians may exhibit more complex interactions between host physiology and the effects of gut microbiota due to the combination of seasonal changes and complex life histories. In this study, we assessed the relationships among food resources, gut bacterial communities, and host physiology in frogs (Phelophylax nigromaculatus), taking into account seasonal and life history variations. We found that food sources were not correlated with physiological parameters but had some relationships with the gut bacterial community. Variations in gut bacterial community and host physiology were influenced by the combined effects of seasonal differences and life history, though mostly driven by seasonal differences. An increase in Firmicutes was associated with higher fat content, reflecting potential fat storage in frogs during the non-breeding season. The increase in Bacteroidetes resulted in lower fat content in adult frogs and decreased immunity in juvenile frogs during the breeding season, demonstrating a direct link. Our results suggest that the gut microbiome may act as a link between food conditions and physiological status, and that the combined effect of seasons and life history could reinforce the relationship between gut microbiota and physiological status in ectothermic animals. While food sources may influence the gut microbiota of ectotherms, we contend that temperature-correlated seasonal variation, which predominately influences most ectotherms, is a significant factor.
Collapse
Affiliation(s)
- Jun-Kyu Park
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-Ro, Kongju-si, Chungcheongnam-do, 32588, Republic of Korea
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-Ro, Kongju-si, Chungcheongnam-do, 32588, Republic of Korea.
| |
Collapse
|
4
|
Chai L, Song Y, Chen A, Jiang L, Deng H. Gut microbiota perturbations during larval stages in Bufo gargarizans tadpoles after Cu exposure with or without the presence of Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122774. [PMID: 37871736 DOI: 10.1016/j.envpol.2023.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu combined with Pb from Gs26 throughout metamorphosis. Morphology of tadpoles, histological characteristic and bacterial community of intestines were evaluated at three developmental stages: Gs33, Gs36, and Gs42. Results showed that Cu and Cu + Pb exposure caused various degrees of morphological and histological changes in guts at tested three stages. In addition, bacterial richness and diversity in tadpoles especially at Gs33 and Gs42 were disturbed by Cu and Cu + Pb. Beta diversity demonstrated that the bacterial community structures were influenced by both heavy metals exposure and developmental stages. Alterations in taxonomic composition were characterized by increased abundance of Proteobacteria and Firmicutes, reduction of Fusobacteriota, as well as decreased Cetobacterium and increased C39 at all three stages. Overall, response of gut bacterial diversity and composition to Cu stress depends on the developmental stage, while the altered patterns of bacterial community at Cu stress could be modified further by the presence of Pb. Moreover, predicted metabolic disorders were associated with shifts in bacterial community, but needs integrated information from metagenomic and metatranscriptomic analyses. These results contribute to the growing body of research about potential ecotoxicological effects of heavy metals on amphibian gut microbiota during metamorphosis.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Yanjiao Song
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
5
|
Lin C, Fu J, Liu L, Wang H, Wei L. Disruption of intestinal structure, tight junction complex, immune response and microbiota after chronic exposure to copper in swamp eel (Monopterus albus). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109182. [PMID: 37879511 DOI: 10.1016/j.fsi.2023.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
As an essential micronutrient, copper is crucial in aquatic organisms' growth and development. Numerous studies have consistently reported that excessive intake of copper can have harmful effects on organisms. However, there are limited studies on the impact of copper on the intestine of the swamp eel (Monopterus albus). This study aimed to investigate the changes of intestinal histopathology, tight junction complex, immune response, and microbiota in swamp eel treated with 0 mg/L Cu2+, 0.05 mg/L Cu2+, and 0.10 mg/L Cu2+ for 56 d. Intestinal histopathology showed major changes such as the increased number of erythrocytes and goblet cells in the lamina propria, and separation of the lamina propria. The expression of genes involved in tight junction complex (ZO-1, Claudin-3, Claudin-12 and Claudin-15) was significantly changed. In addition, copper exposure significantly increased the mRNA levels of TLR3, TLR7, TLR8, NF-κB, I-κB, TNF-α and IL-8, especially in 0.10 mg/L Cu2+ group. In contrast, the relative expression level of anti-inflammatory cytokine TGF-β was significantly decreased after exposure to copper. Analysis of the intestinal microbiome showed the intestinal microbiota of swamp eels in the control and copper exposure groups were dominated by Firmicutes and Proteobacteria at the phylum level. Notably, copper exposure changed the diversity of the intestinal microbiota and decreased the relative abundance of Firmicutes and Proteobacteria in the intestine of swamp eel. Collectively, this study demonstrates that chronic copper exposure induces intestinal pathologic changes and inflammatory response, disrupts the intestinal microbial diversity and microbiota composition, and decreases intestinal barrier function in swamp eel, which enhances our understanding of copper-induced intestinal toxicity in fish.
Collapse
Affiliation(s)
- Changgao Lin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
6
|
Wang L, Wang C, Huang C, Gao C, Wang B, He J, Yan Y. Dietary berberine against intestinal oxidative stress, inflammation response, and microbiota disturbance caused by chronic copper exposure in freshwater grouper (Acrossocheilus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2023:108910. [PMID: 37385463 DOI: 10.1016/j.fsi.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Berberine (BBR) is known for its strong antioxidant, anti-inflammatory, and capacity to preserve intestinal microbiota balance in fish. This study aimed to investigate the protective effects of berberine against copper-induced toxicity in the intestine of freshwater grouper Acrossocheilus fasciatus. The experiment involved four groups: a control group, a Cu group exposed to 0.02 mg/L Cu2+, and two BBR groups fed with 100 or 400 mg/kg of berberine diets and exposed to the same Cu2+ concentration. Three replicates of healthy fish (initial weight 1.56 ± 0.10 g) were subjected to their respective treatments for 30 days. Results showed that none of the treatments significantly affected the survival rate, final weight, weight gain, and feed intake (P > 0.05). However, supplementation with 100 and 400 mg/kg of BBR significantly lowered the antioxidant activities, and glutathione peroxidase (gpx) and superoxide dismutase (sod) expression levels, as well as reduced malondialdehyde (MDA) content caused by Cu2+ exposure (P < 0.05). Berberine inclusion significantly downregulated proinflammatory factors NLR family pyrin domain containing 3 (nlrp3), interleukin 1 beta (il1β), interleukin 6 cytokine family signal transducer (il6st) but upregulated transforming growth factor beta 1 (tgfβ1) and heat shock 70kDa protein (hsp70) expression. Moreover, berberine at both levels maintained the intestinal structural integrity and significantly improved gap junction gamma-1 (gjc1) mRNA level compared to the Cu group (P < 0.05). Based on 16S rDNA sequencing, the richness and diversity of intestinal microbiota in different groups were not significantly influenced. Berberine reduced the Firmicutes/Bacteroidota ratio and stifled the growth of some specific pathogenic bacteria such as Pseudomonas, Citrobacter, and Acinetobacter, while boosting the richness of potential probiotic bacteria, including Roseomonas and Reyranella compared with the Cu group. In conclusion, berberine showed significant protective effects against Cu2+-induced intestinal oxidative stress, inflammation response, and microbiota disturbance in freshwater grouper.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| | - Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenchen Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jiang He
- Anhui Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| |
Collapse
|
7
|
Colin Y, Arcanjo C, Da Costa C, Vivant AL, Trémolet G, Giusti-Petrucciani N, Duflot A, Forget-Leray J, Berthe T, Boulangé-Lecomte C. Decoupled responses of the copepod Eurytemora affinis transcriptome and its microbiota to dissolved copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106546. [PMID: 37120957 DOI: 10.1016/j.aquatox.2023.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. Of particular importance is that trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. The copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis and the alteration of its microbiota. Unexpectedly, very few genes were differentially expressed in the copper-treated copepods compared to the controls for both male and female samples, while a clear dichotomy between sex was highlighted with 80% of the genes showing sex-biased expression. In contrast, copper increased the taxonomic diversity of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated the phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in the copper-treated copepods coincided with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, Alkanindiges, Colwellia) and a higher relative abundance of the copAox gene encoding a periplasmic inducible multi-copper oxidase. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines the need to consider the microbial component during evaluation of the vulnerability of zooplankton to metallic stress.
Collapse
Affiliation(s)
- Yannick Colin
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, F-76000 Rouen, France; Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005, Paris, France.
| | - Caroline Arcanjo
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600 Le Havre, France
| | - Claire Da Costa
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, F-76000 Rouen, France
| | - Anne-Laure Vivant
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, F-76000 Rouen, France
| | - Gauthier Trémolet
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600 Le Havre, France
| | - Nathalie Giusti-Petrucciani
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600 Le Havre, France
| | - Aurélie Duflot
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600 Le Havre, France
| | - Joëlle Forget-Leray
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600 Le Havre, France
| | - Thierry Berthe
- Univ Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, F-76000 Rouen, France; Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005, Paris, France
| | - Céline Boulangé-Lecomte
- Université Le Havre Normandie, Normandie Univ, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Le Havre, F-76600 Le Havre, France
| |
Collapse
|
8
|
Zhang S, Chen A, Jiang L, Liu X, Chai L. Copper-mediated shifts in transcriptomic responses of intestines in Bufo gargarizans tadpoles to lead stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50144-50161. [PMID: 36790706 DOI: 10.1007/s11356-023-25801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/04/2023] [Indexed: 04/16/2023]
Abstract
The differential transcriptomic responses of intestines in Bufo gargarizans tadpoles to Pb alone or in the presence of Cu were evaluated. Tadpoles were exposed to 30 μg/L Pb individually and in combination with Cu at 16 or 64 μg/L from Gosner stage (Gs) 26 to Gs 38. After de novo assembly, 105,107 unigenes were generated. Compared to the control group, 7387, 6937, and 11139 differentially expressed genes (DEGs) were identified in the treatment of Pb + Cu0, Pb + Cu16, and Pb + Cu64, respectively. In addition, functional annotation and enrichment analysis of DEGs revealed substantial transcriptional reprogramming of diverse molecular and biological pathways were induced in all heavy metal treatments. The relative expression levels of genes associated with intestinal epithelial barrier and bile acids (BAs) metabolism, such as mucin2, claudin5, ZO-1, Asbt, and Ost-β, were validated by qPCR. This study demonstrated that Pb exposure induced transcriptional responses in tadpoles, and the responses could be modulated by Cu.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
| |
Collapse
|
9
|
Liu Y, Zhang S, Deng H, Chen A, Chai L. Lead and copper influenced bile acid metabolism by changing intestinal microbiota and activating farnesoid X receptor in Bufo gargarizans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160849. [PMID: 36521604 DOI: 10.1016/j.scitotenv.2022.160849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb) and copper (Cu) are ubiquitous metal contaminants and can pose a threat to ecosystem and human health. Bile acids have recently received considerable attention for their role in the maintenance of health. However, there were few studies on whether Pb and Cu affect bile acid metabolism in amphibians. In this study, a combination approach of histological analysis, targeted metabolomics, 16S rDNA sequencing and qPCR was used to explore the impacts of Pb, Cu and their mixture (Mix) on bile acid in Bufo gargarizans tadpoles. The results showed that Pb, Cu, and Mix resulted in intestinal damage and altered the bile acid profiles. Specifically, Pb and Mix exposure decreased total bile acid concentrations while increased toxic bile acid levels; in contrast, Cu exposure increased total bile acid levels. And hydrophilic bile acids were reduced in all treated tadpoles. Moreover, Pb and/or Cu changed the composition of intestinal microbiota, especially Clostridia, Bacteroides and Eubacterium involved in bile acid biotransformation. qPCR revealed that the decreased total bile acid concentrations in Pb- and Mix-treated tadpoles were most likely attributed to the activation of intestinal farnesoid X receptor (Fxr), which suppressed bile acid synthesis and reabsorption. While activated fxr in the Cu treatment group may be a regulatory mechanism in response to increased bile excretion, which is a detoxification route of tadpoles under Cu stress. Collectively, Pb, Cu and Mix changed bile acid profiles by affecting intestinal microbial composition and activating Fxr signaling. This study provided insight into the impacts of Pb and Cu on bile acid metabolism and contributed to the assessment of the potential ecotoxicity of heavy metals on amphibians.
Collapse
Affiliation(s)
- Yutian Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
10
|
Chai L, Wang H, Li X, Wang H. Comparison of the characteristics of gut microbiota response to lead in Bufo gargarizans tadpole at different developmental stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20907-20922. [PMID: 36261638 DOI: 10.1007/s11356-022-23671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In amphibians, lead (Pb) exposure could alter the composition and structure of gut microbiota, but changes involving microbiota of several successive phases following Pb exposure have been less studied. In the present study, we compared the effects of Pb exposure on morphological parameters and gut microbiota of Bufo gargarizans at Gosner stage (Gs) 33, Gs36, and Gs42. Our results showed that total length (TL), snout-vent length (SVL), and body wet weight (TW) of B. gargarizans at Gs33, as well as TL and SVL at Gs42, were significantly increased after Pb exposure. In addition, high-throughput sequencing analysis indicated that gut microbiota has distinct responses to Pb exposure at different developmental stages. The diversity of gut microbiota was significantly reduced under Pb exposure at Gs33, while it was significantly increased at Gs42. In terms of community composition, Spirochaetota, Armatimonadota, and Patescibacteria appeared in the control groups at Gs42, but not after Pb treatment. Furthermore, functional prediction indicated that the relative abundance of metabolism pathway was significantly decreased at Gs33 and Gs36, and significantly increased at Gs42. Our results fill an important knowledge gap and provide comparative information on the gut microbiota of tadpoles at different developmental stages following Pb exposure.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710062, China
| | - Hemei Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
11
|
Liu Y, Zhang S, Deng H, Chen A, Chai L. Lead and copper led to the dysregulation of bile acid homeostasis by impairing intestinal absorption in Bufo gargarizans larvae: An integrated metabolomics and transcriptomics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:159031. [PMID: 36170915 DOI: 10.1016/j.scitotenv.2022.159031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Bile acids, as metabolic regulators and signaling molecules, play key roles in the regulation of host metabolism and immune responses. Heavy metals such as lead (Pb) and copper (Cu) are widespread environmental pollutants that threaten public health. However, the effects of heavy metals on bile acid metabolism and the underlying molecular mechanisms remain unclear, particularly for ecologically important amphibian species. In the present research, the effects of exposure to environmentally-relevant concentrations of Pb (250 μg/L), Cu (50 μg/L), and a mixture of both (Mix) on bile acid metabolism and the underlying molecular mechanisms in the intestines of Bufo gargarizans larvae were comprehensively investigated using histopathology, metabolomics and transcriptomics analysis. Our results suggested that Pb and/or Cu caused histopathological damage to the intestine and liver, such as decreased intestinal epithelial cell height and dilated hepatic sinusoid. The total bile acid level was decreased in the Pb and Mix exposure groups but elevated in the Cu treatment. A significant decrease in the ratio of conjugated to unconjugated bile acids was present in all treatment groups. Also, the level of GCA was increased while TCA and TCDCA were decreased in all exposure groups. In addition, exposure to Pb and Cu altered the expression levels of genes related to intestinal absorption. For example, mrp2, mrp3 and aqp4 had higher expression in the Pb and Mix treatment groups, and aqp1 and mrp4 were increased in the Cu treatment group. Overall, we speculated that the dysregulation of bile acid homeostasis induced by Pb and Cu exposure may be due to impaired intestinal absorption. These findings raise further concerns about the hazards of Pb and/or Cu in influencing bile acid metabolism that might lead to the development of metabolic diseases and inflammatory disorders.
Collapse
Affiliation(s)
- Yutian Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
12
|
Motta AGC, Guerra V, do Amaral DF, da Costa Araújo AP, Vieira LG, de Melo E Silva D, Rocha TL. Assessment of multiple biomarkers in Lithobates catesbeianus (Anura: Ranidae) tadpoles exposed to zinc oxide nanoparticles and zinc chloride: integrating morphological and behavioral approaches to ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13755-13772. [PMID: 36138291 DOI: 10.1007/s11356-022-23018-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The ecotoxicological risk to vertebrates posed by zinc oxide nanoparticles (ZnO NPs) is still poorly understood, especially in animals with a biphasic life cycle, which have aquatic and terrestrial phases, such as amphibians. In the present study, we investigated whether acute exposure (7 days) to ZnO NPs and zinc chloride (ZnCl2) at three environmentally relevant concentrations (0.1, 1.0, and 10 mg L-1) induces changes in the morphology, chondrocranium, and behavior of the tadpoles of Lithobates catesbeianus (Anura: Ranidae). Tadpoles exposed to both forms of Zn did not undergo any morphological or behavioral changes at the lowest concentrations (0.1 and 1.0 mg L-1). However, the animals exposed to the highest concentration (10 mg L-1) lacked oral disc structures, were smaller in size, had a longer tail, and presented changes in the position and coiling of the intestine and malformations of the chondrocranium in comparison with the control group. This indicates that ZnO NPs and ZnCl2 altered the development of the tadpoles, causing delays in their metamorphosis and even reducing individual fitness. The tadpoles exposed to both forms of Zn at 10 mg L-1 also had reduced mobility, especially in the presence of conspecifics. Based on these findings, we emphasize the importance of studying morphological, skeletal, and behavioral biomarkers to evaluate the toxic effects of metal-based nanoparticles in amphibians.
Collapse
Affiliation(s)
- Andreya Gonçalves Costa Motta
- Mutagenesis Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiânia, GoiâniaGoiás, Brazil
| | - Vinicius Guerra
- Graduate Program in Ecology and the Management of Natural Resources, Federal University of Acre, Rio Branco, Acre, Brazil
- Boitatá Institute of Ethnobiology and Conservation of the Fauna, Goiânia, Goiás, Brazil
| | - Diogo Ferreira do Amaral
- Mutagenesis Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiânia, GoiâniaGoiás, Brazil
| | - Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Graduate Program in the Conservation of Natural Resources in the Cerrado, Goiás Federal Institute - Urutaí Campus, Urutaí, Goiás, Brazil
| | - Lucélia Gonçalves Vieira
- Ontogeny and Morphology Research Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Mutagenesis Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiânia, GoiâniaGoiás, Brazil.
| |
Collapse
|
13
|
Chai L, Jabbie IS, Chen A, Jiang L, Li M, Rao H. Effects of waterborne Pb/Cu mixture on Chinese toad, Bufo gargarizans tadpoles: morphological, histological, and intestinal microbiota assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90656-90670. [PMID: 35871197 DOI: 10.1007/s11356-022-22143-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Coexistence of heavy metals in aquatic environments exert complex effects on amphibians. Here, the adverse effects of Pb (0.14 μM) combined with Cu at concentrations of 0, 0.25, and 1.0 μM were investigated in Bufo gargarizans tadpoles. Tadpoles were chronically exposed from Gosner stage (Gs) 26 to Gs 38, and morphology of tadpoles as well as intestinal histology and bacterial community were assessed. Our results indicated that Pb+Cu1.0 exposure induced significant retardation of somatic mass, total length, intestine mass, and intestine length as well as intestinal histological alterations. Pb+Cu0.25 and Pb+Cu1.0 exposure were associated with the loss of gut bacterial diversity. Proteobacteria and Bacteroidetes were two dominant phyla in tadpoles independently of heavy metal exposure, but the abundance of Proteobacteria increased significantly in Pb+Cu1.0 group and Bacteroidetes decreased significantly in all treatment groups. Furthermore, functional prediction indicated that metabolic disorders were associated with Pb+Cu0.25 and Pb+Cu1.0 exposure. Overall, relative limited shifts in intestinal bacterial diversity, composition, and functionality caused by Pb+Cu0 exposure, while coexistence of Pb and Cu induced gut dysbiosis and might further cause disturbance of metabolic homeostasis. The findings of this study provide insights into the effects of Pb and Cu coexistence on the health of amphibians.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Ibrahim Sory Jabbie
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Mengfan Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Huihui Rao
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
14
|
Brix KV, De Boeck G, Baken S, Fort DJ. Adverse Outcome Pathways for Chronic Copper Toxicity to Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2911-2927. [PMID: 36148934 PMCID: PMC9828004 DOI: 10.1002/etc.5483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoToxMiamiFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Department of Marine Biology and EcologyUniversity of MiamiMiamiFloridaUSA
| | | | | | | |
Collapse
|
15
|
Zhang L, Yang Z, Yang M, Yang F, Wang G, Liu D, Li X, Yang L, Wang Z. Copper-induced oxidative stress, transcriptome changes, intestinal microbiota, and histopathology of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114136. [PMID: 36242823 DOI: 10.1016/j.ecoenv.2022.114136] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is a common contaminant in aquatic environments, which could cause physiological dysfunction in aquatic organisms. However, few studies have comprehensively examined the impact of copper toxicity in freshwater fish over the past decade. In this research, the oxidative stress, liver transcriptome, intestinal microbiota, and histopathology of common carp (C. carpio) in response to Cu exposure were studied, by exposing juvenile carp to 0.2 mg/ml Cu2+ for 30 days. The results revealed that Cu2+ could induce significant changes in malondialdehyde (MDA) content and antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)) activity. The changes in antioxidant enzyme activities indicate that Cu can induce oxidative stress by generating reactive oxygen species (ROS) content. RNA-seq analysis of the liver identified 1069 differentially expressed genes (DEGs) after treatment with 2.0 mg/L Cu2+. Among the DEGs, 490 genes were upregulated and 579 genes were downregulated. GO functional enrichment analysis revealed that Cu could affect the fatty acid biosynthetic process, carnitine biosynthetic process, and activity of carboxylic acid transmembrane transporter. Meanwhile, the most significantly enriched KEGG pathway also included the lipid metabolism pathway. In addition, Cu2+ exposure increased bacterial richness and changed bacterial composition. At the phylum level, we found that the ratio of Bacteroidetes to Firmicutes was increased in the treatment carps, which can regulate intestinal epithelium function and reduce inflammation and immune responses. At the genus level, the abundances of 11 genera were significantly altered after exposure to Cu2+. The altered composition of the microbial community caused by Cu exposure may play a useful role in compensation of the intestinal lesions by Cu exposure. Furthermore, we found that Cu2+ exposure could cause histological alterations such as structural damage to the liver and intestines. The results of this research contribute to a better understanding of mechanisms related to Cu toxicity in fish.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China.
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dandan Liu
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
16
|
Perrotta BG, Kidd KA, Walters DM. PCB exposure is associated with reduction of endosymbionts in riparian spider microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156726. [PMID: 35716742 DOI: 10.1016/j.scitotenv.2022.156726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities, including endosymbionts, play diverse and critical roles in host biology and reproduction, but contaminant exposure may cause an imbalance in the microbiome composition with subsequent impacts on host health. Here, we examined whether there was a significant alteration of the microbiome community within two taxa of riparian spiders (Tetragnathidae and Araneidae) from a site with historical polychlorinated biphenyl (PCB) contamination in southern Ontario, Canada. Riparian spiders specialize in the predation of adult aquatic insects and, as such, their contaminant levels closely track those of nearby aquatic ecosystems. DNA from whole spiders from sites with either low or high PCB contamination was extracted, and spider microbiota profiled by partial 16S rRNA gene amplicon sequencing. The most prevalent shift in microbial communities we observed was a large reduction in endosymbionts in spiders at the high PCB site. The abundance of endosymbionts at the high PCB site was 63 % and 98 % lower for tetragnathids and araneids, respectively, than at the low PCB site. Overall, this has potential implications for spider reproductive success and food webs, as riparian spiders are critical gatekeepers of energy and material fluxes at the land-water interface.
Collapse
Affiliation(s)
- Brittany G Perrotta
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; Contractor, U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada.
| | - David M Walters
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| |
Collapse
|
17
|
Hu L, Sun L, Zhou J, Wu F, Fu Z, Xie X. Impact of a hexafluoropropylene oxide trimer acid (HFPO-TA) exposure on impairing the gut microbiota in mice. CHEMOSPHERE 2022; 303:134951. [PMID: 35577126 DOI: 10.1016/j.chemosphere.2022.134951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) has been used as an alternative of perfluorooctanoic acid (PFOA) in the fluoropolymer industry for several years. HFPO-TA is reported to have high capability of bioaccumulation, widespread environmental distribution, and multiple toxicities. However, its potential toxicity on the intestines and gut microbiota remains unknown. In the present study, male mice were orally exposed to 200 μg/L HFPO-TA for 6 weeks, and after total genomic DNA extraction, 16S rRNA amplicon pyrosequencing was performed. Our results demonstrated that HFPO-TA exposure resulted in the imbalance of cecal microbiota and alterations of cecal microbiota diversity. At the phylum level, the relative abundances of Proteobacteria, Deferribacteres, and Tenericutes increased in mice after exposure to HFPO-TA, while the relative abundances of Verrucomicrobia, Cyanobacteria, and TM7 decreased. At the genus level, the relative abundances of Ver Akkermansia, Pre Prevotella, Lac Coprococcus, Por_Parabacteroides, and Lac Dorea decreased in HFPO-TA exposed mice. Meanwhile, the increased relative abundances of Def_Mucispirillum, Des_Desulfovibrio and Odo Odoribacter were observed in HFPO-TA exposed mice. Additionally, KEGG metabolic pathway analysis revealed that HFPO-TA exposure changed the unsaturated fatty acid synthesis, fatty acid metabolism, glyoxylic acid and dicarboxylic acid metabolism, galactose metabolism pathway and other metabolic pathways. Collectively, all these findings indicate the potential gut toxicity of HFPO-TA and is perceived as a risk of health on gut microbiota. Future investigations should be warranted.
Collapse
Affiliation(s)
- Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
18
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of food contaminants and additives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Zhao Q, Huang M, Liu Y, Wan Y, Duan R, Wu L. Effects of atrazine short-term exposure on jumping ability and intestinal microbiota diversity in male Pelophylax nigromaculatus adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36122-36132. [PMID: 33683588 DOI: 10.1007/s11356-021-13234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Atrazine, a common chemical pesticide, has toxicity to adult and juvenile amphibians in natural ecosystems; however, it is more common to study its effects on larvae instead of adults. This study assessed the impacts of atrazine in water through short-term exposure (7 days) on male black spotted frog (Pelophylax nigromaculatus) adults fed every day. The jumping ability, including jumping height, distance, time, and speed, was measured by 3D motion analysis software, and the intestinal content microbiota was determined by 16S rRNA amplicon sequencing with QIIME software. The results showed that male P. nigromaculatus exposure to 200 and 500 μg/L atrazine significantly increased jumping distance and jumping time compared to control groups. Conversely, 500 μg/L atrazine treatments significantly decreased the diversity and changed the composition and structure of intestinal content microflora in male P. nigromaculatus compared to control groups. At the phylum level, Chlamydiae was only detected in the control group, and Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria were the dominant microflora in the atrazine treatment groups. At the genus level, the abundance of Lactobacillus and Weissella significantly increased in atrazine treatment groups compared to control groups. This study can provide a new framework based on movement behavior and intestinal microbiota to evaluate the response of amphibians to short-term exposure to environmental pollution.
Collapse
Affiliation(s)
- Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Lianfu Wu
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province, Anqing, 246011, Anhui, China
| |
Collapse
|
20
|
Zheng R, Wu M, Wang H, Chai L, Peng J. Copper-induced sublethal effects in Bufo gargarizans tadpoles: growth, intestinal histology and microbial alternations. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:502-513. [PMID: 33587250 DOI: 10.1007/s10646-021-02356-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is one of the environmental contaminations which can pose significant risks for organisms. The current study explores the effects of Cu exposure on the growth, intestinal histology and microbial ecology in Bufo gargarizans. The results revealed that 0.5-1 μM Cu exposure induced growth retardation (including reduction of total body length and wet weight) and intestinal histological injury (including disordered enterocyte, changes in the villi and vacuoles) of tadpoles. Also, high-throughput sequencing analysis showed that Cu exposure caused changes in richness, diversity and structure of intestinal microbiota. Moreover, the composition of intestinal microbiota was altered in tadpoles exposed to different concentrations of Cu. At the phylum level, we observed the abundance of proteobacteria was increased, while the abundance of fusobacteria was decreased in the intestinal microbiota of tadpoles exposed to 1 μM Cu. At the genus level, a reduced abundance of kluyvera and aeromonas was observed in the intestinal microbiota of tadpoles under the exposure of 0-0.5 μM Cu. Finally, functional predictions revealed that tadpoles exposed to copper may be at a higher risk of developing metabolic disorders or diseases. Above all, our results will develop a comprehensive view of the Cu exposure in amphibians and will yield a new consideration for sublethal effects of Cu on aquatic organisms.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, People's Republic of China
| | - Jufang Peng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| |
Collapse
|
21
|
Li CY, Li XY, Shen L, Ji HF. Regulatory effects of transition metals supplementation/deficiency on the gut microbiota. Appl Microbiol Biotechnol 2021; 105:1007-1015. [PMID: 33449129 DOI: 10.1007/s00253-021-11096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/13/2022]
Abstract
Transition metal ions are essential micronutrients for all living organisms and exert a wide range of effects on human health. The uptake of transition metal ions occurs primarily in the gastrointestinal tract, which is colonized by trillions of bacterial cells. In recent years, increasing studies have indicated that transition metals have regulatory effects on the gut microbiota. In view of the significant effect of the gut microbiota on human health and involvement in the pathogenesis of a wide range of diseases, in this paper, we provide a comprehensive discussion on the regulatory effects of four kinds of transition metal ions on the gut microbiota. A total of 20 animal model and human studies concerning the regulatory effects of four types of transition metal ions (i.e., iron, copper, zinc, and manganese) on gut microbiota were summarized. Both the deficiency and supplementation of these transition metal ions on the gut microbiota were considered. Furthermore, the potential mechanisms governing the regulatory effects of transition metal ions on the gut microbiota were also discussed. KEY POINTS : • Regulatory effects of iron, copper, zinc, and manganese on gut microbiota were reviewed. • Both deficiency and supplementation of metal ions on gut microbiota were considered. • Mechanisms governing effects of metal ions on gut microbiota were discussed.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Tong Q, Cui LY, Hu ZF, Du XP, Abid HM, Wang HB. Environmental and host factors shaping the gut microbiota diversity of brown frog Rana dybowskii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140142. [PMID: 32615421 DOI: 10.1016/j.scitotenv.2020.140142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Symbiotic microbial communities are common in amphibians, and the composition of gut microbial communities varies with factors such as host phylogeny, life stage, ecology, and diet. However, little is known regarding how amphibians acquire their microbiota or how their growth, development, and environmental factors affect the diversity of their microbiotas. We sampled the gut microbiota during different developmental stages of brown frog Rana dybowskii, including tadpoles (T), frogs in metamorphosis (M), frogs just post-metamorphosis and after eating (F), juvenile frogs in summer (Js), adult frogs in summer (As), adult frogs in autumn (Aa), and hibernating frogs (Ah). We recorded data on the environmental (ambient temperature, fasting status, habitat, and season) and host (body mass and developmental period) factors. We investigated whether the gut microbiota diversity of R. dybowskii differs according to the host developmental stage via high-throughput Illumina sequencing and whether the gut microbiota diversity is affected by environmental and host factors. We found that alpha and beta diversity varied significantly during different developmental stages. The linear discriminant analysis effect size (LEfSe) analysis identified eight phyla exhibiting significant differences: Cyanobacteria (T group), Proteobacteria (M group), Fusobacteria (F group), Firmicutes (As group), Actinobacteria (Aa group), Verrucomicrobia (Aa group), Tenericutes (Aa group), and Bacteroidetes (Ah group). The Venn diagrams showed that 49 shared OTUs were present during all stages of development, whereas 10 OTUs were present in >90% of the samples. The environmental and host factors were significantly correlated with microbial community changes. Furthermore, the AIC-based model results suggested that development was the only variable that needed inclusion in the redundancy analysis (RDA) to explain the variance in taxa. These results have broad implications for our understanding of gut microbiota development and its associations with amphibian development and environmental factors.
Collapse
Affiliation(s)
- Qing Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Hejiang Forestry Research Institute of Heilongjiang Province, Jiamusi, China
| | - Li-Yong Cui
- Hejiang Forestry Research Institute of Heilongjiang Province, Jiamusi, China
| | - Zong-Fu Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-Peng Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hayat Muhammad Abid
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong-Bin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|