1
|
Saha A, Sen Gupta B, Patidar S, Hernández-Martínez JL, Martín-Romero F, Meza-Figueroa D, Martínez-Villegas N. A comprehensive study of source apportionment, spatial distribution, and health risks assessment of heavy metal(loid)s in the surface soils of a semi-arid mining region in Matehuala, Mexico. ENVIRONMENTAL RESEARCH 2024; 260:119619. [PMID: 39009213 DOI: 10.1016/j.envres.2024.119619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND This study investigates the contamination level, spatial distribution, pollution sources, potential ecological risks, and human health risks associated with heavy metal(loid)s (i.e., arsenic (As), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn)) in surface soils within the mining region of Matehuala, located in central Mexico. OBJECTIVES The primary objectives are to estimate the contamination level of heavy metal(loid)s, identify pollution sources, assess potential ecological risks, and evaluate human health risks associated with heavy metal(loid) contamination. METHODS Soil samples from the study area were analysed using various indices including Igeo, Cf, PLI, mCd, EF, and PERI to evaluate contamination levels. Source apportionment of heavy metal(loid)s was conducted using the APCS-MLR and PMF receptor models. Spatial distribution patterns were determined using the most efficient interpolation technique among five different approaches. The total carcinogenic risk index (TCR) and total non-carcinogenic index (THI) were used in this study to assess the potential carcinogenic and non-carcinogenic hazards posed by heavy metal(loid)s in surface soil to human health. RESULTS The study reveals a high contamination level of heavy metal(loid)s in the surface soil, posing considerable ecological risks. As was identified as a priority metal for regulatory control measures. Mining and smelting activities were identified as the primary factors influencing heavy metal(loid) distributions. Based on spatial distribution mapping, concentrations were higher in the northern, western, and central regions of the study area. As and Fe were found to pose considerable and moderate ecological risks, respectively. Health risk evaluation indicated significant levels of carcinogenic risks for both adults and children, with higher risks for children. CONCLUSION This study highlights the urgent need for monitoring heavy metal(loid) contamination in Matehuala's soils, particularly in regions experiencing strong economic growth, to mitigate potential human health and ecological risks associated with heavy metal(loid) pollution.
Collapse
Affiliation(s)
- Arnab Saha
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Bhaskar Sen Gupta
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Sandhya Patidar
- Institute of Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | | | - Francisco Martín-Romero
- Department of Geochemistry, Institute of Geology, Universidad Nacional Autónoma de México, Alcandia Coyoacán., Ciudad de México., 04510, Mexico.
| | - Diana Meza-Figueroa
- Department of Geology, UNISON, University of Sonora, Rosales y Encinas S/n, C.P. 83000, Hermosillo, Sonora, Mexico.
| | | |
Collapse
|
2
|
Wang S, Li G, Ji X, Wang Y, Xu B, Tang J, Guo C. Machine learning-driven assessment of heavy metal contamination in the impounded lakes of China's South-to-North Water Diversion Project: Identifying spatiotemporal patterns and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135983. [PMID: 39348756 DOI: 10.1016/j.jhazmat.2024.135983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The Eastern Route of China's South-to-North Water Diversion Project (SNWDP-ER) traverses through impounded lakes that are potentially vulnerable to heavy metals (HMs) contamination although the understanding remains elusive. This study employed machine learning approaches, including super-clustering of Self-Organizing Map (SOM) and Robust Principal Component Analysis (RPCA), to elucidate the spatiotemporal patterns and assess ecological risks associated with HMs in the surface sediments of Gao-Bao-Shaobo Lake (GBSL) and Dongping Lake (DPL). We collected 184 surface sediments from 47 stations across the two important impounded lakes over four seasons. The results revealed higher HMs concentrations in the south-central GBSL and west-central DPL, with a notable increase in contamination in autumn. The comprehensive risk assessment, utilizing various indicators such as the Sediment Quality Guidelines (SQGs), Improved Potential Ecological Risk Index (IPERI), Geo-accumulation Index (Igeo), Contamination Factor (CF), and Enrichment Factor (EF), identified arsenic (As), cadmium (Cd), nickel (Ni), and chromium (Cr) as primary contaminants of concern. Positive Matrix Factorization (PMF) model, coupled with Spearman analysis, attributed over 70 % of HMs pollution to anthropogenic activities. This research provides a nuanced understanding of HMs pollution in the context of large-scale water diversion projects and offers a scientific basis for targeted pollution mitigation strategies.
Collapse
Affiliation(s)
- Sengyang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
| | - Xiang Ji
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Bo Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jianfeng Tang
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, Hubei 430010, China.
| | - Chuanbo Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
3
|
Li X, Chi Y, Ma F, Wang X, Du R, Wang Z, Dang X, Zhao C, Zhang Y, He S, Wang Y, Zhu T. Unlocking the potential of biochar: an iron-phosphorus-based composite modified adsorbent for adsorption of Pb(II) and Cd(II) in aqueous environments and response surface optimization of adsorption conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35688-35704. [PMID: 38740681 DOI: 10.1007/s11356-024-33238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
In this work, iron-phosphorus based composite biochar (FPBC) was prepared by modification with potassium phosphate and iron oxides for the removal of heavy metal ions from single and mixed heavy metal (Pb and Cd) solutions. FTIR and XPS characterization experiments showed that the novel modified biochar had a greater number of surface functional groups compared to the pristine biochar. The maximum adsorption capacities of FPBC for Pb(II) and Cd(II) were 211.66 mg·g-1 and 94.08 mg·g-1 at 293 K. The adsorption of Pb(II) and Cd(II) by FPBC followed the proposed two-step adsorption kinetic model and the Freundlich isothermal adsorption model, suggesting that the mechanism of adsorption of Pb(II) and Cd(II) by FPBC involved chemical adsorption of multiple layers. Mechanistic studies showed that the introduction of -PO4 and -PO3 chemisorbed with Pb(II) and Cd(II), and the introduction of -Fe-O increased the ion exchange with Pb(II) and Cd(II) during the adsorption process and produced precipitates such as Pb3Fe(PO4)3 and Cd5Fe2(P2O7)4. Additionally, the abundant -OH and -COOH groups also participated in the removal of Pb(II) and Cd(II). In addition, FPBC demonstrated strong selective adsorption of Pb(II) in mixed heavy metal solutions. The Response Surface Methodology(RSM) analysis determined the optimal adsorption conditions for FPBC as pH 5.31, temperature 26.01 °C, and Pb(II) concentration 306.30 mg·L-1 for Pb(II). Similarly, the optimal adsorption conditions for Cd(II) were found to be pH 5.66, temperature 39.34 °C, and Cd(II) concentration 267.68 mg·L-1. Therefore, FPBC has the potential for application as a composite-modified adsorbent for the adsorption of multiple heavy metal ions.
Collapse
Affiliation(s)
- Xu Li
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Yuan Chi
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Feng Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Xiaoxin Wang
- Baotou Renewable Water Resources and Sewage Treatment Co., LTD, Baotou, 014000, China
| | - Rui Du
- Baotou Renewable Water Resources and Sewage Treatment Co., LTD, Baotou, 014000, China
| | - Zhipeng Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Xiaoyan Dang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Chaoyue Zhao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Yanping Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Shumin He
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
4
|
Zhou H, Yue X, Chen Y, Liu Y. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167772. [PMID: 37839479 DOI: 10.1016/j.scitotenv.2023.167772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Heavy metal pollution (HMP) from mining operations severely threatens soil ecosystems and human health. Identifying the sources of soil heavy metals (HMs) and assessing source-specific risks are critical for developing effective risk mitigation strategies. In this study, a combination of methodologies including PMF, Monte Carlo analysis, soil pollution risk index, and a human health risk assessment model were utilized to investigate soil HM risks in a typical ancient mining area in Daye City, China, considering both environmental pollution and human health impacts. Cu emerged as the most significant soil pollution risk, whereas As posing the highest health risk. About 48.44 % of the multi-element integrated soil pollution risk has escalated to the heavy level. Furthermore, around 22.42 % of the non-carcinogenic risk (NCR) and 9.53 % of the carcinogenic risk (CR) exceeded unacceptable thresholds (THI > 1 for NCR and TCR > 1E-4 for CR). The PMF model identified four distinct sources: the smelting industry, traffic emissions, a combination of agricultural and natural factors, and mining activities. The mixed agricultural and natural source significantly impacted health risks, contributing 42.17 % to NCR and 53.88 % to CR, followed by the mining source, contributing 31.67 % to NCR and 24.07 % to CR. Interestingly, the mining source contributed the highest soil pollution risk at 42.45 %, while the mixed agricultural and natural source exhibited the lowest at 16.33 %. Furthermore, the study explored source-specific risk components by evaluating the contributions of different sources to specific elements. The mining source was identified as the focus for soil HMP control, followed by the mixed agricultural and natural source. Overall, this study provided an in-depth analysis of soil heavy metal risks in mining areas from the source apportionment perspective, which broadened the research framework of soil heavy metal source analysis and risk assessment, potentially providing scientific guidance for managing regional soil HMP.
Collapse
Affiliation(s)
- Hao Zhou
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China.
| | - Xuemei Yue
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China.
| | - Yong Chen
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; National Key Laboratory of Environmental Protection Mining and Metallurgy Resource Utilization and Pollution Control, Wuhan 430080, Hubei, China; Hubei Provincial Key Laboratory of Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan 430080, Hubei, China.
| | - Yanzhong Liu
- Wuhan University of Science and Technology, No.947 Heping Avenue, Wuhan 430080, Hubei, China; Hubei Provincial Key Laboratory of Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan 430080, Hubei, China.
| |
Collapse
|
5
|
Akbay C, Aytop H, Dikici H. Evaluation of radioactive and heavy metal pollution in agricultural soil surrounding the lignite-fired thermal power plant using pollution indices. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1490-1501. [PMID: 35854642 DOI: 10.1080/09603123.2022.2102157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution caused by heavy metals negatively affects the environment and human health. However, the assessment of the environmental and ecological risks caused by heavy metals in agricultural soils in developing countries is limited. This study was carried out to determine heavy metal pollution and its possible sources in the agricultural lands surrounding the lignite-fired Afşin-Elbistan thermal power plant (TPP). A total of 52 soil samples were collected from the agricultural soils surrounding the TPP, and seven different heavy metal (U, Th, Ni, Fe, Cu, Cr and Zn) analyzes were performed on these samples. Soil samples were taken according to the prevailing wind direction. Nickel had a higher geoaccumulation index (1.40) and enrichment factor (5.09) values than the other metals. In addition, U posed a "moderate potential ecological risk" in the study area. Pearson correlation and principal component analyses showed that U, Ni, and Cr were controlled by anthropogenic sources.
Collapse
Affiliation(s)
- Cuma Akbay
- Agricultural Faculty, Department of Agricultural Economics, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Halil Aytop
- East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| | - Hüseyin Dikici
- Agricultural Faculty, Department of Soil and Plant Nutrition, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
6
|
Li Y, Bai H, Li Y, Zhang X, Zhang L, Zhang D, Xu M, Zhang H, Lu P. An integrated approach to identify the source apportionment of potentially toxic metals in shale gas exploitation area soil, and the associated ecological and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132006. [PMID: 37453347 DOI: 10.1016/j.jhazmat.2023.132006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Public awareness of the potential environmental risks of shale gas extraction has increased in recent years. However, the status and environmental risks of potentially toxic metals (PTMs) in shale gas field soil remain unclear. A total of 96 topsoil samples were collected from the first shale gas exploitation area in China. The sources of nine PTMs in the soils were identified using positive matrix factorization and correlation analysis, and the ecological and human health risks of toxic metals from different sources under the two land use types were calculated. The results showed that mean pollution load index (PLI) values for farmland (1.18) and woodland (1.40) indicated moderate pollution, As, Cd and Ni were the most serious contaminants among all nine PTMs. The following four sources were identified: shale gas extraction activities (43.90%), nature sources (31.90%), agricultural and traffic activities (17.55%) and industrial activities (6.55%). For ecological risk, the mean ecological risk index (RI) values for farmlands (161.95) and woodlands (185.27) reaching considerable risk. The contribution ratio of shale gas extraction activities for farmlands and woodlands were 5.70% and 8.90%, respectively. Regarding human health risk, noncarcinogenic risks for adults in farmlands and woodlands were negligible. Industrial activities, agricultural and traffic activities were estimated to be the important sources of health risks. Overall, shale gas extraction activities had little impact on the ecological and human health risk. This study provides scientific evidence regarding the soil contamination potential of shale gas development activities.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Proshad R, Dey HC, Khan MSU, Baroi A, Kumar S, Idris AM. Source-oriented risks apportionment of toxic metals in river sediments of Bangladesh: a national wide application of PMF model and pollution indices. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6769-6792. [PMID: 36633753 DOI: 10.1007/s10653-022-01455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Intense human activities, particularly industrial and agricultural output, has enriched metal(loid)s in riverine sediment and endangered aquatic ecosystems and human health. Promoting proper river management requires an assessment of the possible ecological hazards and pollution posed by metal(loid)s in sediments. However, there are limited large-scale risk assessments of metal(loid)s contamination in riverine sediment in heavily populated nations like Bangladesh. This study compiled data on sediment metal(loid)s, for example, Cd, As, Cu, Ni, Cr, Pb, Mn, and Zn, from 24 major rivers located across Bangladesh between 2011 and 2022 and applied positive matrix factorization (PMF) to identify the critical metal(loid)s sources and PMF model-based ecological risks. Based on studied metal(loid)s, 12-78% of rivers posed higher contents than the upper continental crust and 8% of the river sediments for Cr and Ni, whereas 4% for Cd and As exceeded probable effect concentration. Cr and Ni in the sum of toxic units (STU), whereas Mn, As and Cd in potential ecological risk (PER) posed the highest contribution to contaminate sediments. In the studied rivers, sediment contaminant Mn derived from natural sources; Zn and Ni originated from mixed sources; Cr and Cu were released from the tannery and industrial emissions and Cd originated from agricultural practices. Source-based PER and NIRI indicated that mixed source (4% rivers) and tannery and industrial emission (4% rivers) posed very high risks in sediments. For the creation of macroscale policies and the restoration of contaminated rivers, our national-scale comprehensive study offers helpful references.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki Patuakhali, 8602, Bangladesh
| | - Md Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sazal Kumar
- University of Newcastle, NSW, 2308, Australia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
8
|
Anh NN. Attribution of sources to heavy metal accumulation in the anthropogenically impacted Bach Dang River Estuary, Vietnam. MARINE POLLUTION BULLETIN 2023; 193:115244. [PMID: 37421915 DOI: 10.1016/j.marpolbul.2023.115244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
In the present study, concentrations of 10 heavy metals (Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb) were determined in superficial sediments from 20 sites within the Bach Dang Estuary, Vietnam. An integrated approach including correlation analysis, principal components analysis and positive matrix factorization was successfully applied to identify possible sources of these heavy metals. The results of this study identified four sources of the heavy metals, namely: natural geogenic, mixed anthropogenic, marine transportation and antifouling paint related sources, contributing 34.33 %, 14.80 %, 23.02 % and 27.86 % to the total metal concentrations, respectively. From an environmental impact perspective, these findings could provide a scientific basis for prevention and control of sediment metal pollution. Accordingly, the use of more environmental friendly antifouling paints should be encouraged to minimize metal accumulation in sediments.
Collapse
Affiliation(s)
- Nguyen Ngoc Anh
- Institute of Marine Environment and Resources (IMER), Vietnam Academy of Science and Technology (VAST), 246 Dang Nang Street, Haiphong City, Viet Nam.
| |
Collapse
|
9
|
Wu B, Li L, Guo S, Li Y. Source apportionment of heavy metals in the soil at the regional scale based on soil-forming processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130910. [PMID: 36736212 DOI: 10.1016/j.jhazmat.2023.130910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Source apportionment is crucial to the prevention and control of heavy metals in the soil. The major methods focus on the identification of soil heavy metals from different pollution sources. However, they are unsuited to the source apportionment at a regional scale due to ignoring the spatial heterogeneity of heavy metal content caused by soil formation. Thus, we built a source apportionment model by introducing the weathering and leaching coefficients as the key parameters of soil-forming processes. In this study, we selected Liaohe Plain in China as the study area, which was the starting point of China's industrial development, with dense industrial areas and high levels of heavy-metal emission. Heavy metals concentrations in surface and deep soil of reference and grid points were collected as model data. The results showed that the average contribution rates of soil-forming process to Cd, Hg, As, and Pb were 82.7%, 85.2%, 88.6%, and 91.7%, respectively, and those of anthropogenic activities were 17.3%, 14.8%, 11.4%, and 8.3%, respectively. Spatial distribution of contribution rates showed the superposition of soil environmental background and pollution sources. This study provides a feasible method to quantify heavy metals contents from natural and anthropogenic sources at a regional scale.
Collapse
Affiliation(s)
- Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Linlin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, PR China.
| | - Yang Li
- Liaoning Provincial Ecology & Environment Monitoring Center, Shenyang 110161, PR China
| |
Collapse
|
10
|
Jin J, Zhao X, Zhang L, Hu Y, Zhao J, Tian J, Ren J, Lin K, Cui C. Heavy metals in daily meals and food ingredients in the Yangtze River Delta and their probabilistic health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158713. [PMID: 36113791 DOI: 10.1016/j.scitotenv.2022.158713] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal exposure via food consumption is inadequately investigated and deserves considerable attention. We collected hundreds of food ingredients and daily meals and assessed their probabilistic health risk using a Monte Carlo simulation based on an ingestion rate investigation. The detected concentrations of four heavy metals (Cr, Cd, Pb, and Hg) in all daily meal samples were within the limits stipulated in the National Food Safety Standard (GB 2762-2017), while that for As level was excessive in 0.3 % of daily meal samples. The same results were also observed in most food ingredient samples, and a standard-exceeding ratio of 23 % of As was observed in aquatic food or products, especially seafood, which was with the highest concentration reaching 1.24 mg/kg. Combining the detected heavy metal amounts with the ingestion rate investigation, the hazard quotients (HQs) of As, Cr, Cd, Pb, and Hg in daily meals and food ingredients were all calculated as lower than 1 (no obvious harm), while the incremental lifetime cancer risk (ILCR) of As and Cr (>1 × 10-4), indicating that the residual As posed potential health effects to human health. It was noteworthy that the proportion of aquatic foods only accounted for 6.3 % of daily meals, but they occupied 41.1 % of the heavy metal exposure, which could be attributed to the high amounts of heavy metals in aquatic foods. This study not only provided basic data of heavy metal exposure and potential health risks through daily oral dietary intake, but also illuminated the contribution of different kinds of food ingredients. Specifically, the study highlighted the contamination of aquatic foods with As, especially seafood such as shellfish and bivalves.
Collapse
Affiliation(s)
- Jialu Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfeng Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Tian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
11
|
Xie F, Yu M, Yuan Q, Meng Y, Qie Y, Shang Z, Luan F, Zhang D. Spatial distribution, pollution assessment, and source identification of heavy metals in the Yellow River. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129309. [PMID: 35739803 DOI: 10.1016/j.jhazmat.2022.129309] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The discharge of pollutants into the Yellow River has been strictly controlled since 2013 due to the severe pollution. Thus, the overall water quality of the Yellow River has been becoming better year by year. However, the contamination status and source identification of heavy metals from the entire Yellow River remains unclear. Our results demonstrated that heavy metal contents in sediments showed little changes over time, whereas significant alleviation was observed in surface water compared to the reported metal concentrations before 2013. No heavy metal contamination was observed in surface water, and the distribution of all heavy metals in surface water fluctuated along the mainstream without a significant spatial difference. Heavy metals in sediments were assessed as low to moderate contamination degree. The majority of heavy metal concentrations were higher in the upstream and midstream than that in the downstream. Besides anthropogenic activities, the natural contribution from soil erosion of the Loess Plateau was also an important source of heavy metals in the Yellow River sediments. Our results highlight that control of anthropogenic activities and soil erosion of the Loess Plateau are necessary measures to reduce heavy metals in the Yellow River.
Collapse
Affiliation(s)
- Fuyu Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Miaocheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Qingke Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yukang Qie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziming Shang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Dalei Zhang
- School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
12
|
Zhou Z, Peng C, Liu X, Jiang Z, Guo Z, Xiao X. Pollution and Risk Assessments of Heavy Metal(loid)s in the Soil around Lead-Zinc Smelteries via Data Integration Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9698. [PMID: 35955055 PMCID: PMC9368718 DOI: 10.3390/ijerph19159698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/01/2023]
Abstract
Pb-Zn smelting is a major cause of heavy metal(loid) contaminations in soils. We collected data on heavy metal(loid)s in the soils near Pb-Zn smelteries globally from 54 peer-reviewed reports to study the metals' distribution, pollution index, and potential ecological and health risks. We observed that 90% of the studied Pb-Zn smelteries were distributed in Asia and Europe. Heavy metal(loid)s were mainly deposited within a 2 km distance to the smelteries, with mean concentrations (mg/kg) of 208.3 for As, 26.6 for Cd, 191.8 for Cu, 4192.6 for Pb, and 4187.7 for Zn, respectively. Cd and Pb concentrations in the soil exceeded their corresponding upper continental crust values several hundred folds, suggesting severe contamination. The smelting area had the highest heavy metal(loid) contamination in soil, followed by the forest land, farmland, and living area. Compared with the soil environmental standard values from various countries, As, Cd, Pb, and Zn were considered priority pollutants for protecting the ecosystem and human health. Likewise, As, Cd, and Pb were suggested as the priority pollutants for protecting groundwater safety. The potential ecological and health risks of heavy metal(loid)s in the soil within 2 km of Pb-Zn smelteries were severe and should be of concern.
Collapse
Affiliation(s)
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | | | | | | | | |
Collapse
|
13
|
Identification of heavy metal pollutants and their sources in farmland: an integrated approach of risk assessment and X-ray fluorescence spectrometry. Sci Rep 2022; 12:12196. [PMID: 35842500 PMCID: PMC9288480 DOI: 10.1038/s41598-022-16177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
Investigation and assessment of farmland pollution require an efficient method to identify heavy metal (HM) pollutants and their sources. In this study, heavy metals (HMs) in farmland were determined efficiently using high-precision X-ray fluorescence (HDXRF) spectrometer. The potential ecological risk and health risk of HMs in farmland near eight villages of Wushan County in China were quantified using an integrated method of concentration-oriented risk assessment (CORA) and source-oriented risk assessment (SORA). The CORA results showed that Cd in farmland near the villages of Liuping (LP) and Jianping (JP) posed a "very high" potential ecological risk, which is mainly ascribed to soil Cd (single potential ecological risk index ([Formula: see text]) of Cd in villages LP and JP, [Formula: see text] = 2307 and 568 > 320). A "moderate" potential ecological risk was present in other six villages. The overall non-carcinogenic risk (hazard index (HI) = 1.2 > 1) of HMs for children in village LP was unacceptable. The contributions of HMs decrease in the order of Cr > As > Cd > Pb > Ni > Cu > Zn. The total carcinogenic risk (TCR = 2.1 × 10-4 > 1.0 × 10-4) of HMs in village LP was unacceptable, with HMs contributions decreasing in the order of Cr > Ni > Cd > As > Pb. Furthermore, three source profiles were assigned by the positive matrix factorization: F1: agricultural activity; F2: geological anomaly originating from HMs-rich rocks; F3: the natural geological background. According to the results of SORA, F2 was the highest contributor to PER in village LP, up to 64.4%. Meanwhile, the contributions of three factors to HI in village LP were 19.0% (F1), 53.6% (F2), and 27.4% (F3), respectively. It is worth noting that TCR (1.2 × 10-4) from F2 surpassed the threshold of 1.0 × 10-4, with an unacceptable carcinogenic risk level. As mentioned above, the HM pollutants (i.e., Cd and Cr) and their main sources (i.e., F2) in this area should be considered. These results show that an integrated approach combining risk assessments with the determination of HM concentration and identification of HM source is effective in identifying HM pollutants and sources and provides a good methodological reference for effective prevention and control of HM pollution in farmland.
Collapse
|
14
|
Zhao G, Ma Y, Liu Y, Cheng J, Wang X. Source analysis and ecological risk assessment of heavy metals in farmland soils around heavy metal industry in Anxin County. Sci Rep 2022; 12:10562. [PMID: 35732673 PMCID: PMC9217823 DOI: 10.1038/s41598-022-13977-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 12/07/2022] Open
Abstract
Studying the pollution status, spatial distribution characteristics, and sources of heavy metals in farmland soil in Anxin County will provide a method basis for the next step of soil remediation. This study investigates the contents of Zn, Cu, Pb, Cd, and Ni in wheat grains and soil samples. Moreover, different methods are used to evaluate soil heavy metal pollution. The results show that the soil in the study area is weakly alkaline. Cu, Zn, and Ni contents in the ground are lower than the risk screening values for soil contamination of agricultural land. In comparison, Cd and Pb contents are higher than the screening value of soil pollution risk of agricultural land, and the proportion of points lower than the control value of soil pollution risk of agricultural land are 64.58% and 16.67%, respectively. The farmland with high Cd and Pb content is mainly distributed near roads and factories and concentrated primarily on 0-20 cm topsoil. The Cd content in wheat grains meets the standard, but 4.17% of the samples are close to 0.1 mg kg−1 (more than 0.09 mg kg−1). The Pb content of 50% of the wheat grain samples exceeds the lead limit in the standard. The evaluation results of the single factor pollution index and geoaccumulation index show that the pollution degree of heavy metals in the soil is Cd > Pb > Cu > Zn > Ni. The potential ecological risk index in the study area is 288.83, and the soil heavy metal pollution is at a moderate-considerable ecological risk level. The average value of Cd's single-factor environmental risk index is 233.51, which belongs to the high environmental risk and is the main influencing factor. Cd and Pb in soil are significantly disturbed by the production activities of heavy metal processing enterprises around the farmland. It is speculated that there are two primary sources of soil heavy metal pollution in the study area. Cd, Pb, Zn, and Cu are mainly industrial and mobile sources, and Ni is primarily agricultural and natural sources.
Collapse
Affiliation(s)
- Guoliang Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Ye Ma
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Yuzhen Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
| | - Xiaofeng Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
15
|
Yoon SJ, Hong S, Lee C, Lee J, Kim T, Lee J, Kim B, Noh J, Kwon BO, Khim JS. 10 years long-term assessment on characterizing spatiotemporal trend and source apportionment of metal(loid)s in terrestrial soils along the west coast of South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154214. [PMID: 35240181 DOI: 10.1016/j.scitotenv.2022.154214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Long-term trends in the spatial distributions and sources of metal(loid)s in soils adjacent to the west coastal areas of South Korea have been systematically investigated for 10 years (2010-2019). Monitoring in 17 sites clearly showed site- and region-specific distributions, being associated with land use type (significant differences, as road > agriculture > wild) (P < 0.05), rather than temporal variation. The great concentrations of all metal(loid)s were found near Lake Shihwa (LS) and Geum River (GG), near the road, indicating that transportation activity was the main source of metal(loid)s contamination in soil. Especially, Cd (0.5 mg kg-1), Hg (0.04 mg kg-1), Pb (65 mg kg-1), and Zn (184 mg kg-1), related to the transportation activity near the road, showed twice greater than other land use types, on average. The concentration of metal(loid)s in each site and with the same land use type did not greatly vary over the years, with no significant annual difference (P > 0.05). The degree of metal(loid)s contamination compared to the background levels was identified in the order of Pb > Zn > Cr > Cu > As>Cd > Ni > Hg, with the contaminated hotspots mostly in LS or GG. The potential ecological risk was evidenced for Cd and Hg, but such a trend was temporally irregular over the years, indicating site-specificity. The sources of metal(loid)s were carefully determined as natural (20%), fuel combustion & agricultural pollution (43%), and vehicular emissions (37%) using the Positive Matrix Factorization model. The relative contribution of each source to contamination over the last decade was found to be similar, supporting that site-dependent lesser variation in metal(loid)s contamination in the coastal areas of South Korea. Overall, the distribution of metal(loid)s in the soil near the west coastal areas over the last decade largely depended on land use activities, and contamination degree was associated with non-point sources, such as transportation and fuel combustion.
Collapse
Affiliation(s)
- Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmin Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Beomgi Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Badawy W, Elsenbawy A, Dmitriev A, El Samman H, Shcheglov A, El-Gamal A, Kamel NHM, Mekewi M. Characterization of major and trace elements in coastal sediments along the Egyptian Mediterranean Sea. MARINE POLLUTION BULLETIN 2022; 177:113526. [PMID: 35287011 DOI: 10.1016/j.marpolbul.2022.113526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The present study was conducted to provide a comprehensive picture of marine sediment characterization in terms of geochemistry and the extent of pollution. A total of 99 surface coastal sediments were collected from coastal areas along with the Egyptian Mediterranean Sea. The samples were analyzed by neutron activation analysis (NAA) and the mass fractions in mg/kg of 39 trace elements were determined. The normalized mass fractions show significant amounts of Cl (26.4%), Sn (12%), Zr (7.3%), Hf (5.9%), Ti (4.7%), Cr (4.2%), Ca (3.4%), Si (3.1%), Sr (2.9%). The mass fractions of the rare earth elements REEs (La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, and Lu) are almost double compared to literature data. Principal component analysis PCA and positive matrix factorization PMF were used to decipher the sources of pollutions. Sediment quality was quantified using different pollution indices such as enrichment factor (EF), modified pollution index (MPI), pollution load index (PLI) and the new approach to calculate total pollution index (TPI). The results of the study recognized four locations with significant pollution, namely the coastal area along Al Manzalah Lake, the Nile River estuaries at Ras Elbar and its western coastal area, at the outlet of Elbrullus Lake, and finally the Abu Qir Bay. The obtained result can serve as a geochemical background of the sediments of the study coastal area, which allows following the quality of marine sediments along with the Egyptian Mediterranean Sea.
Collapse
Affiliation(s)
- Wael Badawy
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation; Radiation Protection and Civil Defense Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Ahmed Elsenbawy
- Radiation Protection and Civil Defense Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Andrey Dmitriev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
| | - Hussein El Samman
- Menoufia University, Faculty of Science, Department of Physics, Shibin El-koom, Egypt
| | - Alexey Shcheglov
- Faculty of Soil Science, Moscow State University, Moscow 119991, Russia
| | - Ayman El-Gamal
- Marine Geology Department, Coastal Research Institute, National Water Research Center, 15, St. Elpharanaa, Elshalalat, 21514 Alexandria, Egypt
| | - Nariman H M Kamel
- Radiation Protection and Civil Defense Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohammed Mekewi
- Department of chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
17
|
Shukla S, Khan R, Bhattacharya P, Devanesan S, AlSalhi MS. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils. CHEMOSPHERE 2022; 292:133413. [PMID: 34973253 DOI: 10.1016/j.chemosphere.2021.133413] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 05/27/2023]
Abstract
PAHs are organic pollutants that have carcinogenic and mutagenic impacts on human health and are a subject of great concern. The soil-bound polycyclic aromatic hydrocarbons (PAHs) in the urban areas can be very lethal to human health. The concentrations, sources, and possible cancer risks of 15 PAHs were analysed by collecting roadside soil samples in Lucknow, India. The range of ∑15PAHs was found to be 478.94 ng/g to 8164.07 ng/g with a mean concentration of 3748.23 ng/g. The highest contribution (32.5%) was found to be from four-ring PAHs, followed by six-ring (24.5%) and five-ring (16.7%) PAHs. The source apportionment through diagnostic ratios ANT/(ANT + PHE) against FL-2/(FL-2+PYR) highlighted the dominance of petroleum, wood, coal, and grass combustion as sources of PAHs in the study area. Source apportionment was also done through positive matrix factorization, confirming the dominance of 'vehicular emissions' (49%), followed by 'coal and biomass combustion' (∼39%), and 'leakages, volatilization and petroleum combustion' (∼12%) as potential sources. The results from lifetime cancer risks (ILCR) varied in the range of 7.5 × 10-4 and 1.3 × 10 × -2 illustrating 'high cancer risk'. The total cancer risk susceptibility of children was found to be 31% more than that of adults. The highest risk associated with toxic equivalent concentration (TEQ) was found at site S8 highlighting the impact of the presence of an international airport, and huge traffic load. The present study will prove to be useful for information related to human exposure to PAHs content in soil in the study area and as baseline study for policy makers, stakeholders, and researchers.
Collapse
Affiliation(s)
- Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
18
|
Zhang S, Wang W, Wang F, Zhang D, Rose NL. Temporal-spatial variations, source apportionment, and ecological risk of trace elements in sediments of water-level-fluctuation zone in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18282-18297. [PMID: 34687419 DOI: 10.1007/s11356-021-17066-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The Three Gorges Reservoir (TGR) plays a crucial role in providing electricity for mega-cities across China. However, since the impoundment was completed in 2006, attention to environmental concerns has also been intensive. In order to determine the distribution, sources, and pollution status of trace elements in the water fluctuation zone of the TGR following ten years of repeated "submergence" and "exposure", we systematically collected 16 paired surface sediment samples (n = 32) covering the entire main body of the TGR in March 2018 (following 6 months of submergence) and September 2018 (after 6 months of exposure), and quantitatively analyzed 13 elements (e.g., Mn, Fe, V, Cr, Ni, Cu, Zn, As, Sr, Y, Zr, Ba, and Pb) using X-ray fluorescence spectrophotometry (XRF). The results showed that, except for Sr, concentrations of trace metals following submergence were generally higher than those after exposure due to the less settling of suspended solids at the faster flow velocity during the drawdown period. Assessment using enrichment factors (EFs) and a geo-accumulation index (Igeo) both characterized a relatively serious anthropogenic pollution status of metals in the upper reaches of the TGR with respect to the middle-lower reaches. Source apportionment by positive matrix factorization (PMF) analysis indicated that agricultural activities (24.8 and 24.3%, respectively) and industrial emissions (24.5 and 22.9%, respectively) were the two major sources in these two periods, followed by natural sources, domestic sewage, and ore mining. Ecological risk assessment showed that metalloid arsenic (As) could be the main potential issue of risk to aquatic organisms and human health. A new source-specific risk assessment method (pRI) combined with PMF revealed that agricultural activities could be the major source of potential ecological risk and should be prioritized as the focus of metal/metalloid risk management in the TGR.
Collapse
Affiliation(s)
- Siyuan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China
| | - Weiru Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China
| | - Fengwen Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400030, China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China.
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing, 400030, China
| | - Neil L Rose
- Environmental Change Research Centre, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Xue S, Jian H, Yang F, Liu Q, Yao Q. Impact of water-sediment regulation on the concentration and transport of dissolved heavy metals in the middle and lower reaches of the Yellow River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150535. [PMID: 34582857 DOI: 10.1016/j.scitotenv.2021.150535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 09/19/2021] [Indexed: 05/12/2023]
Abstract
Anthropogenic activities in river basins, especially large-scale water conservancy projects, have notably impacted the physical, chemical and ecological environments of estuaries and coastal areas. In this paper, the effects of water and sediment regulation (WSR) on the concentration and transport of heavy metals in the Yellow River were studied based on a continuous daily heavy metal survey in both the middle reaches (Xiaolangdi station) and lower reaches (Lijin station) of the Yellow River during the WSR period in 2019. The results indicated that the variation in the water oxidation-reduction environment of the Xiaolangdi reservoir during the WSR process exerted an important impact on the concentrations of dissolved Cu, Cd, Pb, Cr and As at the Xiaolangdi station but exerted almost no influence on the concentration of dissolved Ni. At Lijin station, the dissolved heavy metal content first increased and then decreased in the first stage, which mainly depended on the release of heavy metals from resuspended sediments. In the second stage, the heavy metal content gradually decreased due to adsorption onto fine particles discharged from the reservoir. The dissolved heavy metal flux during the water-sediment regulation scheme (WSRS) period accounted for 16.9-33.4% of the annual total dissolved heavy metal flux. WSRS changed transport of water and sediment. The dissolved heavy metal concentrations at the Xiaolangdi station were mainly controlled by the discharge of water and sediments from the Xiaolangdi reservoir, while the dissolved heavy metal concentration at the Lijin station was largely affected by the sediments resuspended from downstream riverbeds and the water and sediment scheduling mode of the Xiaolangdi reservoir. Dissolved heavy metal transportation was highly influenced by the WSR process within a short time. Human intervention, especially WSRS operation, apparently alters the natural states of both the mainstream and estuarine environments of the Yellow River.
Collapse
Affiliation(s)
- Shuli Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Huimin Jian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Fuxia Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qian Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qingzhen Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
20
|
Li Q, Zhu K, Liu L, Sun X. Pollution-Induced Food Safety Problem in China: Trends and Policies. Front Nutr 2021; 8:703832. [PMID: 34859024 PMCID: PMC8631815 DOI: 10.3389/fnut.2021.703832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Based on systematic literature study and policy document analysis, this paper investigates the environmental pollution-induced food safety problem in China, including the impact of environmental pollution on food safety and the policy response of Chinese government since 1970's. The results show that, to different degrees, food safety of China is affected by large but inefficient chemical fertilizer and pesticides residue (although the consumption began to decline after around 2015), cropland heavy metal pollution (especially cadmium), water pollution, and high ozone concentration. The evolution of pollution-induced food safety policies of China can be divided into four stages, i.e., preparation stage (1974–1994), construction stage (1995–2005), elaboration stage (2006–2013), and intensification stage (2014–). Through the four stages, the increasingly stringent policy system has been featured by “from supply-safety balance to safety first,” “from multi-agency management to integrated management,” and “from ex post supervision to ex ante risk control.” To further prevent pollution and control food quality, more collaborations between the agricultural and environmental agencies and more specific policies should be anticipated.
Collapse
Affiliation(s)
- Qianhui Li
- School of Public Administration, Sichuan University, Chengdu, China
| | - Kunyang Zhu
- School of Public Administration, Sichuan University, Chengdu, China
| | - Lei Liu
- School of Public Administration, Sichuan University, Chengdu, China
| | - Xinyi Sun
- School of Public Administration, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Shen W, Hu Y, Zhang J, Zhao F, Bian P, Liu Y. Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: A case study in irrigation area of the Yellow River. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112752. [PMID: 34507041 DOI: 10.1016/j.ecoenv.2021.112752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The content of Cd, Cu, Pb, Zn, Cr, Ni and As from 250 soil samples was measured in agricultural soil of Ningxia section of the Yellow River. Positive matrix factorization (PMF) was to identify the main sources of these heavy metals; Sequential Gaussian Simulation (SGS) was to identify their spatial distribution and high-risk areas; and Human Health risk (HHR) model was to measure the health risk. Results showed that the average content of Cd and As exceeds the risk screening value of "Soil Environmental Quality-Agricultural Land Soil Pollution Risk Control Standard" (GB 15618-2018), which belongs to slight-level pollution. Although the content of other types of HMs (Cu, Pb, Zn, Cr, Ni) is below the risk screening value, they are still included heavily in the soil (except Cr). PMF indicated that mixed sources of agriculture and industry accounted for 27.06%, natural sources accounted for 14.12%, industrial sources accounted for 23.04%, traffic sources accounted for 21.50%, and Yellow River sedimentary sources accounted for 14.28%. PMF-HHR showed that the mixed sources of agriculture and industry are the most important factor causing non-carcinogenic risk (HI) to children (accounting for 55.75%). Industrial sources and traffic sources were the two main factors that cause HI to adults (industrial sources accounted for 25.16%, and traffic sources accounted for 28.78%). Mixed sources of agriculture and industry and natural sources were the two main factors that cause carcinogenic risk (CR) (mixed sources of agriculture and industry account for 35.34%, and natural sources account for 33.23%). SGS indicated that 0.64% and 9.32% of the total areas were posing as higher HI areas to children and adults respectively; in particular, 0.68% and 1.12% of the areas were identified as higher HI of As and Cr areas at a critical probability of 0.9.
Collapse
Affiliation(s)
- Weibo Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yue Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jie Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fei Zhao
- Shaanxi Academy of Forestry, Xian, Shaanxi 710082, PR China
| | - Pengyang Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yixuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
22
|
Pollution Characteristics, Spatial Patterns, and Sources of Toxic Elements in Soils from a Typical Industrial City of Eastern China. LAND 2021. [DOI: 10.3390/land10111126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil pollution due to toxic elements (TEs) has been a core environmental concern globally, particularly in areas with developed industries. In this study, we sampled 300 surface (0–0.2 m) soil samples from Yuyao City in eastern China. Initially, the geo-accumulation index, potential ecological risk index, single pollution index, and Nemerow composite pollution index were used to evaluate the soil contamination status in Yuyao City. Ordinary kriging was then deployed to map the distribution of the soil TEs. Subsequently, indicator kriging was utilized to identify regions with high risk of TE pollution. Finally, the positive matrix factorization model was used to apportion the sources of the different TEs. Our results indicated that the mean content of different TEs kept the order: Zn > Cr > Pb > Cu > Ni > As > Hg ≈ Cd. Soil pollution was mainly caused by Cd and Hg in the soil of Yuyao City, while the content of other TEs was maintained at a safe level. Regions with high TE content and high pollution risk of TEs are mainly located in the central part of Yuyao City. Four sources of soil TEs were apportioned in Yuyao City. The Pb, Hg, and Zn contents in soil were mainly derived from traffic activities, coal combustion, and smelting. Meanwhile, Cu was mainly sourced from industrial emissions and atmospheric deposition, Cr and Ni mainly originated from soil parental materials, and Cd and As were produced by industrial and agricultural activities. Our study provides important implications for improving the soil environment and contributes to the development of efficient strategies for TE pollution control and remediation.
Collapse
|
23
|
An Integrated Approach for Source Apportionment and Health Risk Assessment of Heavy Metals in Subtropical Agricultural Soils, Eastern China. LAND 2021. [DOI: 10.3390/land10101016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unreasonable human activities may cause the accumulation of heavy metals (HMs) in the agricultural soil, which will ultimately threaten the quality of soil environment, the safety of agricultural products, and human health. Therefore, the accumulation characteristics, potential sources, and health risks of HMs in agricultural soils in China’s subtropical regions were investigated. The mean Hg, Cu, Zn, Pb, and Cd concentrations of agricultural soil in Jinhua City have exceeded the corresponding background values of Zhejiang Province, while the mean concentrations of determined 8 HMs were less than their corresponding risk-screening values for soil contamination of agricultural land in China. The spatial distribution of As, Cr, Ni, Cu, and Pb were generally distributed in large patches, and Hg, Zn, and Cd were generally sporadically distributed. A positive definite matrix factor analysis (PMF) model had better performance than an absolute principal component–multiple linear regression (APCS-MLR) model in the identification of major sources of soil HMs, as it revealed higher R2 value (0.81–0.99) and lower prediction error (−0.93–0.25%). The noncarcinogenic risks (HI) of the 8 HMs to adults and children were within the acceptable range, while the carcinogenic risk (RI) of children has exceeded the safety threshold, which needs to be addressed by relevant departments. The PMF based human health risk assessment model indicated that industrial sources contributed the highest risk to HI (32.92% and 30.47%) and RI (60.74% and 61.5%) for adults and children, followed by agricultural sources (21.34%, 29.31% and 32.94% 33.19%). Therefore, integrated environmental management should be implemented to control and reduce the accumulation of soil HMs from agricultural and industrial sources.
Collapse
|
24
|
Wang J, Yu D, Wang Y, Du X, Li G, Li B, Zhao Y, Wei Y, Xu S. Source analysis of heavy metal pollution in agricultural soil irrigated with sewage in Wuqing, Tianjin. Sci Rep 2021; 11:17816. [PMID: 34497294 PMCID: PMC8426478 DOI: 10.1038/s41598-021-96367-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, the contents of heavy metals and Cd and Pb isotope ratios of agricultural soil and potential source samples collected from farmland receiving sewage irrigation in Wuqing District, Tianjin, China were determined. Multiple methods were used for source analysis, including positive matrix factorization (PMF), correlation analysis, principal component analysis (PCA), and the Cd and Pb isotope ratio method. The results showed that agricultural soil was slightly contaminated by heavy metals in the research area, with relatively higher Cd and Pb accumulation levels compared to those of other heavy metals. Four types of pollution sources, including the soil parent material sources, industrial emission sources, agricultural practice sources, and mixed sources of sewage irrigation and transportation were apportioned and quantified by PMF, combined with the results of PCA and correlation analysis. The contribution rates quantified by the Cd and Pb isotope ratio method were similar, suggesting that no single source dominates Pb and Cd pollution. The contribution rates of Pb analyzed by the isotope ratio method were almost identical to those of the PMF model, indicating the rationality of the PMF result. Our results suggested that correlation analysis and PCA should be utilized to provide information for obtaining reasonable results and defining source categories for PMF, whereas the isotope ratio method should be applied to verify the accuracy of source contributions analyzed by PMF.
Collapse
Affiliation(s)
- Jingran Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Danyang Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yanhong Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China. .,Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China. .,Liaoning Engineering Technology Research Center of Agricultural Products Quality and Environment Safety Control, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Xueli Du
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guochen Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,Liaoning Engineering Technology Research Center of Agricultural Products Quality and Environment Safety Control, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bo Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,Liaoning Engineering Technology Research Center of Agricultural Products Quality and Environment Safety Control, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yinghui Wei
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shuang Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
25
|
Hou X, Liu J, Zhang D, Zhao M, Yin Y. Effect of landscape-scale farmland fragmentation on the ecological efficiency of farmland use: a case study of the Yangtze River Economic Belt, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26935-26947. [PMID: 33496948 DOI: 10.1007/s11356-021-12523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Improving the ecological efficiency of farmland use (EEFU) has become an important part of ensuring food security and solving environmental pollution problems. At present, the Chinese government is actively promoting large-scale farmland transfer to reduce the level of farmer-/plot-scale farmland fragmentation (FF), so it is crucial to clarify the effect of landscape-scale FF on EEFU. This study applies the non-dynamic panel and threshold models in an empirical study of the municipal administrative regions along the Yangtze River Economic Belt (2000, 2005, 2010, and 2015). The results reveal that there is a single threshold for the effects of area, shape, and distance fragmentation on EEFU with farmland area per capita (FAPC) as the threshold variable. The threshold values are 1.548, 1.373, and 1.542, respectively. The effects of area and distance fragmentation on EEFU are initially promoted and then suppressed; however, shape fragmentation always has an inhibitory effect on EEFU. These findings suggest that ignoring the condition of FAPC of different regions and promoting large-scale farmland transfer blindly will give rise to the decline of EFFU. These results are conducive to the sustainable utilization of farmland and the formulation of related policies.
Collapse
Affiliation(s)
- Xianhui Hou
- College of Economics and Management, Northwest A&F University, NO. 3 Taicheng Road, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jingming Liu
- School of Public Policy and Administration, Xi'an Jiaotong University, NO. 28 Xianning Road, Xi'an, Shaanxi, 710049, People's Republic of China.
| | - Daojun Zhang
- College of Economics and Management, Northwest A&F University, NO. 3 Taicheng Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Minjuan Zhao
- College of Economics and Management, Northwest A&F University, NO. 3 Taicheng Road, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuqing Yin
- College of Economics and Management, Northwest A&F University, NO. 3 Taicheng Road, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|
26
|
Ren Y, Lin M, Liu Q, Zhang Z, Fei X, Xiao R, Lv X. Contamination assessment, health risk evaluation, and source identification of heavy metals in the soil-rice system of typical agricultural regions on the southeast coast of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12870-12880. [PMID: 33095894 DOI: 10.1007/s11356-020-11229-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
To quantitatively assess heavy metal accumulation and potential ecological and human health risks as well as analyze the sources of metals in a typical soil-rice system located on the southeast coast of China, 120 topsoil samples and corresponding rice grain samples were collected across the study area. The concentrations of As, Cd, Pb, Cr, Hg, Zn, Cu, and Ni were analyzed. The results revealed that Hg, Cd, and Cu were the main pollutants in soils. Besides, according to geo-accumulation value of Hg, 18.3% of samples were at or above moderate contamination levels. Additionally, the soil was in moderate ecological risk from combined heavy metal pollution, and 49.7% and 27.0% of this risk could be attributed to Hg and Cd pollution, respectively, due to their high toxic-response factors. For the rice samples, Cd content showed the highest biological accumulation coefficient value (40.8%) in rice grains and was slightly greater than its maximum allowable value (MAV) (0.2 mg/kg) in 7.5% of samples, whereas the other metals were all lower than their corresponding MAVs. Heavy metal exposure (especially As exposure) via rice consumption causes significant carcinogenic and non-carcinogenic risks to adults, and non-carcinogenic risk to children, while the carcinogenic risk to children was at tolerable level. Greater rice consumption might be responsible for the greater health risk to adults than children. Natural sources (loaded heavily with Cr and Ni) such as lithogenic components and soil parent materials, agricultural activities (loaded heavily with Cd, Cu, and Zn), especially excessive use of pesticides and fertilizers, and industrial activities (loaded heavily with Hg, Pb, and As) including vehicle emissions, coal combustion, and those of the textile and chemical industries were identified as the main sources. Effective regulations should be enforced to guarantee the safety of farm produce and protect ecological and human health in the study area.
Collapse
Affiliation(s)
- Yanjun Ren
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Meng Lin
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
- Qingdao Urban Planning and Design Research Institute, Qiangdao, China
| | - Qingming Liu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhonghao Zhang
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Xufeng Fei
- Zhejiang Academy of Agricultural Sciences, No.198 Shiqiao Road, Zhejiang, 310021, Hangzhou, China.
- Key Laboratory of Information Traceability of Agriculture Products, Minstry of Agriculture and Rural Affairs, Hangzhou, China.
| | - Rui Xiao
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Xiaonan Lv
- Zhejiang Academy of Agricultural Sciences, No.198 Shiqiao Road, Zhejiang, 310021, Hangzhou, China
- Key Laboratory of Information Traceability of Agriculture Products, Minstry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|