1
|
Mu P, Ye F, Liu X, Zhang P, Liu T, Li X. Partial root-zone drying irrigation enhances synthesis of glutathione in barley roots to improve low temperature tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70026. [PMID: 39908208 DOI: 10.1111/tpj.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Partial root-zone drying irrigation (PRD) has been widely employed to regulate crop root development and responses to environmental fluctuations. However, its role in reprogramming rhizospheric microorganisms and inducing plant stress tolerance remains largely unexplored. This study aimed to investigate the effects of PRD on the response of barley (Hordeum vulgare) plants to low temperatures under various irrigation regimes. Under low temperature, barley plants subjected to PRD exhibited a significantly enhanced net photosynthetic rate, stomatal conductance, and maximum quantum efficiency of photosystem II compared to fully irrigated plants. Additionally, these plants showed a reduction in relative conductance. These results suggest that PRD could be a viable strategy for enhancing crop stress tolerance through irrigation management. Metabolomic analysis revealed that PRD influenced the accumulation of glutathione and 9-octadecenamide in roots under low temperature, which was corroborated by transcriptome profiling data. Furthermore, the study highlighted the close association between this regulatory process and rhizosphere core microorganisms, such as Sphingobium and Mortierella, enriched in barley roots under PRD. This study revealed the mechanism underlying plant stress tolerance induction by PRD and the roles of rhizosphere microorganisms in this process. Also, the current study suggests that PRD is a promising strategy for enhancing crop stress tolerance through effective irrigation management.
Collapse
Affiliation(s)
- Peng Mu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Fan Ye
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xintong Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Peng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Tianhao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiangnan Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zheng J, Xie X, Li C, Wang H, Yu Y, Huang B. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1596-1613. [PMID: 36786203 DOI: 10.1080/15226514.2023.2176466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Endophytic fungi exist widely in plants and play an important role in the growth and adaptation of plants. They could be used in phytoremediation techniques against heavy metal contaminated soil since beneficial microbial symbionts can endow plants with resistance to external heavy metal stresses. This review summarized the regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Potential endophytic fungi in enhancing plant's adaption to heavy metal stresses include arbuscular mycorrhizal fungi, dark septate endophytic fungi, plant growth promoting endophytic fungi. The mechanisms involve coevolution strategy, immune regulation and detoxification transport to improve the ability of plants to adapt to heavy metal stress. They can increase the synthesis of host hormones and maintaining the balance of endogenous hormones, strengthen osmotic regulation, regulate carbon and nitrogen metabolism, and increase immune activity, antioxidant enzyme and glutathione activity. They also help to improve the detoxification transport and heavy metal emission capacity of the host by significantly producing iron carrier, metallothionein and 1-aminocyclopropane-1-carboxylic acid deaminase. The combination of endophytic fungi and hyperaccumulation plants provides a promising technology for the ecological restoration of heavy metal contaminated soil. Endophytic fungi reserves further development on enhancing host plant's adaptability to heavy metal stresses.
Collapse
Affiliation(s)
- Jiadong Zheng
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xingguang Xie
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Chunyan Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hongxia Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaru Yu
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baokang Huang
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Raihan MRH, Rahman M, Mahmud NU, Adak MK, Islam T, Fujita M, Hasanuzzaman M. Application of Rhizobacteria, Paraburkholderia fungorum and Delftia sp. Confer Cadmium Tolerance in Rapeseed ( Brassica campestris) through Modulating Antioxidant Defense and Glyoxalase Systems. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202738. [PMID: 36297762 PMCID: PMC9610570 DOI: 10.3390/plants11202738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 05/06/2023]
Abstract
We investigated the role of two different plant growth-promoting probiotic bacteria in conferring cadmium (Cd) tolerance in rapeseed (Brassica campestris cv. BARI Sarisha-14) through improving reactive oxygen species scavenging, antioxidant defense, and glyoxalase system. Soil, as well as seeds of rapeseed, were separately treated with probiotic bacteria, Paraburkholderia fungorum BRRh-4 and Delftia sp. BTL-M2. Fourteen-day-old seedlings were exposed to 0.25 and 0.5 mM CdCl2 for two weeks. Cadmium-treated plants resulted in a higher accumulation of hydrogen peroxide, increased lipid peroxidation, electrolyte leakage, chlorophyll damage, and impaired antioxidant defense and glyoxalase systems. Consequently, it reduced plant growth and biomass production, and yield parameters. However, probiotic bacteria-inoculated plants significantly ameliorated the Cd toxicity by enhancing the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase) and glyoxalase enzymes (glyoxalase I and glyoxalase II) which led to the mitigation of oxidative damage indicated by reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage that ultimately improved growth, physiology, and yield of the bacterial inoculants rapeseed plants. When taken together, our results demonstrated the potential role of the plant probiotic bacteria, BRRh-4 and BTL-M2, in mitigating the Cd-induced damages in rapeseed plants.
Collapse
Affiliation(s)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Malay Kumar Adak
- Department of Botany, University of Kalyani, Nadia 741235, West Bengal, India
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence: (T.I.); (M.F.); (M.H.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Takamatsu 761-0795, Japan
- Correspondence: (T.I.); (M.F.); (M.H.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (T.I.); (M.F.); (M.H.)
| |
Collapse
|
4
|
Alka S, Shahir S, Ibrahim N, Rahmad N, Haliba N, Abd Manan F. Histological and proteome analyses of Microbacterium foliorum-mediated decrease in arsenic toxicity in Melastoma malabathricum. 3 Biotech 2021; 11:336. [PMID: 34221807 PMCID: PMC8208456 DOI: 10.1007/s13205-021-02864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Arsenic (As) is an increasing threat across the globe, widely known as a non-threshold carcinogen, and it is reaching harmful values in several areas of the world. In this study, the effect of plant growth promoting bacteria (Microbacterium foliorum) on inorganic arsenic (Arsenate) phytoremediation by Melastoma malabathricum plants was investigated through histological analysis and proteome profiling of the M. malabathricum plants. Two-dimensional gel electrophoresis and transmission electron microscopy were used to conduct the proteome and histological analysis. When arsenic-treated cells were compared to untreated cells, substantial changes were found (1) severely altered the morphology of the cells, intensely disturbed; (2) the cell wall was thicker; (3) drastically changed the cytoplasm, the cells were polygonal in shape, different in size (scattered), and relatively dense. Compared to the control group, the ultra-structure of the root cells of the control group revealed intact cytoplasm, vacuole, and cell wall under exposure to As + bacteria that had a minor effect on the cell form. To further understand As + bacteria interaction, proteome profiling of the root cell was analyzed. The As-induced oxidative stress enrichment was confirmed by the up-regulation of tubulin, nucleoside diphosphate kinase, and major allergen during As + bacteria exposure It was observed that the profusion of proteins involved in defence, protein biogenesis, signaling, photosynthesis, nucleoside and energy metabolism was greater in As + bacteria as compared to the rooting out of As only. Overall, it can be obviously seen that the current study demonstrates the effectiveness of phytoremediation by M. foliorum on proteins involved and responsive pathways in dealing with As toxicity in M. malabathricum plant.
Collapse
Affiliation(s)
- Sadiya Alka
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Shafinaz Shahir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Norahim Ibrahim
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute, National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquater, 43400 Serdang, Selangor Malaysia
| | - Norhazalina Haliba
- University Industry Research Laboratory, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| |
Collapse
|
5
|
Liu R, Pan Y, Fang Y, Pang L, Shen J, Tian X. Effects of heavy metal-mediated intraspecific variation in leaf litter on the feeding preferences of stream detritivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144591. [PMID: 33360956 DOI: 10.1016/j.scitotenv.2020.144591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Plant litter inputs from terrestrial ecosystems are indispensable resources for stream ecosystems. Heavy metal pollution in the environment may indirectly affect the food webs of streams by changing the traits of leaf litter. In the present study, willow leaf litter was collected in polluted and non-polluted sites (natural willow), and leaf litter was produced in the lab by exposing willow saplings to different concentrations of heavy metals in water (cultivated willow). The collected willow leaf litter was used for feeding preference experiments with stream detritivores (shrimps and snails). Metal pollution significantly decreased the lignin concentration and toughness of litter and increased Zn and Cd concentrations. Both detritivores preferred to consume metal-enriched litter, with their consumption rates of this litter being significantly higher than those of non-enriched litter. The toughness of the willow litter was the key factor determining the feeding preferences of shrimps and snails. The detritivores that consumed metal-enriched leaf litter contained more Zn and Cd in their bodies than those that consumed non-enriched litter. The Zn and Cd concentrations in shrimp faeces were higher for shrimps that consumed metal-enriched litter than for those that consumed non-enriched litter. The heavy metal concentrations and chemical oxygen demand (COD) of the water following litter consumption were significantly higher for the metal-enriched litter than for the non-enriched litter, resulting in decreased water quality in the former context. The specific resource allocation patterns that result from heavy metal pollution in the environment will have ecological consequences.
Collapse
Affiliation(s)
- Run Liu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yueting Pan
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - You Fang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lu Pang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiachen Shen
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China.
| |
Collapse
|