1
|
Elleuch J, Drira M, Ghribi I, Hadjkacem F, Pierre G, Causserand C, Khemakhem H, Michaud P, Fendri I, Abdelkafi S. Amphora coffeiformis extracellular polymeric substances and their potential applications in lead removal. Antonie Van Leeuwenhoek 2025; 118:51. [PMID: 39899145 DOI: 10.1007/s10482-024-02057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025]
Abstract
Microorganisms producing extracellular polymeric substances (EPS) are of great potential in numerous environmental applications. The present study explores the production and properties of extracellular polymeric substances (EPS) from Amphora coffeiformis diatom strain and their potential applications in environmental remediation. EPS were composed of a complex mixture of polysaccharides, proteins, humic substances and nucleic acids, with polyanionic characteristics as revealed by FTIR, Raman and zeta potential analyses. EPS showed high flocculation efficiency against kaolin clay at low dosages (5 mg/L) through a charge neutralization mechanism involving both polysaccharides and proteins. EPS also exhibited strong emulsification activity for various nonpolar substrates, mainly olive oil, corn oil, soybean oil, essence and diesel, with emulsification indexes above 80%. The emulsions were stable for 72 h under different NaCl concentrations (1-10% w/v). Moreover, EPS demonstrated remarkable adsorption capacity for lead, reaching a maximum of 1699.33 ± 89.61 mg/g under optimized conditions using Box-Behnken design. The adsorption mechanism involved multiple functional groups such as hydroxyl, carbonyl, carboxyl, phosphoric and sulfhydryl. Therefore, EPS from A. coffeiformis are a promising candidate for restoring environments contaminated by heavy metals.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Marwa Drira
- Laboratoire de Protection et Amélioration des Plantes, Centre de Biotechnologie de Sfax, Université de Sfax, B.P. 1177, 3018, Sfax, Tunisia
| | - Imtinen Ghribi
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Hamadi Khemakhem
- Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
2
|
Durán-Vinet B, Araya-Castro K, Zaiko A, Pochon X, Wood SA, Stanton JAL, Jeunen GJ, Scriver M, Kardailsky A, Chao TC, Ban DK, Moarefian M, Aran K, Gemmell NJ. CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning. CRISPR J 2023; 6:316-324. [PMID: 37439822 PMCID: PMC10494903 DOI: 10.1089/crispr.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/14/2023] Open
Abstract
Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.
Collapse
Affiliation(s)
- Benjamín Durán-Vinet
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile; Berkeley, Berkeley, California, USA
| | - Karla Araya-Castro
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile; Berkeley, Berkeley, California, USA
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand; Berkeley, Berkeley, California, USA
- Sequench Ltd, Nelson, New Zealand; Berkeley, Berkeley, California, USA
| | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand; Berkeley, Berkeley, California, USA
| | - Susanna A. Wood
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
| | - Jo-Ann L. Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| | - Gert-Jan Jeunen
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| | - Michelle Scriver
- Cawthron Institute, Nelson, New Zealand; Berkeley, Berkeley, California, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand; Berkeley, Berkeley, California, USA
| | - Anya Kardailsky
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
- Department of Zoology, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| | - Tzu-Chiao Chao
- Institute of Environmental Change and Society, Department of Biology, University of Regina, Regina, Canada; Berkeley, Berkeley, California, USA
| | - Deependra K. Ban
- Keck Graduate Institute, The Claremont Colleges, Claremont, California, USA; Berkeley, Berkeley, California, USA
| | - Maryam Moarefian
- Keck Graduate Institute, The Claremont Colleges, Claremont, California, USA; Berkeley, Berkeley, California, USA
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, California, USA; Berkeley, Berkeley, California, USA
- Cardea Bio Inc., San Diego, California, USA; and Berkeley, Berkeley, California, USA
- University of California, Berkeley, Berkeley, California, USA
| | - Neil J. Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Baccari O, Barkallah M, Elleuch J, Ben Ayed N, Chtourou A, Karray-Hakim H, Hammami A, Michaud P, Fendri I, Abdelkafi S. Development of a duplex q-PCR for the simultaneous detection of Parachlamydia acanthamoebae and Simkania negevensis in environmental and clinical samples. Anal Biochem 2023; 667:115080. [PMID: 36775111 DOI: 10.1016/j.ab.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Parachlamydia acanthamoebae and Simkania negevensis, two Chlamydia-like bacteria, have been recently recognized as emerging human respiratory pathogens. The prevalence and frequency of these bacteria in the environment and among atypical pneumonia patients are still underestimated by classical cultures, immunohistochemistry and serology which are non-specific, long and tedious methods. This study aims to develop a new duplex probe-based q-PCR assay for the simultaneous detection and quantification of P. acanthamoebae and S. negevensis. The selected hydrolysis probes displayed no cross-reaction with the closely related Chlamydia or the other tested waterborne pathogens. The assay achieved a large dynamic range for quantification (from 5 × 106 to 5 DNA copies/reaction). Efficiencies of FAM and JOE label probes weren't affected when they were combined. They were close to 100%, indicating the linear amplification. The application of this diagnostic tool resulted in 9/47 (19%) and 4/47 (8.5%) positive water samples for P. acanthamoebae and S. negevensis, respectively. P. acanthamoebae was also covered from 2/78 (2.5%) respiratory specimens and only one case (1/200 = 0.5%) of P. acanthamoebae and SARS-CoV-2 co-infection was noticed. While S. negevensis wasn't detected in clinical samples, the developed duplex q-PCR was shown to be an accurate, highly sensitive, and robust diagnostic tool for the detection and quantification of P. acanthamoebae and S. negevensis.
Collapse
Affiliation(s)
- Olfa Baccari
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Nourelhouda Ben Ayed
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Amel Chtourou
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Héla Karray-Hakim
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Adenene Hammami
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
4
|
Wu G, Liu F, Chen G, Wang Y, Wang Y, Zhang C. Establishment of a multiplex polymerase chain reaction detection assay for three common harmful microalgae in the East China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60500-60513. [PMID: 37036653 DOI: 10.1007/s11356-023-26821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
It is urgent to develop techniques that can simultaneously detect multiple microalgae, due to the diversity of harmful algal blooms (HABs)-forming algal species. The target algae species in this study are Heterosigma akashiwo, Prorocentrum donghaiense and Karenia mikimotoi. These algae are the dominant species that cause HABs in the East China Sea, and the multiple detection technique focusing on these three algae is not common. Therefore, this study established a multiplex polymerase chain reaction(mPCR) to diagnose the three algae, which is simple and low cost. First, the corresponding specific primers were designed based on the D1-D2 region of the large subunit (LSU) ribosomal DNA sequence. Then, mPCR was established and the reaction conditions were optimized. And the specificity, sensitivity, and stability of mPCR were evaluated. The result of specificity test showed that the established mPCR had good specificity for the target microalgae and did not cross-react with eighteen non-target microalgae. The sensitivity of experiment was 3.3 × 10-1 ng μL-1, and the established mPCR was not affected by the interfering microalgae. Moreover, the practicability evaluation of mPCR by using the simulated natural water samples showed that the detection limit of target microalgae was 100 cells mL-1, which could meet the demand for early warning of HABs. In summary, the established mPCR is characterized by strong specificity, good stability, and multiple analysis to detect H. akashiwo, P. donghaiense, and K. mikimotoi.
Collapse
Affiliation(s)
- Ganlin Wu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Yihan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China.
| |
Collapse
|
5
|
Farhat A, Elleuch J, Ben Amor F, Barkallah M, Smith KF, Ben Neila I, Abdelkafi S, Fendri I. A fast and accurate method for specific detection and quantification of the bloom-forming microalgae Karlodinium veneficum in the marine environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88699-88709. [PMID: 35836051 DOI: 10.1007/s11356-022-21667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Karlodinium veneficum is a toxic benthic globally distributed dinoflagellate which has direct impacts on human health and the environment. Early and accurate detection of this harmful algal bloom-forming species could be useful for potential risks monitoring and management. In the present work, a real-time PCR targeting the internal transcribed spacer ribosomal DNA region for the specific detection and absolute quantification of K. veneficum was designed. Then, the assay conditions were adjusted and validated. The developed qPCR was highly specific for the target species and displayed no cross-reactivity with closely related dinoflagellates and/or other microalgal species commonly distributed along the Tunisian coast. Its lowest detection limit was 5 rDNA copies per reaction, which is often considered satisfying. qPCR assay enumeration accuracy was evaluated using artificially inoculated environmental samples. The comparison of the cell abundance estimates obtained by qPCR assay with the theoretical estimates showed no statistically significant difference across a range of concentrations. We suggest that the qPCR approach developed in the present study may be a valuable tool to investigate the distribution and seasonal dynamics of K. veneficum in marine environments.
Collapse
Affiliation(s)
- Ameny Farhat
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 3000, 3029, Sfax, Tunisia.
| |
Collapse
|
6
|
Drira M, Elleuch J, Hadjkacem F, Hentati F, Drira R, Pierre G, Gardarin C, Delattre C, El Alaoui-Talibi Z, El Modafar C, Michaud P, Abdelkafi S, Fendri I. Influence of the sulfate content of the exopolysaccharides from Porphyridium sordidum on their elicitor activities on date palm vitroplants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:99-106. [PMID: 35835079 DOI: 10.1016/j.plaphy.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Given the increasing interest that is being paid to polysaccharides derived from algae as plant natural defense stimulators, the degree of sulfation of exopolysaccharides produced by P. sordidum for inducing defense responses in date palm vitroplants was investigated. Firstly, the culture parameters of P. sordidum were optimized to maximize the amount of sulfate in EPS using a Box-Behnken experimental design and the elicitor effects of two EPS which differ in the sulfation degrees were compared. Results demonstrated that the concentrations of NaCl, NaNO3 and MgSO4 set at 28, 0.54 and 16.31 g/L, respectively yielded the best sulfate contents. To elucidate defense-inducing activities in date palm vitroplants, EPS with the highest sulfate content (EPS1) were prepared for comparison with those obtained under standard conditions (EPS0). A fucoidan extracted from Cystoseira compressa was used as positive control and MgSO4 as negative control. Both EPS and the fucoidan displayed H2O2 accumulation and expression of PR1, SOD, PAL and WRKY genes. Interestingly, EPS1 was significantly more bioactive than EPS0 and the fucoidan suggesting that the elicitor activity is positively correlated with the sulfate groups content of this polysaccharide.
Collapse
Affiliation(s)
- Marwa Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Tunisia.
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Faiez Hentati
- INRAE, URAFPA, Université de Lorraine, F-54000, Nancy, France.
| | - Riadh Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Tunisia.
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France.
| | - Christine Gardarin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France.
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France.
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, 40000, Morocco.
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST-05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, 40000, Morocco.
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France.
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Tunisia.
| |
Collapse
|
7
|
Ben Amor F, Elleuch J, Farhat A, Barkallah M, Smith KF, Ben Neila I, Fendri I, Abdelkafi S. Development of a novel TaqMan qPCR assay for rapid detection and quantification of Gymnodinium catenatum for application to harmful algal bloom monitoring in coastal areas of Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63953-63963. [PMID: 35469376 DOI: 10.1007/s11356-022-20273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Gymnodinium catenatum is a dinoflagellate known to cause paralytic shellfish poisoning (PSP), commonly associated with human muscular paralysis, neurological symptoms, and, in extreme cases, death. In the present work, we developed a real-time PCR-based assay for the rapid detection of the toxic microalgal species, G. catenatum, in environmental bivalve mollusc samples as well as seawater samples. G. catenatum-specific primers and probe were designed on the ITS1-5.8S-ITS2 rDNA region. Hydrolysis probe qPCR assay was optimized. ITS1-5.8S-ITS2 rDNA region copy numbers per G. catenatum cell genome were estimated to be 122.73 ± 5.54 copies/cell, allowing cell quantification. The application of the optimized qPCR assay for G. catenatum detection and quantification in field samples has been conducted, revealing high sensitivity (detection of around 1.3105 cells/L of seawater samples. Thus, the designed hydrolysis probe qPCR assay could be considered an efficient tool for phytoplankton monitoring whilst ensuring accuracy and sensitivity and providing cost and time savings.
Collapse
Affiliation(s)
- Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Ameni Farhat
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 1117, 3029, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Sciences of Sfax, University of Sfax, B.P. 1171, 1117, 3029, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
8
|
Detection and Quantification of the Harmful Dinoflagellate Margalefidinium polykrikoides (East Asian Ribotype) in the Coastal Waters of China. Toxins (Basel) 2022; 14:toxins14020095. [PMID: 35202121 PMCID: PMC8874401 DOI: 10.3390/toxins14020095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
As a marine ichthyotoxic dinoflagellate, Margalefidinium polykrikoides, previously named Cochlodinium polykrikoides, have caused mass mortalities of fish worldwide during blooms. Rapid detection of target species is a prerequisite for the timely monitoring and early warning of harmful algal blooms (HABs). However, it is difficult to achieve rapid identification with traditional methods. The technology of using quantitative real-time PCR (qPCR) to detect and quantify microalgae is relatively mature. Based on the accuracy, rapidity, and sensitivity of qPCR technology, it can be used in the monitoring and development of early warning systems for HABs. From 2017 to 2020, samples were collected from 15 locations off the Chinese coast or from local sea areas. Based on the qPCR detection and analysis, the target species, M. polykrikoides (East Asian ribotype, EAr), was found in samples from Tianjin, Yangtze River estuary, and offshore Fujian (East China Sea). This is the first time that M. polykrikoides (EAr) was detected in the coastal waters of Tianjin. The results reveal a distributive pattern of M. polykrikoides (EAr) along Chinese coastal waters. It is helpful to predict the future diffusion trend of M. polykrikoides (EAr) in the China Sea and provides a practical case for the future construction of monitoring and warning systems for M. polykrikoides and HABs.
Collapse
|
9
|
Zhang C, Chen Q, Liu F, Liu Y, Wang Y, Chen G. Rapid detection of Chattonella marina by PCR combined with dot lateral flow strip. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:449-460. [PMID: 35079200 PMCID: PMC8778489 DOI: 10.1007/s10811-021-02667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED In this study a novel technique referred to as PCR combined with dot lateral flow strip (PCDS) is proposed and its application to the detection of harmful microalgae was explored. For this purpose, using Chattonella marina as a test algal species, PCR targeting the D1-D2 region of large subunit ribosomal gene of this alga was performed with the tagged specific primers. The amplicons were then analyzed with the manually prepared dot lateral flow strip, and the strip could produce a test dot and a control dot that are naked-eye detectable, indicating the successful establishment of PCDS. The established PCDS assay does not require expensive instruments for the detection, and the results can be observed visually after adding 7.5 μL of PCR amplicons in combination with 92.5 μL of chromatography buffer to the sample pad of the strip for about 10 min. The PCR conditions were optimized to enhance the effectiveness of detection. The cross-reactivity test with 23 microalgae species, including Chattonella marina, showed good specificity of the PCDS. The detection limit of PCDS was 1.25 × 10-2 ng µL-1 for genomic DNA and 101 cells mL-1 for crude cell extracts, which can meet the detection needs. In summary, the PCDS proposed in this study has low cost, clear, and intuitive detection results and good specificity and sensitivity, providing a novel detection method for C. marina. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02667-x.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 264209 People’s Republic of China
- School of Marine Sciences, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Qixin Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
| | - Fuguo Liu
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 264209 People’s Republic of China
| | - Yin Liu
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209 People’s Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 264209 People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Wenhua West Road, Weihai, 2# Shandong Province China
| |
Collapse
|
10
|
Elleuch J, Ben Amor F, Barkallah M, Haj Salah J, Smith KF, Aleya L, Fendri I, Abdelkafi S. q-PCR-based assay for the toxic dinoflagellate Karenia selliformis monitoring along the Tunisian coasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57486-57498. [PMID: 34089447 DOI: 10.1007/s11356-021-14597-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Karenia selliformis is a marine dinoflagellate responsible for fish-kill events. Its presence has been reported along the Tunisian coasts (south-eastern Mediterranean Sea) since the 1990s. In the present study, a quantitative-PCR assay, based on the internal transcribed spacer (ITS) molecular marker, was developed to detect and quantify K. selliformis in environmental bivalve mollusk samples and in seawater samples. The assay was optimized, and its specificity was confirmed using cross-reactivity experiments against microalgal species commonly found on the Tunisian coasts and/or closely related to K. selliformis. Calibration curves were performed by tenfold dilutions of plasmid DNA harboring target sequence and genomic DNA, attaining a limit of detection of around 5 copies of target DNA per reaction, far below one K. selliformis cell per reaction. The field application of the developed assay showed a powerful detection capability. Thus, the designed assay could contribute to the deployment of in-field diagnostic tools for K. selliformis blooms monitoring.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Jihen Haj Salah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson, 7042, New Zealand
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
11
|
Pearson LA, D'Agostino PM, Neilan BA. Recent developments in quantitative PCR for monitoring harmful marine microalgae. HARMFUL ALGAE 2021; 108:102096. [PMID: 34588118 DOI: 10.1016/j.hal.2021.102096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Marine microalgae produce a variety of specialised metabolites that have toxic effects on humans, farmed fish, and marine wildlife. Alarmingly, many of these compounds bioaccumulate in the tissues of shellfish and higher trophic organisms, including species consumed by humans. Molecular methods are emerging as a potential alternative and complement to the conventional microscopic diagnosis of toxic or otherwise harmful microalgal species. Quantitative PCR (qPCR) in particular, has gained popularity over the past decade as a sensitive, rapid, and cost-effective method for monitoring harmful microalgae. Assays targeting taxonomic marker genes provide the opportunity to identify and quantify (or semi-quantify) microalgal species and importantly to pre-empt bloom events. Moreover, the discovery of paralytic shellfish toxin biosynthesis genes in dinoflagellates has enabled researchers to directly monitor toxigenic species in coastal waters and fisheries. This review summarises the recent developments in qPCR detection methods for harmful microalgae, with emphasis on emerging toxin gene monitoring technologies.
Collapse
Affiliation(s)
- Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
12
|
Barkallah M, Elleuch J, Smith KF, Chaari S, Ben Neila I, Fendri I, Michaud P, Abdelkafi S. Development and application of a real-time PCR assay for the sensitive detection of diarrheic toxin producer Prorocentrum lima. J Microbiol Methods 2020; 178:106081. [PMID: 33035573 DOI: 10.1016/j.mimet.2020.106081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Prorocentrum lima (P. lima) is a widely spread dinoflagellate in the Mediterranean Sea and it has become increasingly involved in harmful algal blooms. The purpose of this study is to develop a probe-based real-time polymerase chain reaction (PCR) targeting the ITS1-5.8S-ITS2 region for the detection and absolute quantification of P. lima based on linear and circular DNA standards. The results have shown that the quantitative PCR (q-PCR), using circular plasmid as a template, gave a threshold cycle number 1.79-5.6 greater than equimolar linear standards. When microalgae, commonly found in aquatic samples were tested, no cross-amplification was observed. The q-PCR brought about a good intra and inter-run reproducibility and a detection limit of 5 copies of linear plasmid per reaction. A quantitative relationship between the cell numbers and their corresponding plasmid copy numbers was attained. Afterwards, the effectiveness of the developed protocol was tested with 130 aquatic samples taken from 19 Tunisian sampling sites. The developed q-PCR had a detection sensitivity of up to 1 cell. All the positive samples were taken from three sampling sites of Medenine Governorate with cell abundances that ranged from 22 to 156,000 cells L-1 of seawater. The q-PCR assay revealed a high sensitivity in monitoring the aquatic samples in which the low concentrations of P. lima were not accurately detected by light microscopy. Indeed, this approach is at the same time rapid, specific and sensitive than the traditional microscopy techniques and it represents a great potential for the monitoring of P. lima blooms.
Collapse
Affiliation(s)
- Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Siwar Chaari
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | | | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the improvement of Cultures, Faculty of Sciences of Sfax, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
13
|
Baccari O, Elleuch J, Barkallah M, Boukedi H, Ayed NB, Hammami A, Fendri I, Abdelkafi S. Development of a new TaqMan-based PCR assay for the specific detection and quantification of Simkania negevensis. Mol Cell Probes 2020; 53:101645. [PMID: 32745685 DOI: 10.1016/j.mcp.2020.101645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/02/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Simkania negevensis is an emerging Chlamydia-like bacterium related to human respiratory diseases. An early and accurate detection of this pathogen could be useful to monitor the potential infectious risks and to set suitable outbreak control measures. In Tunisia, distribution and abundance of S. negevensis remain until now largely unknown. In the present work, a qPCR assay, targeting the 16S rRNA gene, for fast detection and quantification of S. negevensis was developed and validated. A high specificity for S. negevensis detection displaying no cross-reaction with the closely related Chlamydia spp. or the other tested microorganisms was noticed. qPCR assay performance was considered very satisfying with detection limits of 5 DNA copies per reaction. qPCR assay validation was performed by screening 37 clinical specimens and 35 water samples. S. negevensis wasn't detected in respiratory samples, but it was found in four cases of water samples. We suggest that the qPCR assay developed in this study could be considered sufficiently characterized to initiate the quantification of S. negevensis in environmental samples.
Collapse
Affiliation(s)
- Olfa Baccari
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Hanen Boukedi
- Laboratory of Biopesticides, Biotechnology Center of Sfax, University of Sfax, Sfax, Tunisia
| | - Nourelhouda Ben Ayed
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Adnene Hammami
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures, Faculty of Science of Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|