1
|
Kumar V, Nadarajan S, Boddupally D, Wang R, Bar E, Davidovich-Rikanati R, Doron-Faigenboim A, Alkan N, Lewinsohn E, Elad Y, Oren-Shamir M. Phenylalanine treatment induces tomato resistance to Tuta absoluta via increased accumulation of benzenoid/phenylpropanoid volatiles serving as defense signals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:84-99. [PMID: 38578218 DOI: 10.1111/tpj.16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, 500043, India
| | - Stalin Nadarajan
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Dayakar Boddupally
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Ru Wang
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Einat Bar
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Noam Alkan
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, The Volcani Center, Ramat Yishay, 30095, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| |
Collapse
|
2
|
Felicia Chukwuma I, Orizu Uchendu N, Onyekachukwu Asomadu R, Favour Chinedu Ezeorba W, Prince Chidike Ezeorba T. African and Holy Basil - A review of ethnobotany, phytochemistry, and toxicity of their Essential oil: Current trends and prospects for antimicrobial/anti-parasitic pharmacology. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
3
|
Ben Abdallah S, Riahi C, Vacas S, Navarro-Llopis V, Urbaneja A, Pérez-Hedo M. The Dual Benefit of Plant Essential Oils against Tuta absoluta. PLANTS (BASEL, SWITZERLAND) 2023; 12:985. [PMID: 36903846 PMCID: PMC10005231 DOI: 10.3390/plants12050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Plant essential oils (PEOs) are being studied as a potential alternative to synthetic pesticides in agriculture. PEOs have the potential to control pests both directly, by being toxic or repellent to pests, and indirectly, by activating plant's defense mechanisms. In this study, the effectiveness of five PEOs (Achillea millefolium, Allium sativum, Rosmarinus officinallis, Tagetes minuta, and Thymus zygis) on controlling Tuta absoluta and their impact on the predator Nesidiocoris tenuis was examined. The study revelead that PEOs from A. millefolium and A. sativum-sprayed plants significantly reduced the number of T. absoluta-infested leaflets and did not affect the establishment and reproduction of N. tenuis. Additionally, the spraying of A. millefolium and A. sativum increased the expression of defense genes in the plants, triggering the release of herbivory-induced plant volatiles (HIPVs), such as C6 green leaf volatiles, monoterpenes, and aldehydes, which can be messengers in tritrophic interactions. The results suggest that PEOs from A. millefolium and A. sativum can provide a dual benefit for controlling arthropod pests, as they can directly exhibit toxicity against these pests while also activating plant defense mechanisms. Overall, this study provides new insights into using PEOs as a sustainable solution for controlling pests and diseases in agriculture, by reducing synthetic pesticides and promoting the use of natural predators.
Collapse
Affiliation(s)
- Saoussen Ben Abdallah
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
- Horticultural Science Department, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142, USA
| | - Chaymaa Riahi
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
| | - Sandra Vacas
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain
| | - Vicente Navarro-Llopis
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, CV-315, Km 10.7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
4
|
D’Esposito D, Guadagno A, Amoroso CG, Cascone P, Cencetti G, Michelozzi M, Guerrieri E, Ercolano MR. Genomic and metabolic profiling of two tomato contrasting cultivars for tolerance to Tuta absoluta. PLANTA 2023; 257:47. [PMID: 36708391 PMCID: PMC9884263 DOI: 10.1007/s00425-023-04073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Dissimilar patterns of variants affecting genes involved in response to herbivory, including those leading to difference in VOC production, were identified in tomato lines with contrasting response to Tuta absoluta. Tuta absoluta is one of the most destructive insect pest affecting tomato production, causing important yield losses both in open field and greenhouse. The selection of tolerant varieties to T. absoluta is one of the sustainable approaches to control this invasive leafminer. In this study, the genomic diversity of two tomato varieties, one tolerant and the other susceptible to T. absoluta infestation was explored, allowing us to identify chromosome regions with highly dissimilar pattern. Genes affected by potential functional variants were involved in several processes, including response to herbivory and secondary metabolism. A metabolic analysis for volatile organic compounds (VOCs) was also performed, highlighting a difference in several classes of chemicals in the two genotypes. Taken together, these findings can aid tomato breeding programs aiming to develop tolerant plants to T. absoluta.
Collapse
Affiliation(s)
- Daniela D’Esposito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Anna Guadagno
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Ciro Gianmaria Amoroso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA Italy
| | - Pasquale Cascone
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 50019 Sesto Fiorentino, FI Italy
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, 80055 Portici, NA Italy
| | | |
Collapse
|
5
|
Evaluation of antibacterial and toxicological activities of essential oil of Ocimum gratissimum L. and its major constituent eugenol. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Ugbogu OC, Emmanuel O, Agi GO, Ibe C, Ekweogu CN, Ude VC, Uche ME, Nnanna RO, Ugbogu EA. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil ( Ocimum gratissimum L.). Heliyon 2021; 7:e08404. [PMID: 34901489 PMCID: PMC8642617 DOI: 10.1016/j.heliyon.2021.e08404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
In traditional medicine, Ocimum gratissimum (clove basil) is used in the treatment of various diseases such as diabetes, cancer, inflammation, anaemia, diarrhoea, pains, and fungal and bacterial infections. The present study reviewed the phytochemicals, essential oils, and pharmacological activities of O. gratissimum. The bioactive compounds extracted from O. gratissimum include phytochemicals (oleanolic acid, caffeic acid, ellagic acid, epicatechin, sinapic acid, rosmarinic acid, chlorogenic acid, luteolin, apigenin, nepetoidin, xanthomicrol, nevadensin, salvigenin, gallic acid, catechin, quercetin, rutin, and kaempfero) and essential oils (camphene, β-caryophyllene, α- and β-pinene, α-humulene, sabinene, β-myrcene, limonene, 1,8-cineole, trans-β-ocimene, linalool, α- and δ-terpineol, eugenol, α-copaene, β-elemene, p-cymene, thymol, and carvacrol). Various in vivo and in vitro studies have shown that O. gratissimum and its bioactive constituents possess pharmacological properties such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic, antihypertensive, antidiarrhoeal, and antimicrobial properties. This review demonstrated that O. gratissimum has a strong preventive and therapeutic effect against several diseases. The effectiveness of O. gratissimum to ameliorate various diseases may be attributed to its antimicrobial and antioxidant properties as well as its capacity to improve the antioxidant systems. However, despite the widespread pharmacological activities of O. gratissimum, further experiments in human clinical trial studies are needed to establish effective and safe doses for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Grace Oka Agi
- Department of Human Nutrition and Dietetics, University of Ibadan, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Abia State University, Uturu, PMB 2000, Uturu, Abia State, Nigeria
| | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Victor Chibueze Ude
- Department of Medical Biochemistry, College of Medicine Enugu State University of Science and Technology, PMB 01660, Enugu, Nigeria
| | - Miracle Ebubechi Uche
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | | |
Collapse
|