1
|
Ashesh A, Singh S, Devi NL. Unmasking the spread, carcinogenic-non carcinogenic risk characterization, and source fingerprinting of organochlorine pesticides (OCPs) in soil and vegetables of Gaya, Bihar, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:503. [PMID: 39508956 DOI: 10.1007/s10653-024-02282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
The use of organochlorine pesticides (OCPs) in specific regions is still prevalent. Moreover, the impact of past utilization can be observed in the present environmental matrices. The present study monitored the extent of contamination of OCPs in the soil and vegetable samples of Gaya, Bihar, India. For this, 63 soil and vegetable samples were collected from the vegetable cultivated area of Gaya. The collected samples were extracted using a Soxhlet extraction unit and OCPs were analysed with a gas chromatography-mass spectrometry detector. The concentration data generated from the analysis were interpreted using statistical tools and software. Mean concentration (μg/g) of Σ19OCPs in soil from residential, agricultural, commercial, and polyhouse sites were 0.69, 2.21, 0.17, and 0.72, respectively. Similarly, in vegetable samples, mean concentration (μg/g) of Σ19OCPs were 0.91, 0.96, 1.00, and 0.67, respectively. Among the monitored vegetable types, the concentration of OCPs increased in the order: pods > tubers > leaves > fruits > roots > stem. The bioconcentration factor of 19 OCPs showed that 61.90% of vegetable samples were hyperaccumulators. The results of molecular diagnostic ratio and positive matrix factorization reported the recent inputs of heptachlor, aldrin, endrin and methoxychlor; the past application of dichlorodimethyltrichloroethane (DDT), endosulfan, and chlordane; and the degradation of DDT to its metabolites and aldrin to dieldrin, which make up an overall source profile of OCPs in study area. The study found that incremental lifetime cancer risks and hazard quotients ranged from 6.98 × 10-8 to 1.31 × 10-5 and 4.25 × 10-2 to 4.63 × 10-1, respectively in vegetable samples which indicate low to high ILCR and low non-carcinogenic risk to populations exposed to OCPs. The study indicates the long lasting impact of past pesticide use by studying the contamination in soil and vegetables, and raises serious concerns about food safety. The contamination poses direct health risk to consumers related to potential carcinogenic and endocrine disrupting effects. Thus monitoring on the ground level could be a force to modify region specific policies, health, and remediation measures related to exposure to OCPs.
Collapse
Affiliation(s)
- Akriti Ashesh
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur road, Post- Fatehpur, P.S- Tekari, District-Gaya, 824236, India
| | - Shreya Singh
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur road, Post- Fatehpur, P.S- Tekari, District-Gaya, 824236, India
| | - Ningombam Linthoingambi Devi
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur road, Post- Fatehpur, P.S- Tekari, District-Gaya, 824236, India.
| |
Collapse
|
2
|
Lesch V, Pieters R, Bouwman H. Dioxins, PFOS, and 20 other Persistent Organic Pollutants in Eggs of Nine Wild Bird Species from the Vaal River, South Africa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:287-310. [PMID: 39297965 PMCID: PMC11525409 DOI: 10.1007/s00244-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024]
Abstract
The Vaal River catchment drains the largest and most populated industrial and mining region in Southern Africa. Heron, ibis, cormorant, egrets, and darter eggs, representing three habitats and four feeding guilds, were collected at four locations in 2009/10 to identify hotspots and hazards associated with persistent organic pollutants (POPs). The POPs included 21 organochlorine pesticides, five polybrominated diphenyl ether (PBDE) classes, 18 polychlorinated biphenyls (PCBs including six non-dioxin-like PCBs; NDL-PCB), and 12 dioxin-like PCBs (DL-PCBs), 17 polychlorinated dibenzo-p-dioxins and dibenzo-p-furans (PCDD/Fs), and perfluorooctane sulfonate (PFOS). Aquatic predators had higher PFOS and PCDD/F concentrations, while PCBs dominated in terrestrial eggs. Organochlorine pesticides, PBDEs, and PCBs were strongly associated with eggs from the industrial regions, while PCDD/F concentrations were evenly distributed. PCDD/F and PCB toxic equivalency quotient concentrations were low with no adverse effects expected. PFOS peaked at Bloemhof Dam with a maximum of 2300 ng/g wm in an African Darter egg, indicating an unexpected PFOS hotspot, the source of which is unknown. Despite order of differences in compound class concentrations, there was no association with egg size. To the best of our knowledge, this is the only study that analysed all 2010 POPs in bird eggs on a large geographic scale. This study highlighted the importance of multi-species studies sampling from multiple locations to assess the risk that POPs pose to avian populations as hotspots and species at risk may be missed by studies looking at one or few species.
Collapse
Affiliation(s)
- Velesia Lesch
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Rialet Pieters
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Padioleau A, Cariou R, Guiffard I, Le Bizec B, Escher BI, Antignac JP, Dervilly G. Non-targeted analysis of lipidic extracts by high-resolution mass spectrometry to characterise the chemical exposome: Comparison of four clean-up strategies applied to egg. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123963. [PMID: 38101287 DOI: 10.1016/j.jchromb.2023.123963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Biota samples are used to monitor chemical stressors and their impact on the ecosystem and to describe dietary chemical exposure. These complex matrices require an extraction step followed by clean-up to avoid damaging sensitive analytical instruments based on chromatography coupled to mass spectrometry. While interest for non-targeted analysis (NTA) is increasing, there is no versatile or generic sample preparation for a wide range of contaminants suitable for a diversity of biotic matrices. Among the contaminants' variety, persistent contaminants are mostly hydrophobic (mid- to non-polar) and bio-magnify through the lipidic fraction. During their extraction, lipids are generally co-extracted, which may cause matrix effect during the analysis such as hindering the acquired signal. The aim of this study was to evaluate the efficacy of four clean-up methods to selectively remove lipids from extracts prior to NTA. We evaluated (i) gel permeation chromatography (GPC), (ii) Captiva EMR-lipid cartridge (EMR), (iii) sulphuric acid degradation (H2SO4) and (iv) polydimethyl siloxane (PDMS) for their efficiency to remove lipids from hen egg extracts. Gas and liquid chromatography coupled with high-resolution mass spectrometry fitted with either electron ionisation or electrospray ionisation sources operating in positive and negative modes were used to determine the performances of the clean-up methods. A set of 102 chemicals with a wide range of physico-chemical properties that covers the chemical space of mid- to non-polar contaminants, was used to assess and compare recoveries and matrix effects. Matrix effects, that could hinder the mass spectrometer signal, were lower for extracts cleaned-up with H2SO4 than for the ones cleaned-up with PDMS, EMR and GPC. The recoveries were satisfactory for both GPC and EMR while those determined for PDMS and H2SO4 were low due to poor partitioning and degradation/dissociation of the compounds, respectively. The choice of the clean-up methods, among those assessed, should be a compromise that takes into account the matrix under consideration, the levels and the physico-chemical properties of the contaminants.
Collapse
Affiliation(s)
| | | | | | | | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | | | | |
Collapse
|
4
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Wei L, Huang Q, Qiu Y, Zhao J, Rantakokko P, Gao H, Huang F, Bignert A, Bergman Å. Legacy persistent organic pollutants (POPs) in eggs of night herons and poultries from the upper Yangtze Basin, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93744-93759. [PMID: 37516701 DOI: 10.1007/s11356-023-28974-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.2 ng g-1 wet weight (ww), followed by PCBs (1.36 ng g-1 ww), PBDEs (0.215 ng g-1 ww), and PCDD/Fs (23.0 pg g-1 ww). The concentration levels were found to be significantly higher in night heron eggs than in poultry eggs by one or two magnitude orders. Among OCP congeners, p,p'-DDE was found to be predominant in night heron eggs, with a geometric mean concentration of 15.1 ng g-1 ww. Furthermore, species-specific congener patterns in eggs suggested similar or different sources for different POPs, possibly associated with contaminated soil and parental dietary sources. Additionally, estimated daily intakes (EDIs) were used to evaluate non-carcinogenic and carcinogenic risk associated with consumption of bird eggs. Our results revealed non-negligible non-cancer and cancer risk for humans who consume wild bird eggs as a regular diet instead of poultry eggs.
Collapse
Affiliation(s)
- Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Hongwen Gao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Fei Huang
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Sichuan Province, Yibin, 644000, China
- Swedish Museum of Natural History, 104 05, Stockholm, Sweden
| | - Åke Bergman
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- Department of Environmental Science (ACES), Stockholm University, 106 91, Stockholm, Sweden
- Department of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| |
Collapse
|
6
|
P S, Thasale R, Kumar D, Mehta TG, Limbachiya R. Human health risk assessment of pesticide residues in vegetable and fruit samples in Gujarat State, India. Heliyon 2022; 8:e10876. [PMID: 36217455 PMCID: PMC9547241 DOI: 10.1016/j.heliyon.2022.e10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The present study was initiated with the purpose to evaluate possible health risks associated with pesticide residues through consumption of vegetables and fruits by general population of Gujarat, India. A total of 1075 samples comprising of twelve different varieties of commonly consumed food commodities were collected from twenty-five divergent locations in Gujarat. The collected samples were extracted using QuEChERS method and analyzed for the presence of organophosphorus (OPs), organochlorine (OCs) and synthetic pyrethroids (SPs) pesticides using UHPLC-HR/MS, GC-μECD and GC-MS/SIM. The results indicated that 2.3% of vegetable and fruit samples showed the presence of pesticide residues exceeding maximum residue limits (MRLs). The results suggested that, detected residue levels in samples were within safe limits and their consumption will not pose any significant health risk to human. The outcomes present significant information regarding the status of vegetable and fruit contamination and pointed out the prerequisite for further studies with reference to monitoring of pesticides and other toxic contaminants in different samples for assessing cumulative health risk.
Collapse
Affiliation(s)
- Sivaperumal P
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India,Corresponding author.
| | - Rupal Thasale
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India
| | - Dhirendra Kumar
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India,ICMR- National Animal Resource Facility for Biomedical Research, Hyderabad- 500007, India
| | - Tejal G. Mehta
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India
| | - Riddhi Limbachiya
- ICMR- National Institute of Occupational Health, Ahmedabad- 380016, India
| |
Collapse
|
7
|
Ashesh A, Singh S, Linthoingambi Devi N, Chandra Yadav I. Organochlorine pesticides in multi-environmental matrices of India: A comprehensive review on characteristics, occurrence, and analytical methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
El-Nahhal Y, El-Nahhal I. Cardiotoxicity of some pesticides and their amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44726-44754. [PMID: 34231153 DOI: 10.1007/s11356-021-14999-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are used to control pests that harm plants, animals, and humans. Their application results in the contamination of the food and water systems. Pesticides may cause harm to the human body via occupational exposure or the ingestion of contaminated food and water. Once a pesticide enters the human body, it may create health consequences such as cardiotoxicity. There is not enough information about pesticides that cause cardiotoxicity in the literature. Currently, there are few reports that summarized the cardiotoxicity due to some pesticide groups. This necessitates reviewing the current literature regarding pesticides and cardiotoxicity and to summarize them in a concrete review. The objectives of this review article were to summarize the advances in research related to pesticides and cardiotoxicity, to classify pesticides into certain groups according to cardiotoxicity, to discuss the possible mechanisms of cardiotoxicity, and to present the agents that ameliorate cardiotoxicity. Approximately 60 pesticides were involved in cardiotoxicity: 30, 13, and 17 were insecticides, herbicides, and fungicides, respectively. The interesting outcome of this study is that 30 and 13 pesticides from toxicity classes II and III, respectively, are involved in cardiotoxicity. The use of standard antidotes for pesticide poisoning shows health consequences among users. Alternative safe medical management is the use of cardiotoxicity-ameliorating agents. This review identifies 24 ameliorating agents that were successfully used to manage 60 cases. The most effective agents were vitamin C, curcumin, vitamin E, quercetin, selenium, chrysin, and garlic extract. Vitamin C showed ameliorating effects in a wide range of toxicities. The exposure mode to pesticide residues, where 1, 2, 3, and 4 are aerial exposure to pesticide drift, home and/or office exposure, exposure due to drinking contaminated water, and consumption of contaminated food, respectively. General cardiotoxicity is represented by 5, whereas 6, 7, 8 and 9 are electrocardiogram (ECG) of hypotension due to exposure to OP residues, ECG of myocardial infraction due to exposure to OPs, ECG of hypertension due to exposure to OC and/or PY, and normal ECG respectively.
Collapse
Affiliation(s)
- Yasser El-Nahhal
- Department of Earth and Environmental Science Faculty of Science, The Islamic University-Gaza, Gaza, Palestine.
| | | |
Collapse
|
9
|
Tao Y, Jia C, Jing J, Zhang J, Yu P, He M, Wu J, Chen L, Zhao E. Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Beijing, China. Food Chem 2021; 350:129245. [PMID: 33601091 DOI: 10.1016/j.foodchem.2021.129245] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
The co-occurrence of multiple pesticides in wheat fields adversely affects human health and the environment. Herein, 206 pairs of wheat and soil samples were collected from wheat fields in Beijing, China from 2018 to 2020. One or multiple pesticide residues were detected, and carbendazim (maximum: 38511.5 μg/kg) and tebuconazole (maximum: 45.4 μg/kg) had heavy occurrence in the wheat samples. Carbendazim, triazoles, and neonicotinoids were frequently detected in the soil samples. HCHs and DDTs were detected, with p,p'-DDE in 100.0% of the soil samples at a maximum concentration of 546.0 μg/kg in 2020. Concentrations of carbendazim, tebuconazole, hexaconazole, and cyhalothrin in the paired soil and wheat samples exhibited significant positive correlations. Pesticides that exceeded the maximum residue limits do not pose non-carcinogenic risks, with one exception. The results provide important references towards risk monitoring and control in wheat fields, as well as facilitating the scientific and reasonable use of these pesticides.
Collapse
Affiliation(s)
- Yan Tao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Chunhong Jia
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Junjie Jing
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Jinwei Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Pingzhong Yu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Min He
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Junxue Wu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Li Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China
| | - Ercheng Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, PR China.
| |
Collapse
|