1
|
Fotoohiyan Z, Samiei F, Sardoei AS, Kashi F, Ghorbanpour M, Kariman K. Improved salinity tolerance in cucumber seedlings inoculated with halotolerant bacterial isolates with plant growth-promoting properties. BMC PLANT BIOLOGY 2024; 24:821. [PMID: 39218905 PMCID: PMC11367809 DOI: 10.1186/s12870-024-05538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
To address salinity stress in plants in an eco-friendly manner, this study investigated the potential effects of salinity-resistant bacteria isolated from saline agricultural soils on the growth of cucumber (Cucumis sativus, cv. Royal) seedlings. A greenhouse factorial experiment was conducted based on a completely randomized design (CRD) with two factors, salinity at four levels and five bacterial treatments, with three replications (n = 3). Initially, fifty bacterial isolates were screened for their salinity and drought tolerance, phosphate solubilization activity, along with production of auxin, siderophore and hydrogen cyanide. Isolates K4, K14, K15, and C8 exhibited the highest resistance to salinity and drought stresses in vitro. Isolates C8 and K15 demonstrated the highest auxin production capacity, generating 2.95 and 2.87 µg mL- 1, respectively, and also exhibited significant siderophore production capacities (by 14% and 11%). Additionally, isolates C8 and K14 displayed greater phosphate solubilization activities, by 184.64 and 122.11 µg mL- 1, respectively. The statistical analysis revealed that the selected four potent isolates significantly enhanced all growth parameters of cucumber plants grown under salinity stress conditions for six weeks. Plant height increased by 41%, fresh and dry weights by 35% and 7%, respectively, and the leaf area index by 85%. The most effective isolate, C8, was identified as Bacillus subtilis based on the 16 S rDNA amplicon sequencing. This study demonstrated that inoculating cucumber seedlings with halotolerant bacterial isolates, such as C8 (Bacillus subtilis), possessing substantial plant growth-promoting properties significantly alleviated salinity stress by enhancing plant growth parameters. These findings suggest a promising eco-friendly strategy for improving crop productivity in saline agricultural environments.
Collapse
Affiliation(s)
- Zeinab Fotoohiyan
- Department of Plant Pathology, Jiroft Branch, Islamic Azad University, Kerman, Iran
| | - Fatemeh Samiei
- Department of Plant Pathology, Roudehen Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salehi Sardoei
- Department of Horticultural and Crops Research, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.
| | - Fatemeh Kashi
- Graduated with a master's degree in statistics from Allameh Tabataba'i University, Tehran, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Perth, WA, Australia
| |
Collapse
|
2
|
Lu Z, Wang H, Wang Z, Liu J, Li Y, Xia L, Song S. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122200. [PMID: 39182379 DOI: 10.1016/j.jenvman.2024.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Soil reconstruction is a critical step in the restoration of environments affected by mining activities. This paper provides a comprehensive review of the significant role that microbial processes play in expediting soil structure formation, particularly within the context of mining environment restoration. Coal gangue and flotation tailings, despite their low carbon content and large production volumes, present potential substrates for soil reclamation. These coal-based solid waste materials can be utilized as substrates to produce high-quality soil and serve as an essential carbon source to enhance poor soil conditions. However, extracting active organic carbon components from coal-based solid waste presents a significant challenge due to its complex mineral composition. This article offers a thorough review of the soilization process of coal-based solid waste under the influence of microorganisms. It begins by briefly introducing the primary role of in situ microbial remediation technology in the soilization process. It then elaborates on various improvements to soil structure under the influence of microorganisms, including the enhancement of soil aggregate structure and soil nutrients. The article concludes with future recommendations aimed at improving the efficiency of soil reconstruction and restoration, reducing environmental risks, and promoting its application in complex environments. This will provide both theoretical and practical support for more effective environmental restoration strategies.
Collapse
Affiliation(s)
- Zijing Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Hengshuang Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Zhixiang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Jiazhi Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, 264300, Shandong, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| |
Collapse
|
3
|
Wen Y, Ma Y, Wu Z, Yang Y, Yuan X, Chen K, Luo Y, He Z, Huang X, Deng P, Li C, Yang Z, Chen Z, Ma J, Sun Y. Enhancing rice ecological production: synergistic effects of wheat-straw decomposition and microbial agents on soil health and yield. FRONTIERS IN PLANT SCIENCE 2024; 15:1368184. [PMID: 39175490 PMCID: PMC11338901 DOI: 10.3389/fpls.2024.1368184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Aims This study evaluated the impact of wheat straw return and microbial agent application on rice field environments. Methods Using Rice variety Chuankangyou 2115 and a microbial mix of Bacillus subtilis and Trichoderma harzianum. Five treatments were tested: T1 (no straw return), T2 (straw return), T3, T4, and T5 (straw return with varying ratios of Bacillus subtilis and Trichoderma harzianum). Results Results indicated significant improvements in rice root length, surface area, dry weight, soil nutrients, and enzyme activity across T2-T5 compared to T1, enhancing yield by 3.81-26.63%. T3 (50:50 microbial ratio) was optimal, further increasing root dry weight, soil enzyme activity, effective panicle and spikelet numbers, and yield. Dominant bacteria in T3 included MBNT15, Defluviicoccus, Rokubacteriales, and Latescibacterota. Higher Trichoderma harzianum proportions (75% in T5) increased straw decomposition but slightly inhibited root growth. Correlation analysis revealed a significant positive relationship between yield and soil microorganisms like Gemmatimonadota and Firmicutes at the heading stage. Factors like dry root weight, straw decomposition rate post-jointing stage, and elevated soil enzyme activity and nutrient content from tiller to jointing stage contributed to increased panicle and spikelet numbers, boosting yield. Conclusion The optimal Bacillus subtilis and Trichoderma harzianum ratio for straw return was 50:50, effectively improving soil health and synergizing high rice yield with efficient straw utilization.
Collapse
Affiliation(s)
- Yanfang Wen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ziniu Wu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ziting He
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinhai Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Pengxin Deng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Congmei Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Wei X, Li W, Song Z, Wang S, Geng S, Jiang H, Wang Z, Tian P, Wu Z, Yang M. Straw Incorporation with Exogenous Degrading Bacteria (ZJW-6): An Integrated Greener Approach to Enhance Straw Degradation and Improve Rice Growth. Int J Mol Sci 2024; 25:7835. [PMID: 39063077 PMCID: PMC11276935 DOI: 10.3390/ijms25147835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Rice straw is an agricultural waste, the disposal of which through open burning is an emerging challenge for ecology. Green manufacturing using straw returning provides a more avant-garde technique that is not only an effective management measure to improve soil fertility in agricultural ecosystems but also nurtures environmental stewardship by reducing waste and the carbon footprint. However, fresh straw that is returned to the field cannot be quickly decomposed, and screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. This study aimed to reveal the potential mechanism of influence exerted by exogenous degradative bacteria (ZJW-6) on the degradation of straw, growth of plants, and soil bacterial community during the process of returning rice straw to the soil. The inoculation with ZJW-6 enhanced the driving force of cellulose degradation. The acceleration of the rate of decomposition of straw releases nutrients that are easily absorbed by rice (Oryza sativa L.), providing favorable conditions for its growth and promoting its growth and development; prolongs the photosynthetic functioning period of leaves; and lays the material foundation for high yields of rice. ZJW-6 not only directly participates in cellulose degradation as degrading bacteria but also induces positive interactions between bacteria and fungi and enriches the microbial taxa that were related to straw degradation, enhancing the rate of rice straw degradation. Taken together, ZJW-6 has important biological potential and should be further studied, which will provide new insights and strategies for the appropriate treatment of rice straw. In the future, this degrading bacteria may provide a better opportunity to manage straw in an ecofriendly manner.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Wanchun Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Ze Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Shiwen Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Shujuan Geng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Hao Jiang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Ping Tian
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Huang Y, Yan Y, Ma Y, Zhang X, Zhao Q, Men M, Huang Y, Peng Z. The effect of low-temperature straw-degrading microbes on winter wheat growth and soil improvement under straw return. Front Microbiol 2024; 15:1391632. [PMID: 39056007 PMCID: PMC11269160 DOI: 10.3389/fmicb.2024.1391632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The application of straw-degrading microbes (SDMs) with straw returned to the field is an effective measure to improve soil quality, increase yield, and maintain soil microorganisms. However, the utilization of SDMs in winter in north China is limited by the poor effects at low temperatures. This study investigated the effects of a new compound SDM, including a novel low-temperature fungus Pseudogymnoascus sp. SDF-LT, on winter wheat yield, soil improvement, and soil microbial diversity. A 2-year field experiment was conducted in two different soil textures of wheat-maize rotation fields with full corn straw return and application of SDMs at an amount of 67.5 kg hm-2. After 2 years of continuous application of SDMs, the winter wheat yield increased significantly, reaching 9419.40 kg hm-2 in Ningjin (NJSDM) and 9107.25 kg hm-2 in Mancheng (MCSDM). The soil properties have been significantly improved compared with the single straw return group, especially the sandy loam soil, whose quality is relatively low. The analysis of soil microbial diversity showed that SDMs significantly reduced the Chao1, Shannon, Simpson, and observed species of the sandy loam soil in the MCSDM group. The Simpson and Shannon indexes of fungi diversity in the two experimental sites were significantly increased by SDMs. The negative correlation of fungi increased from 47.1 to 48.85% in the SDM groups. The soil-dominant microbes changed in the SDM groups, in which the interactions between microbes were enhanced. These results suggested that the SDMs changed the the soil microbial community structure and its diversity and complexity, which is beneficial for crop growth. Our study provided sufficient evidence for the utilization of low-temperature SDMs with straw return in cold winter, which plays a role in soil improvement, especially for low-quality soils, to increase crop yield.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Key Laboratory of Farmland Eco-Environment of Hebei/ College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China for Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Yuanyuan Yan
- State Key Laboratory of North China for Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
- Laboratory of Crop Germplasm Resources of Hebei Province/ College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yang Ma
- Key Laboratory of Farmland Eco-Environment of Hebei/ College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China for Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xiang Zhang
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Qian Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Mingxin Men
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yali Huang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zhengping Peng
- Key Laboratory of Farmland Eco-Environment of Hebei/ College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China for Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Wang F, Zhao Z, Han Y, Li S, Bi X, Ren S, Pan Y, Wang D, Liu X. The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region. Microorganisms 2024; 12:692. [PMID: 38674636 PMCID: PMC11051765 DOI: 10.3390/microorganisms12040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Asarum is a traditional Chinese medicinal plant, and its dried roots are commonly used as medicinal materials. Research into the traits of the bacteria and fungus in the Asarum rhizosphere and how they relate to the potency of medicinal plants is important. During four cropping years and collecting months, we used ITS rRNA gene amplicon and sequencing to assess the population, diversity, and predominant kinds of bacteria and fungus in the rhizosphere of Asarum. HPLC was used to determine the three bioactive ingredients, namely asarinin, aristolochic acid I, and volatile oil. The mainly secondary metabolites of Asarum, relationships between microbial communities, soil physicochemical parameters, and possible influences on microbial communities owing to various cropping years and collecting months were all statistically examined. The cropping years and collecting months affected the abundance and diversity of rhizosphere bacteria and fungi, but the cropping year had a significant impact on the structures and compositions of the bacterial communities. The rhizosphere microorganisms were influenced by both the soil physicochemical properties and enzyme activities. Additionally, this study revealed that Trichoderma was positively correlated with the three bioactive ingredients of Asarum, while Tausonia showed entirely opposite results. Gibberella and Leptosphaeria demonstrated a significantly negative correlation with asarinin and violate oil, but they were weakly correlated with the aristolochic acid I content. This study revealed variations in the Asarum rhizosphere microorganism population, diversity, and dominant types across four cropping years and collecting months. The relationship between Asarum secondary metabolites, the soil physicochemical properties, enzyme activities, and rhizosphere microorganisms was discussed. Our results will guide the exploration of the soil characteristics and rhizosphere microorganisms' structures by regulating the microbial community to enhance Asarum quality.
Collapse
Affiliation(s)
- Fuqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Zilu Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Yangyang Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Shiying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinhua Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shumeng Ren
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Yingni Pan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoqiu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| |
Collapse
|
7
|
Shi Y, Niu X, Chen B, Pu S, Ma H, Li P, Feng G, Ma X. Chemical fertilizer reduction combined with organic fertilizer affects the soil microbial community and diversity and yield of cotton. Front Microbiol 2023; 14:1295722. [PMID: 38053554 PMCID: PMC10694218 DOI: 10.3389/fmicb.2023.1295722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The soil microbial community plays an important role in modulating cotton soil fertility. However, the effects of chemical fertilizer combined with organic fertilizer on soil chemical properties, microbial community structure, and crop yield and quality in arid areas are still unclear. This study aimed to explore the effects of different organic fertilizers on soil microbial community structure and diversity and cotton growth and yield. Methods High-throughput sequencing was used to study the soil bacteria and fungi in different growth stages of cotton. The field fertilization experiment had five treatments. Results The results indicated that the treatments of chemical fertilizer reduction combined with organic fertilizer significantly increased soil available nitrogen and phosphorus in cotton field. There were significant differences in the abundance of the bacterial and fungal communities in the dominant phyla among the treatments. At the phyla level, there were not significantly different in the diversity of bacteria and fungi among treatments. There were significant differences in the composition and diversity of bacterial and fungal communities during the entire cotton growth period (p = 0.001). The rhizosphere bacterial and fungal community structure was significantly affected by soil TK, NH4+, AK, TP, AN, and NO3-. The different fertilization treatments strongly influenced the modular structure of the soil bacterial and fungal community co-occurrence network. A reduction in chemical fertilizer combined with organic fertilizer significantly improved cotton stem diameter and seed yield, and the effect of the biological organic fertilizer on plant growth and yield formation was greater than that of ordinary organic fertilizer. Discussion This study provide a scientific and technical basis for the establishment of environmentally friendly green fertilization technology for cotton in arid areas and the promotion of sustainable development of cotton industry.
Collapse
Affiliation(s)
- YingWu Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, Xinjiang, China
| | - XinXiang Niu
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - BaoZhu Chen
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - ShengHai Pu
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - HongHong Ma
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Pan Li
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - GuangPing Feng
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - XingWang Ma
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Liu X, Yang W, Li W, Ali A, Chen J, Sun M, Gao Z, Yang Z. Moderate organic fertilizer substitution for partial chemical fertilizer improved soil microbial carbon source utilization and bacterial community composition in rain-fed wheat fields: current year. Front Microbiol 2023; 14:1190052. [PMID: 37396386 PMCID: PMC10307974 DOI: 10.3389/fmicb.2023.1190052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Organic fertilizers can partially replace chemical fertilizers to improve agricultural production and reduce negative environmental impacts. To study the effect of organic fertilizer on soil microbial carbon source utilization and bacterial community composition in the field of rain-fed wheat, we conducted a field experiment from 2016 to 2017 in a completely randomized block design with four treatments: the control with 100% NPK compound fertilizer (N: P2O5: K2O = 20:10:10) of 750 kg/ha (CK), a combination of 60% NPK compound fertilizer with organic fertilizer of 150 kg/ha (FO1), 300 kg/ha (FO2), and 450 kg/ha (FO3), respectively. We investigated the yield, soil property, the utilization of 31 carbon sources by soil microbes, soil bacterial community composition, and function prediction at the maturation stage. The results showed that (1) compared with CK, organic fertilizer substitution treatments improved ear number per hectare (13%-26%), grain numbers per spike (8%-14%), 1000-grain weight (7%-9%), and yield (3%-7%). Organic fertilizer substitution treatments increased the total nitrogen, available nitrogen, available phosphorus, and soil organic matter contents by 26%, 102%, 12%, and 26%, respectively, compared with CK treatments. Organic fertilizer substitution treatments significantly advanced the partial productivity of fertilizers. (2) Carbohydrates and amino acids were found to be the most sensitive carbon sources for soil microorganisms in different treatments. Particularly for FO3 treatment, the utilization of β-Methyl D-Glucoside, L-Asparagine acid, and glycogen by soil microorganisms was higher than other treatments and positively correlated with soil nutrients and wheat yield. (3) Compared with CK, organic fertilizer substitution treatments increased the relative abundance of Proteobacteria, Acidobacteria, and Gemmatimonadetes and decreased the relative abundance of Actinobacteria and Firmicutes. Interestingly, FO3 treatment improved the relative abundance of Nitrosovibrio, Kaistobacter, Balneimonas, Skermanella, Pseudomonas, and Burkholderia belonging to Proteobacteria and significantly boosted the relative abundance of function gene K02433 [the aspartyl-tRNA (Asn)/glutamyl-tRNA (Gln)]. Based on the abovementioned findings, we suggest FO3 as the most appropriate organic substitution method in rain-fed wheat fields.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenping Yang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Wenguang Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
9
|
Wu JW, Li FL, Yao SK, Zhao ZY, Feng X, Chen RZ, Xu YQ. Iva xanthiifolia leaf extract reduced the diversity of indigenous plant rhizosphere bacteria. BMC PLANT BIOLOGY 2023; 23:297. [PMID: 37268959 DOI: 10.1186/s12870-023-04316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Iva xanthiifolia, native to North America, is now widely distributed in northeastern China and has become a vicious invasive plant. This article aims to probe the role of leaf extract in the invasion of I. xanthiifolia. METHODS We collected the rhizosphere soil of Amaranthus tricolor and Setaria viridis in the invasive zone, the noninvasive zone and the noninvasive zone treated with extract from I. xanthiifolia leaf, and obtained I. xanthiifolia rhizosphere soil in the invasive zone. All wild plants were identified by Xu Yongqing. I. xanthiifolia (collection number: RQSB04100), A. tricolor (collection number: 831,030) and S. viridis (collection number: CF-0002-034) are all included in Chinese Virtual Herbarium ( https://www.cvh.ac.cn/index.php ). The soil bacterial diversity was analyzed based on the Illumina HiSeq sequencing platform. Subsequently, taxonomic analysis and Faprotax functional prediction were performed. RESULTS The results showed that the leaf extract significantly reduced the diversity of indigenous plant rhizosphere bacteria. A. tricolor and S. viridis rhizobacterial phylum and genus abundances were significantly reduced under the influence of I. xanthiifolia or its leaf extract. The results of functional prediction showed that bacterial abundance changes induced by leaf extracts could potentially hinder nutrient cycling in native plants and increased bacterial abundance in the A. tricolor rhizosphere related to aromatic compound degradation. In addition, the greatest number of sensitive Operational Taxonomic Units (OTUs) appeared in the rhizosphere when S. viridis was in response to the invasion of I. xanthiifolia. It can be seen that A. tricolor and S. viridis have different mechanisms in response to the invasion of I. xanthiifolia. CONCLUSION I. xanthiifolia leaves material has potential role in invasion by altering indigenous plant rhizosphere bacteria.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Feng-Lan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shu-Kuan Yao
- Agriculture and Rural Affairs Bureau, Jinxiang, Jining, Shandong, 272200, China
| | - Zi-Yi Zhao
- Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rong-Ze Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yong-Qing Xu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Wang Y, Zhang X, Lou Z, An X, Li X, Jiang X, Wang W, Zhao H, Fu M, Cui Z. The effects of adding exogenous lignocellulose degrading bacteria during straw incorporation in cold regions on degradation characteristics and soil indigenous bacteria communities. Front Microbiol 2023; 14:1141545. [PMID: 37234521 PMCID: PMC10206022 DOI: 10.3389/fmicb.2023.1141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Low temperature is one of the bottleneck factors that limits the degradation of straw during rice straw incorporation. Determining strategies to promote the efficient degradation of straw in cold regions has become a highly active research area. This study was to investigate the effect of rice straw incorporation by adding exogenous lignocellulose decomposition microbial consortiums at different soil depths in cold regions. The results showed that the lignocellulose was degraded the most efficiently during straw incorporation, which was in deep soil with the full addition of a high-temperature bacterial system. The composite bacterial systems changed the indigenous soil microbial community structure and diminished the effect of straw incorporation on soil pH, it also significantly increased rice yield and effectively enhanced the functional abundance of soil microorganisms. The predominant bacteria SJA-15, Gemmatimonadaceae, and Bradyrhizobium promoted straw degradation. The concentration of bacterial system and the depth of soil had significantly positive correlations on lignocellulose degradation. These results provide new insights and a theoretical basis for the changes in the soil microbial community and the application of lignocellulose-degrading composite microbial systems with straw incorporation in cold regions.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Agronomy, Yanbian University, Yanji, China
| | - Xuelian Zhang
- College of Agronomy, Yanbian University, Yanji, China
| | - Zixi Lou
- College of Agronomy, Yanbian University, Yanji, China
| | - Xiaoya An
- College of Agronomy, Yanbian University, Yanji, China
| | - Xue Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xinbo Jiang
- College of Agronomy, Yanbian University, Yanji, China
| | - Weidong Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongyan Zhao
- College of Agronomy, Yanbian University, Yanji, China
| | - Minjie Fu
- College of Agronomy, Yanbian University, Yanji, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Li HP, Han QQ, Liu QM, Gan YN, Rensing C, Rivera WL, Zhao Q, Zhang JL. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiol Res 2023; 272:127375. [PMID: 37058784 DOI: 10.1016/j.micres.2023.127375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Phosphorus (P), an essential macronutrient for all life on Earth, has been shown to be a vital limiting nutrient element for plant growth and yield. P deficiency is a common phenomenon in terrestrial ecosystems across the world. Chemical phosphate fertilizer has traditionally been employed to solve the problem of P deficiency in agricultural production, but its application has been limited by the non-renewability of raw materials and the adverse influence on the ecological health of the environment. Therefore, it is imperative to develop efficient, economical, environmentally friendly and highly stable alternative strategies to meet the plant P demand. Phosphate-solubilizing bacteria (PSB) are able to improve plant productivity by increasing P nutrition. Pathways to fully and effectively use PSB to mobilize unavailable forms of soil P for plants has become a hot research topic in the fields of plant nutrition and ecology. Here, the biogeochemical P cycling in soil systems are summarized, how to make full use of soil legacy P via PSB to alleviate the global P resource shortage are reviewed. We highlight the advances in multi-omics technologies that are helpful for exploring the dynamics of nutrient turnover and the genetic potential of PSB-centered microbial communities. Furthermore, the multiple roles of PSB inoculants in sustainable agricultural practices are analyzed. Finally, we project that new ideas and techniques will be continuously infused into fundamental and applied research to achieve a more integrated understanding of the interactive mechanisms of PSB and rhizosphere microbiota/plant to maximize the efficacy of PSB as P activators.
Collapse
Affiliation(s)
- Hui-Ping Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qing-Qing Han
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiong-Mei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Gan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Windell L Rivera
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, The Philippines
| | - Qi Zhao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jin-Lin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Xie L, Li W, Pang X, Liu Q, Yin C. Soil properties and root traits are important factors driving rhizosphere soil bacterial and fungal community variations in alpine Rhododendron nitidulum shrub ecosystems along an altitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161048. [PMID: 36563760 DOI: 10.1016/j.scitotenv.2022.161048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Both soil properties and plant root traits are pivotal factors affecting microbial communities. However, there is still limited information about their importance in shaping rhizosphere soil microbial communities, particularly in less-studied alpine shrub ecosystems. To investigate the effects of altitude (3300, 3600, 3900, and 4200 m) on the diversity and composition of rhizosphere soil bacterial and fungal communities, as well as the factors shaping rhizosphere soil microbial communities, we conducted this study in alpine Rhododendron nitidulum shrub ecosystems from the Zheduo mountain of the eastern Tibetan Plateau. Results demonstrated that bacterial community diversity and richness decreased to the lowest value at 3600 m and then increased at higher altitudes compared with 3300 m; whereas fungal richness at 3300 m was much lower than at other altitudes, and was closely related to soil properties and root traits. The composition of rhizosphere soil bacterial and fungal communities at the low altitude (3300 m) was different from that at high altitudes. Permutational multivariate analysis of variance and redundancy analysis indicated that soil properties (soil water content, pH, NO3--N, and available phosphorus) and root traits (surface area, and maximum depth) were the major factors explaining the variations of rhizosphere soil bacterial and fungal communities. Specific bacterial and fungal taxa along altitudes were identified. The bacterial taxa Planctomycetota was dominant at 3300 and 3600 m with low soil nutrient availability and high root surface area, whereas the fungal taxa Mortierellomycota was abundant at 3900 and 4200 m with high soil nutrient availability and low root surface area. These results suggested that different soil microbes can respond differently to altitude. This study provides a novel insight into factors driving rhizosphere soil bacterial and fungal community variations, which could improve our understanding of microbial ecology in alpine R. nitidulum shrub ecosystems along altitude.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Wanting Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
14
|
Abstract
The genus Bacillus has been widely applied in contemporary agriculture as an environmentally-friendly biological agent. However, the real effect of commercial Bacillus-based fertilizers and pesticides varies immensely in the field. To harness Bacillus for efficient wheat production, we reviewed the diversity, functionality, and applicability of wheat-associated native Bacillus for the first time. Our main findings are: (i) Bacillus spp. inhabit the rhizosphere, root, stem, leaf, and kernel of wheat; (ii) B. subtilis and B. velezensis are the most widely endophytic species that can be isolated from both below and aboveground tissues; (iii) major functions of these representative strains are promotion of plant growth and alleviation of both abiotic and biotic stresses in wheat; (iv) stability and effectiveness are 2 major challenges during field application; (v) a STVAE pipeline that includes 5 processes, namely, Screen, Test, Validation, Application, and Evaluation, has been proposed for the capture and refinement of wheat-associated Bacillus spp. In particular, this review comprehensively addresses possible solutions, concerns, and criteria during the development of native Bacillus-based inoculants for sustainable wheat production.
Collapse
|
15
|
Shi H, Lu L, Ye J, Shi L. Effects of Two Bacillus Velezensis Microbial Inoculants on the Growth and Rhizosphere Soil Environment of Prunus davidiana. Int J Mol Sci 2022; 23:13639. [PMID: 36362427 PMCID: PMC9657632 DOI: 10.3390/ijms232113639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/12/2024] Open
Abstract
Microbial inoculants, as harmless, efficient, and environmentally friendly plant growth promoters and soil conditioners, are attracting increasing attention. In this study, the effects of Bacillus velezensis YH-18 and B. velezensis YH-20 on Prunus davidiana growth and rhizosphere soil bacterial community in continuously cropped soil were investigated by inoculation tests. The results showed that in a pot seedling experiment, inoculation with YH-18 and YH-20 resulted in a certain degree of increase in diameter growth, plant height, and leaf area at different time periods of 180 days compared with the control. Moreover, after 30 and 90 days of inoculation, the available nutrients in the soil were effectively improved, which protected the continuously cropped soil from acidification. In addition, high-throughput sequencing showed that inoculation with microbial inoculants effectively slowed the decrease in soil microbial richness and diversity over a one-month period. At the phylum level, Proteobacteria and Bacteroidetes were significantly enriched on the 30th day. At the genus level, Sphingomonas and Pseudomonas were significantly enriched at 15 and 30 days, respectively. These bacterial phyla and genera can effectively improve the soil nutrient utilization rate, antagonize plant pathogenic bacteria, and benefit the growth of plants. Furthermore, inoculation with YH-18 and inoculation with YH-20 resulted in similar changes in the rhizosphere microbiome. This study provides a basis for the short-term effect of microbial inoculants on the P. davidiana rhizosphere microbiome and has application value for promoting the cultivation and production of high-quality fruit trees.
Collapse
Affiliation(s)
| | | | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
16
|
Bai N, Zhang H, He Y, Zhang J, Zheng X, Zhang H, Zhang Y, Lv W, Li S. Effects of Bacillus subtilis A-5 and its fermented γ-polyglutamic acid on the rhizosphere bacterial community of Chinese cabbage. Front Microbiol 2022; 13:954489. [PMID: 36046026 PMCID: PMC9421268 DOI: 10.3389/fmicb.2022.954489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
Chemical fertilizer reduction combined with novel and green agricultural inputs has become an important practice to improve microecological health in agricultural production. Given the close linkages between rhizosphere processes and plant nutrition and productivity, understanding how fertilization impacts this critical zone is highly important for optimizing plant–soil interactions and crop fitness for agricultural sustainability. Here, by using a pot experimental system, we demonstrated that nitrogen fertilizer reduction and microbial agent application promoted plant fitness and altered the microbial community structure in the rhizosphere soil with the following treatments: no fertilization, CK; conventional chemical fertilizer, CF; 30% reduced nitrogen fertilizer, N; 30% reduced nitrogen fertilizer with pure γ-PGA, PGA; 30% reduced nitrogen fertilizer with Bacillus subtilis A-5, A5; 30% reduced nitrogen fertilizer with γ-PGA fermentation broth, FJY. The PGA, A5, and FJY treatments all significantly promoted crop growth, and the FJY treatment showed the strongest positive effect on Chinese cabbage yield (26,385.09 kg/hm2) (P < 0.05). Microbial agents affected the α diversity of the rhizosphere bacterial community; the addition of B. subtilis A-5 (A5 and FJY treatments) significantly affected rhizospheric bacterial community structure. Urease activity and soil pH were the key factors affecting bacterial community structure and composition. The FJY treatment seemed to influence the relative abundances of important bacterial taxa related to metabolite degradation, predation, and nitrogen cycling. This discovery provides insight into the mechanism underlying the effects of microbial agent inputs on rhizosphere microbial community assembly and highlights a promising direction for the manipulation of the rhizosphere microbiome to yield beneficial outcomes.
Collapse
Affiliation(s)
- Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu He
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture and Rural Affairs, Shanghai, China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture and Rural Affairs, Shanghai, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Yue Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- *Correspondence: Weiguang Lv
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture and Rural Affairs, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai, China
- Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shuangxi Li
| |
Collapse
|
17
|
Kong Z, Liu H. Modification of Rhizosphere Microbial Communities: A Possible Mechanism of Plant Growth Promoting Rhizobacteria Enhancing Plant Growth and Fitness. FRONTIERS IN PLANT SCIENCE 2022; 13:920813. [PMID: 35720594 PMCID: PMC9198353 DOI: 10.3389/fpls.2022.920813] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Plant beneficial bacteria, defined as plant growth-promoting rhizobacteria (PGPR), play a crucial role in plants' growth, stress tolerance and disease prevention. In association with the rhizosphere of plants, PGPR facilitate plant growth and development either directly or indirectly through multiple mechanisms, including increasing available mineral nutrients, moderating phytohormone levels and acting as biocontrol agents of phytopathogens. It is generally accepted that the effectiveness of PGPR inoculants is associated with their ability to colonize, survive and persist, as well as the complex network of interactions in the rhizosphere. Despite the promising plant growth promotion results commonly reported and mostly attributed to phytohormones or other organic compounds produced by PGPR inoculants, little information is available on the potential mechanisms underlying such positive effects via modifying rhizosphere microbial community and soil functionality. In this review, we overviewed the effects of PGPR inoculants on rhizosphere microbial ecology and soil function, hypothesizing that PGPR may indirectly promote plant growth and health via modifying the composition and functioning of rhizosphere microbial community, and highlighting the further directions for investigating the role of PGPR in rhizosphere from an ecological perspective.
Collapse
Affiliation(s)
- Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Hongguang Liu
- Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Jiangxi Academy of Water Science and Engineering, Nanchang, China
- *Correspondence: Hongguang Liu,
| |
Collapse
|
18
|
Omomowo OI, Babalola OO. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. FRONTIERS IN PLANT SCIENCE 2021; 12:751731. [PMID: 34745184 PMCID: PMC8570086 DOI: 10.3389/fpls.2021.751731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/30/2021] [Indexed: 05/23/2023]
Abstract
Providing safe and secure food for an increasing number of people globally is challenging. Coping with such a human population by merely applying the conventional agricultural production system has not proved to be agro-ecologically friendly; nor is it sustainable. Cowpea (Vigna unguiculata (L) Walp) is a multi-purpose legume. It consists of high-quality protein for human consumption, and it is rich in protein for livestock fodder. It enriches the soil in that it recycles nutrients through the fixation of nitrogen in association with nodulating bacteria. However, the productivity of this multi-functional, indigenous legume that is of great value to African smallholder farmers and the rural populace, and also to urban consumers and entrepreneurs, is limited. Because cowpea is of strategic importance in Africa, there is a need to improve on its productivity. Such endeavors in Africa are wrought with challenges that include drought, salinity, the excessive demand among farmers for synthetic chemicals, the repercussions of climate change, declining soil nutrients, microbial infestations, pest issues, and so forth. Nevertheless, giant strides have already been made and there have already been improvements in adopting sustainable and smart biotechnological approaches that are favorably influencing the production costs of cowpea and its availability. As such, the prospects for a leap in cowpea productivity in Africa and in the enhancement of its genetic gain are good. Potential and viable means for overcoming some of the above-mentioned production constraints would be to focus on the key cowpea producer nations in Africa and to encourage them to embrace biotechnological techniques in an integrated approach to enhance for sustainable productivity. This review highlights the spectrum of constraints that limit the cowpea yield, but looks ahead of the constraints and seeks a way forward to improve cowpea productivity in Africa. More importantly, this review investigates applications and insights concerning mechanisms of action for implementing eco-friendly biotechnological techniques, such as the deployment of bio inoculants, applying climate-smart agricultural (CSA) practices, agricultural conservation techniques, and multi-omics smart technology in the spheres of genomics, transcriptomics, proteomics, and metabolomics, for improving cowpea yields and productivity to achieve sustainable agro-ecosystems, and ensuring their stability.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
19
|
Effects of Partial Organic Substitution for Chemical Fertilizer on Antibiotic Residues in Peri-Urban Agricultural Soil in China. Antibiotics (Basel) 2021; 10:antibiotics10101173. [PMID: 34680755 PMCID: PMC8532921 DOI: 10.3390/antibiotics10101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
Recycling of organic wastes in agricultural ecosystems to partially substitute chemical fertilizer is recommended to improve soil productivity and alleviate environmental degradation. However, livestock manure- and sewage sludge-derived amendments are widely known to potentially carry antibiotic residues. The aim of this study is to investigate how substituting organic fertilizer for chemical fertilizer affects soil quality and antibiotic residues in agricultural soil, as well as their tradeoffs. A field experiment was conducted with the different treatments of pig manure and sewage sludge as typical organic fertilizers at equal total nitrogen application rates. The analysis of variance showed that the increments on the levels of residual antibiotics in the agricultural soils due to organic substitution for chemical fertilizer by pig manure and sewage sludge were observed. The antibiotic residues ranged from 13.73 to 76.83 ng/g for all treatments. Partial organic substitution significantly increased the sequestration of antibiotics in agricultural soil by 138.1~332.5%. Organic substitution will also significantly improve soil quality, especially for nutrient availability. Based on principal component analysis, organic substitution will strongly affected soil quality and antibiotic contamination. Pearson's correlation showed that soil physicochemical properties had significant correlations with concentrations of antibiotics in soil, indicating organic fertilizers can promote the persistence of antibiotics in soil by modifying soil quality. To balance the benefits and risks, appropriate management practices of organic fertilizers should be adopted.
Collapse
|