1
|
Rabbi FM, Hasan MK, Rahman MA, Islam MS, Shohugh PK, Ahmed MI, Khan MW, Rafi T, Rahman MM, Rahaman MH, Zhai J. Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:21-39. [PMID: 39815429 DOI: 10.2166/wst.2024.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs). In this study, we aimed to report the removal efficiency of HMs of vertical-flow constructed wetland (VFCW) systems using different WDMs, such as clinker brick (Jhama), eggshells, and date palm fiber (DPF). Synthetic wastewater with high concentrations (3.3-61.8) mg/L of HMs (As, Cr, Cd, Pb, Fe, Zn, Cu, and Ni) was applied to the systems followed by 3 days of hydraulic retention time. The results demonstrate that removal efficiencies of HMs ranged between 94.8 and 98.7% for DPF, 95.4-98.5% for eggshells, and 79.9-92.9% for the Jhama-filled CWs, while the gravel-based systems were capable of 73-87.6% removal. Two macrophytes, Canna indica and Hymenocallis littoralis were planted in the CWs and exhibited significant accumulation of HMs in their roots. The study reports that WDMs are effective for concentrated HM removal in CWs, and macrophytes demonstrate significant phytoremediation capabilities. The findings of this study will facilitate the economically feasible and efficient design of CWs for effectively treating concentrated HMs in wastewater.
Collapse
Affiliation(s)
- Fahim Muntasir Rabbi
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Kamrul Hasan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Alinur Rahman
- Department of Chemistry and Physics, College of Science and Technology, Southeastern Louisiana University, Hammond, LA 70401, USA
| | - Md Salamoon Islam
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Pramit Kumar Shohugh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Istiak Ahmed
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Washim Khan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanvir Rafi
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammad Mahfuzur Rahman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Hasibur Rahaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; Institute for Smart City of Chongqing University in Liyang, Jiangsu 213300, China E-mail:
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Jiangsu 213300, China
| |
Collapse
|
2
|
Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. RSC Adv 2024; 14:32073-32100. [PMID: 39399250 PMCID: PMC11467719 DOI: 10.1039/d4ra04658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
The physical and chemical treatment processes of leachate are not only costly but can also possibly produce harmful by products. Constructed wetlands (CW) has been considered a promising alternative technology for leachate treatment due to less demand for energy, economic, ecological benefits, and simplicity of operations. Various trends and approaches for the application of CW for leachate treatment have been discussed in this review along with offering an informatics peek of the recent innovative developments in CW technology and its perspectives. In addition, coupling CW with microbial fuel cells (MFCs) has proven to produce renewable energy (electricity) while treating contaminants in leachate wastewaters (CW-MFC). The combination of CW-MFC is a promising bio electrochemical that plays symbiotic among plant microorganisms in the rhizosphere of an aquatic plant that convert sun electricity is transformed into bioelectricity with the aid of using the formation of radical secretions, as endogenous substrates, and microbial activity. Several researchers study and try to find out the application of CW-MFC for leachate treatment, along with this system and performance. Several key elements for the advancement of CW-MFC technology such as bioelectricity, reactor configurations, plant species, and electrode materials, has been comprehensively discussed and future research directions were suggested for further improving the performance. Overall, CW-MFC may offer an eco-friendly approach to protecting the aquatic environment and come with built-in advantages for visual appeal and animal habitats using natural materials such as gravel, soil, electroactive bacteria, and plants under controlled condition.
Collapse
Affiliation(s)
- Isni Arliyani
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
- Bioinformatics Research Center, INBIO Indonesia Malang 65162 East Java Indonesia
| | - Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Bioengineering and Environmental Sustainability Research Centre, University of Liberia Monrovia 1000 Montserrado Liberia
| | - Bieby Voijant Tangahu
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Sarwoko Mangkoedihardjo
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| |
Collapse
|
3
|
Saeed T, Al-Muyeed A, Zaman T, Hasan M, Ahmed T. Bioenergy-producing two-stage septic tank and floating wetland for onsite wastewater treatment: Circuit connection and external aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121011. [PMID: 38678907 PMCID: PMC11129191 DOI: 10.1016/j.jenvman.2024.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
This study designed a two-stage, electrode-integrated septic tank-floating wetland system and assessed their pollutant removal performances under variable operational conditions. The two-stage system achieved mean organic, nitrogen, phosphorus, and coliform removal percentages of 99, 78, 99, and 97%, respectively, throughout the experimental run. The mean metals (chromium, cadmium, nickel, copper, zinc, lead, iron, and manganese) removal percentages ranged between 81 and 98%. Accumulated sludge, filler media, and the hanging root mass contributed to pollutant removals by supporting physicochemical and biological pathways. The mean effluent organic concentration and coliform number across the two-stage system were 20 mg/L and 1682 CFU/100 mL, respectively, during the closed-circuit protocol, which was beneath the open-circuit-based performance profiles, i.e., 32 mg/L and 2860 CFU/100 mL, respectively. Effluent organic, nitrogen, phosphorus, metals, and coliform number ranges across the two-stage system were 9-17 mg/L, 13-24 mg/L, 1-1.5 mg/L, 0.001-0.2 mg/L, and 1410-2270 CFU/100 mL, respectively during intermittent and continuous aeration periods. The air supply rate differences influenced pollutant removal depending on the associated removal mechanisms. The non-aeration phase produced higher effluent pollutant concentrations than the aeration periods-based profiles. The overall mean power density production of the septic tank ranged between 107 and 596 mW/m3; 110 and 355 mW/m3 with the floating wetland. The bioenergy production capacity of the septic tank was positively correlated to external air supply rates. This study demonstrates the potential application of the novel bioenergy-producing septic tank-floating wetland system for wastewater treatment in decentralized areas.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh; Institute of Energy, Environment, Research and Development (IEERD), University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Abdullah Al-Muyeed
- CWIS-FSM Support Cell, Department of Public Health Engineering, Government of the People's Republic of Bangladesh, Dhaka, 1000, Bangladesh.
| | - Takrim Zaman
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Mehedi Hasan
- ITN-BUET Centre for Water Supply and Waste Management, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Tanvir Ahmed
- ITN-BUET Centre for Water Supply and Waste Management, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| |
Collapse
|
4
|
Zhang Q, Yu X, Yang Y, Ruan J, Zou Y, Wu S, Chen F, Zhu R. Enhanced ammonia removal in tidal flow constructed wetland by incorporating steel slag: Performance, microbial community, and heavy metal release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171333. [PMID: 38423325 DOI: 10.1016/j.scitotenv.2024.171333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.
Collapse
Affiliation(s)
- Quan Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xingyu Yu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Jingjun Ruan
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yuhuan Zou
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
5
|
Prabhu P, Rajan MS, Karthick A, Venkatesh R. Performance evaluation and chemical oxygen demand removal of tannery wastewater through the aerobic-anaerobic route. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:352. [PMID: 38466376 DOI: 10.1007/s10661-024-12518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
With characterized for complex and maximum substance (suspended solids, broke up oil, a mixture of inorganic and chromium sulfides), tannery wastewater was subjected to a treatment process on removal of chemical oxygen demand (COD) via upstream anaerobic sludge blanket reactor where we found reduced departure efficiencies and that process limits were affected by the assortments in regular stacking rates, closeness of chromium, and sulfides. Hence, a combination of the aerobic-anaerobic hybrid reactor was set up for sequential treatment to determine possible COD reduction. This study investigated the biological degradation of tannery wastewater in a laboratory-scale sequential up-flow aerobic-anaerobic reactor. The aerobic zone at the top was packed with spherical ball-shaped polyhedral polypropylene, and the anaerobic zone at the bottom was packed medium with granular media. The aeration flow rate varied by 2 L/min, 4 L/min, and 6 L/min in the aerobic zone, and the reactor maintained an organic loading rate (OLR) of 5 kg COD/m3/d. Parameters like COD and gas yield assess the performance of the reactor. The maximum COD of 86% is removed in the anaerobic zone with an aeration rate of 6 L/min, and the 1800-mL methane gas yield is measured by the 29th day.
Collapse
Affiliation(s)
- P Prabhu
- Department of Civil Engineering, Kongunadu College of Engineering and Technology, Trichy, 621215, Tamil Nadu, India.
| | - M Senthil Rajan
- Department of Civil Engineering, Dr N. G. P. Institute of Technology, Coimbatore, 641048, Tamil Nadu, India
| | - A Karthick
- Department of Civil Engineering, Kongunadu College of Engineering and Technology, Trichy, 621215, Tamil Nadu, India
| | - R Venkatesh
- Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
6
|
Saeed T, Zaman T, Miah MJ, Yadav AK, Majed N. Organic media-based two-stage traditional and electrode-integrated tidal flow wetlands to treat landfill leachate: Influence of aeration strategy and plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117253. [PMID: 36621313 DOI: 10.1016/j.jenvman.2023.117253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Landfill leachate treatment employing normal and electrode-integrated constructed wetlands is difficult due to the presence of significant amounts of organic compounds, which frequently impede the progression of microbial-based aerobic pollutant removal pathways. As a result, this study examines the effect of supplementary air availability via intermittent and continuous aeration strategies in improving organic, nutrient, and coliform removals of the unplanted, planted (normal and electrode-integrated) two-stage tidal flow constructed wetlands designed to treat landfill leachate. The constructed wetlands were filled with coal and biochar media and planted with Canna indica. Mean chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and coliform removal percentages of the externally aerated two-stage unplanted, only planted, planted-microbial fuel cell integrated constructed wetland systems ranged between 96 and 99%, 82 and 93%, 91 and 98%, 86 and 96%, respectively, throughout the experimental campaign. External aeration inhibited the development of a dominant anaerobic environment within the media of the wetland systems and improved overall pollutant removal. The electrode-integrated planted tidal flow wetlands produced better effluent quality than the unplanted or only planted tidal flow systems without electrode assistance. The first stages of the three wetland systems achieved an additional 5-7% COD, 7-12% TN, and 15-22% coliform removal during the continuous aeration period compared to the corresponding performance of the intermittent aeration phase. The pollutant removal performance of the second-stage wetlands decreased during the continuous aeration phase. The media composition supported electrochemically active and inactive microbial-based pollutant removal routes and the chemical adsorption of pollutants. Nitrogen and phosphorus accumulation percentage in plant tissues was low, i.e., 0.4-2.2% and 0.04-0.8%, respectively. During the continuous aeration period, the electrode-integrated tidal flow constructed wetlands achieved higher power density production, i.e., between 859 and 1432 mW (mW)/meter3(m3). This study demonstrates that external aeration might improve pollutant removal performance of the normal, electrodes integrated tidal flow-based constructed wetlands when employed for high organic-strength wastewater treatment such as landfill leachate.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Takrim Zaman
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| | - Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| |
Collapse
|
7
|
Saeed T, Yadav AK, Miah MJ. Performance assessment of normal and electrode-assisted floating wetlands: influence of input pollutant loads, surface area, and positioning of anode electrodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18601-18616. [PMID: 36215020 DOI: 10.1007/s11356-022-23461-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
This study reports the design and development of microbial fuel cell (MFC) assisted floating wetlands and compares treatment removal performance with a normal (without electrodes) floating wetland. Both types of floating wetlands were planted with Phragmites plant and evaluated for real municipal wastewater treatment. The effective volume of each floating wetland was 0.5 m3. The floating wetlands were operated under variable hydraulic load rates, i.e., 20 and 60 mm/day. Mean 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), ammoniacal nitrogen (NH4-N), total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS), and coliform removal percentages ranged between 71 and 96%, 72 and 94%, 62 and 86%, 58 and 75%, 82 and 97%, 64 and 92%, and 72 and 93%, respectively within the normal and electrode-assisted MFC integrated floating wetlands. The electrode-integrated floating wetlands showed better pollutant removal performance than the normal system under unstable input pollutant loading conditions. Nitrogen and organic matter removals were achieved through both electrochemically active and inactive microbial removal routes. Physical separation processes, such as filtration and sedimentation, contributed to phosphorus, solids, and coliform removal. Plant uptake contributed to micro-scale nitrogen (≤ 1%) and phosphorus (≤ 0.1%) removal. Increment of hydraulic/pollutant load improved organic removal but decreased nutrient removal performance of the normal, electrode-integrated floating wetlands. The electrode-integrated floating wetlands produced power densities ranging between 0.7 and 1.4 mW/m3, and 0.2 and 2.3 mW/m3 during lower, upper input loading ranges, respectively. Bioenergy production of the electrode-integrated floating wetlands varied within the two operational periods due to a wider range of electrochemically inactive microbial populations in real wastewater that interfered with electrochemical organic matter oxidation. The positioning difference of the anode electrodes was a significant factor that improved pollutant removal within the electrode-integrated floating wetlands compared to the other variable, i.e., anode electrodes surface area.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, 28933, MostolesMadrid, Spain
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| |
Collapse
|
8
|
Singh KK, Vaishya RC. Municipal Wastewater Treatment uses Vertical Flow Followed by Horizontal Flow in a Two-Stage Hybrid-Constructed Wetland Planted with Calibanus hookeri and Canna indica (Cannaceae). WATER, AIR, AND SOIL POLLUTION 2022; 233:510. [PMID: 36504546 PMCID: PMC9717559 DOI: 10.1007/s11270-022-05984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED The utilization of hybrid-constructed wetland systems has recently expanded due to more rigorous municipal wastewater discharge and also complex wastewaters treated in hybrid-constructed wetlands (HCWs). A lab-scale two-stage experimental setup of vertical flow followed by horizontal flow hybrid-constructed wetland (VFHCW-HFHCW) configuration was built. First-stage vertical flow hybrid-constructed wetland reactor with the surface area was 1963.49 cm2 and second-stage horizontal flow hybrid-constructed wetland reactor with the surface area was 2025 cm2. The HCW unit was planted with two type plants: Calibanus hookeri and Canna indica (Cannaceae). Influent Municipal wastewater flow rate 112.32 l/day, hydraulic loading rate (HLR) 0.55 m/day, and hydraulic retention time of 1 day. The efficiency was evaluated in municipal wastewater quality improvement and physico-chemical analysis in our laboratory. The removal rate after the second-stage horizontal flow of BOD3 at 27 °C, COD, TSS, TP, NH3-N, and NO3-N reached 92.75%, 89.90%, 85.45%, 88.83%, 99.09%, and 96.05%, respectively. The results shown after both stage hybrid-constructed wetland VFHCW-HFHCW, treated effluent of Municipal wastewater produced high-quality effluent which may be reused in gardening, agriculture, and flushing in toilet purpose according to Bureau of Indian Standards (BIS) code for practices. However, in the future, hybrid-constructed wetlands could be standards design criteria developing and enhancing the performance standards and economic meets both to make more popular technology of the hybrid-constructed wetland (HCW). SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11270-022-05984-0.
Collapse
Affiliation(s)
- Krishna Kumar Singh
- Department of Civil Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004 India
| | - Rakesh Chandra Vaishya
- Department of Civil Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004 India
| |
Collapse
|
9
|
Lee YJ, Lin BL, Xue M, Tsunemi K. Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review. BIORESOURCE TECHNOLOGY 2022; 363:127927. [PMID: 36096326 DOI: 10.1016/j.biortech.2022.127927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Bin-Le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Mianqiang Xue
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kiyotaka Tsunemi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
10
|
Saeed T, Majed N, Miah MJ, Yadav AK. A comparative landfill leachate treatment performance in normal and electrodes integrated hybrid constructed wetlands under unstable pollutant loadings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155942. [PMID: 35580676 DOI: 10.1016/j.scitotenv.2022.155942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This study provides a comparative pollutant removal performance assessment between organic or construction materials-based four hybrid wetland systems that received landfill leachate. The hybrid systems included vertical flow (VF) followed by horizontal flow (HF)-based unplanted and planted systems, and planted electrodes incorporated microbial fuel cell (MFC) integrated hybrid wetlands systems. All the systems were run in free-draining mode. Overall mean chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) removal percentage of the hybrid systems ranged between 81 and 99%, 82 and 96%, 74 and 99%, respectively, under unstable input pollutant loading conditions. Additionally, up to 27% organic and up to 14% nitrogen removal improvement was observed in electrodes integrated free-draining VF wetlands. Free-draining and additional oxygen availability from atmospheric diffusion, rootzone improved the removal performance of MFC-based VF wetlands. Input load increment decreased organic, nutrient removals in second stage HF units due to saturated media. The chemical composition of the employed media supported biotic, abiotic organic, nutrient removal pathways. Nutrient accumulation percentage in plants tissue was very low, i.e., ≤3%. Bioenergy production across the MFC-based VF-HF wetlands decreased with input pollutant load increment. The single anode electrode-based VF wetland achieved maximum power density production, i.e., 294 mW/m2.. The electrodes integrated hybrid systems achieved comparatively stable removal performance despite input pollutant/hydraulic load variation.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh.
| | - Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| |
Collapse
|
11
|
Saeed T, Miah MJ, Yadav AK. Development of electrodes integrated hybrid constructed wetlands using organic, construction, and rejected materials as filter media: Landfill leachate treatment. CHEMOSPHERE 2022; 303:135273. [PMID: 35688201 DOI: 10.1016/j.chemosphere.2022.135273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
This study developed microbial fuel cell (MFC)-based hybrid constructed wetland systems using different filter media, i.e., organic (biochar), construction (sand), and rejected (iron particle, concrete particle, and stone dust) materials, and evaluated the performance of the developed systems for treating landfill leachate. The mean ammonium nitrogen (NH4-N), total nitrogen (TN), total phosphorus (TP), biochemical oxygen demand (BOD), chemical oxygen demand (COD) removal percentages within the hybrid systems ranged between 91 and 98%, 90 and 98%, 97 and 99%, 88 and 93%, 93 and 97%, respectively, despite higher pollutants concentration in leachate wastewater. The aerobic environment in the cathode compartment (due to intermittent load) and free-draining of wastewater (from cathode to anode compartment) supported electrochemically inactive, active pollutants removal in the electrodes integrated first stage vertical flow (VF) wetlands. The second stage electrodes integrated horizontal flow (HF) wetlands supported electrochemical-based organic removal and nitrification because of efficient organic removal in the previous VF wetland stages. Nitrogen, phosphorus accumulation percentages in plant tissues ranged between 0.3 and 7%, 0.4 and 14%, respectively. Nutrient removal was achieved through chemical and microbial routes. The biochar-packed VF wetland produced a maximum power density of 20.6 mW/m2. The coexistence of unsaturated, saturated media in the partially saturated HF wetland maintained the required environmental gradient between the electrodes and improved operational performance.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Asheesh Kumar Yadav
- Department of Environmental and Sustainability, CSIR-Institute Minerals and Materials Technology, Bhubaneswar, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Spain
| |
Collapse
|
12
|
Nitrogen and Phosphorus Removal Efficiency and Denitrification Kinetics of Different Substrates in Constructed Wetland. WATER 2022. [DOI: 10.3390/w14111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constructed wetlands (CWs) are generally used for wastewater treatment and removing nitrogen and phosphorus. However, the treatment efficiency of CWs is limited due to the poor performance of various substrates. To find appropriate substrates of CWs for micro-polluted water treatment, zeolite, quartz sand, bio-ceramsite, porous filter, and palygorskite self-assembled composite material (PSM) were used as filtering media to treat slightly polluted water with the aid of autotrophic denitrifying bacteria. PSM exhibited the most remarkable nitrogen and phosphorus removal performance among these substrates. The average removal efficiencies of ammonia nitrogen, total nitrogen, and total phosphorus of PSM were 66.4%, 58.1%, and 85%, respectively. First-order continuous stirred-tank reactor (first-order-CSTR) and Monod continuous stirred-tank reactor (Monod-CSTR) models were established to investigate the kinetic behavior of denitrification nitrogen removal processes using different substrates. Monod-CSTR model was proven to be an accurate model that could simulate nitrate nitrogen removal performance in vertical flow constructed wetland (VFCWs). Moreover, PSM demonstrated significant pollutant removal capacity with the kinetics coefficient of 2.0021 g/m2 d. Hence, PSM can be considered as a promising new type of substrate for micro-polluted wastewater treatment, and Monod-CSTR model can be employed to simulate denitrification processes.
Collapse
|
13
|
Van Aken P, Lambert N, Appels L. Low temperature Moving Bed Bioreactor denitrification as mitigation measure to reduce agricultural nitrate losses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152110. [PMID: 34871692 DOI: 10.1016/j.scitotenv.2021.152110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The negative impact of agriculture on the quality of local water streams is widely recognized. Fertilizer residues not taken up by the crops leach into the drainage water and enter the surface water, resulting in eutrophication. Despite various initiatives to prevent this leaching by optimizing fertilizer schemes, the desired effect was not achieved, and the focus has shifted to denitrifying end-of-pipe techniques. Because the available area for installing such treatment systems is often limited, the development of intensified systems is a trend that has emerged recently. In this scope, the main goal of this study was therefore to investigate the suitability of a denitrifying Moving Bed Bioreactor (MBBR) as a low footprint technology, which can compete with conventional technologies. Two parallel lab-scale pilot MBBRs, one at low temperature and one at ambient temperature, were operated for 850 days to investigate the effectiveness and robustness under changing process parameters (hydraulic retention time (HRT), temperature, shutdown). Eventually, the system was scaled up to a full-scale installation and monitored during a full drainage season in the field. The pilot-scale MBBRs achieved removal efficiencies above 90% under optimal conditions (high C/N ratio and minimal HRT of 8 h), even while operating at low temperatures. The robustness of the system was also demonstrated by the immediate start-up after a shutdown period of 220 days. Overall, the full-scale MBBR treated 2910.1 m3 drainage water and removed approximately 59 kg NO3-N. Unfortunately, the average removal efficiency, i.e., 70%, was lower than the lab-scale system, but by intensifying the mixing in the MBBR, improved results were obtained. Nitrite accumulation was furthermore also prevented.
Collapse
Affiliation(s)
- Pieter Van Aken
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Nico Lambert
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|