1
|
Li P, Liu J, Lu W, Sun S, Wang J. Age, growth, reproduction and mortality of Xenocypris argentea (Günther,1868) in the lower reaches of the Tangwang River, China. PeerJ 2024; 12:e16673. [PMID: 38213772 PMCID: PMC10782951 DOI: 10.7717/peerj.16673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
To investigate various population biological parameters of Xenocypris argentea in the lower reaches of the Tangwang River (China), a comprehensive study was conducted for the first time. A total of 1,003 samples were collected from April to November 2022. The collected samples revealed that female X. argentea had total lengths ranging from 12.4 cm to 25.7 cm (weighing 15.86 g to 159.55 g), and male X. argentea had total lengths ranging from 10.8 cm to 23.9 cm (weighing 9.27 g to 121.06 g). The age of the samples was determined using otolith analysis, indicating that the ages ranged from 1 to 5 years old in both females and males. The length-weight relationships were further analyzed, uncovering the allometric growth index (b) was 3.1296 for females, indicating a positive allometric growth pattern. Differently, males exhibited a b value of 3.0274, suggesting an isometric growth pattern. Furthermore, the von Bertalanffy growth formula provided insights into the growth characteristics of X. argentea, revealing an asymptotic total length (L∞) of 36.096 cm and a growth coefficient (K) of 0.121. The analysis of the gonadal somatic index (GSI) and ovarian development period indicated that the spawning period occurred from April to July, with peak spawning in June. The study also explored fecundity-related traits, finding that individual absolute fecundity (FA) ranged from 11,364 eggs to 56,377 eggs, while eviscerated body weight relative fecundity (FW) ranged from 209 eggs/g to 823 eggs/g. The exploitation rate (E) for X. argentea was calculated as 0.574, suggesting that the population of X. argentea has been overexploited. By revealing previously unknown data on the key life history traits of X. argentea, this study has provided valuable insights that are crucial for the development of conservation strategies and policies.
Collapse
Affiliation(s)
- Peilun Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jiacheng Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wanqiao Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Shuyang Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jilong Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
2
|
Liu F, Zhao Q, Ding J, Li L, Wang K, Zhou H, Jiang M, Wei J. Sources, characteristics, and in situ degradation of dissolved organic matters: A case study of a drinking water reservoir located in a cold-temperate forest. ENVIRONMENTAL RESEARCH 2023; 217:114857. [PMID: 36427638 DOI: 10.1016/j.envres.2022.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in the biogeochemical cycles of elements and the regulation of forest ecosystem functions. However, studies on the regional and seasonal characteristics of DOM in cold-temperate montane forests are still not comprehensive. In this study, samples of water, soil, and sediment from different sites in the forest drainage basin were collected, and their DOM was characterized by an excitation-emission matrix and parallel factor analysis (EEM-PARAFAC). The results showed that terrestrial-sourced humic-like substances were the dominant DOM in the studied reservoir and inflowing rivers. The quality and quantity of DOM exhibited spatiotemporal variations with the influence of terrain and monsoonal precipitation. The average concentration of dissolved organic carbon (DOC) in the wet season was 11.62 mg/L, which was higher than that in the dry season (8.18 mg/L). Higher humification index (HIX) values were observed in the wet season and upstream water than in the dry season and reservoir water. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was used to further develop a molecular-level understanding of the in situ degradation process of DOM. The results indicated that photodegradation rather than biodegradation may play a dominant role in the in situ degradation of terrestrial-sourced humic-like substances under natural conditions. The biodegradability of DOM was enhanced after the in situ degradation process. Additionally, a significant decrease in the precursors of disinfectant byproducts in DOM was observed after in situ degradation. To our knowledge, this is the first study of the sources, characteristics, and in situ degradation of DOM in a reservoir in a cold-temperate forest. These findings help better understand the quality, quantity, and biogeochemical process of DOM in the studied reservoir and may contribute to the selection of drinking water treatment technologies for water supply.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jian Wei
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|