1
|
Zhou P, Hong Y, Fan R, Wang H, Wang X, Mei H. Integration of Myrica rubra-based N-doped carbon dots with Fe 3S 4 as excellent peroxidase mimics for colorimetric assay and smartphone-based intelligent sensing of p-aminophenol in waters. Mikrochim Acta 2024; 191:416. [PMID: 38913162 DOI: 10.1007/s00604-024-06450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024]
Abstract
To realize the reutilization of waste Myrica rubra in the analytical field, we synthesized Myrica rubra-based N-doped carbon dots (MN-CDs) and further anchored them onto the surface of Fe3S4 to fabricate Fe3S4@MN-CD nanocomposites. The as-fabricated nanocomposites possessed higher peroxidase-mimetic activity than its two precursors, resulting from the synergistic effect between them, and could catalyze colorless 3,3',5,5'-tetramethylbenzidine (TMB) into deep blue oxTMB with a strong 652-nm absorption. Under optimized conditions (initial solution pH, 3.5; incubation temperature, 35 ℃; Fe3S4@MN-CD concentration, 50 µg mL-1, and 652-nm absorption), Fe3S4@MN-CDs were employed for colorimetric assay of p-aminophenol (p-AP) with wide linear range (LR, 2.9-100 µM), low detection limit (LOD, 0.87 µM), and satisfactory recoveries (86.3-105%) in environmental waters. Encouragingly, this colorimetric assay provided the relative accuracy of 97.0-99.4% as compared with conventional HPLC-UV detection. A portable smartphone-based colorimetric application was developed by combining the Fe3S4@MN-CD-based visually chromogenic reaction with a "Thing Identify" APP software. Besides, we engineered an image-capturing device feasible for field use, in which the internal-compact sealing prevented external light source from entering photography chamber, thereby reducing light interference, and also the bottom light source enhanced the intensity of blue imaging. This colorimetric platform exhibited satisfactory LR (1-500 µM), low LOD (0.3 µM), and fortification recoveries (86.6-99.6%). In the chromogenic reaction catalyzed by Fe3S4@MN-CDs, ·O2- played a key role in concomitant with the participation of •OH and h+. Both the colorimetric assay and smartphone-based intelligent sensing show great promising in on-site monitoring of p-AP under field conditions.
Collapse
Affiliation(s)
- Peipei Zhou
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yangluchen Hong
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ru Fan
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - He Mei
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Ding H, Tong G, Sun J, Ouyang J, Zhu F, Zhou Z, Zhou N, Zhong M. Regeneration of methylene blue-saturated biochar by synergistic effect of H 2O 2 desorption and peroxymonosulfate degradation. CHEMOSPHERE 2023; 316:137766. [PMID: 36623600 DOI: 10.1016/j.chemosphere.2023.137766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Biochar, as an adsorbent, is widely used for the removal of organic pollutants in water body. Hence, after saturated adsorption, regeneration treatment is required to recover the adsorption performance of biochar. In this study, a biochar (P-GBC) prepared by phosphoric acid activation showed high adsorption capacity for methylene blue (MB) with the maximum adsorption capacity (Qm) of 599.66 mg/g. Then, regeneration treatments using 4 mM peroxymonosulfate (PMS), 0.2 M hydrogen peroxide (H2O2) and their mixture were used to regenerate MB-saturated biochar with regeneration efficiencies of 58.24%, 66.01% and 94.88%, respectively. Combining with degradation and quenching experiments, it is found that synergistic effect of H2O2 desorption and PMS degradation is responsible for the enhancement of regeneration efficiency of P-GBC in H2O2-PMS system and enables a high mineralization rate of 82.68% for the MB adsorbed on P-GBC. Furthermore, EPR tests indicate that singlet oxygen (1O2) is assigned as the primary activate species for the degradation of MB and XPS analyses confirm that graphite nitrogen and carbonyl on P-GBC are the main active sites for the activation of PMS. Compared with conventional regenerants, H2O2-PMS system has the advantages of low dosage, high mineralization efficiency, and easy accessibility, and is also effective, sustainable and environmentally friendly for the regeneration of organic pollutants-saturated biochar.
Collapse
Affiliation(s)
- Hao Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Gongsong Tong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jingchun Sun
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiewei Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Fangge Zhu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Nan Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Mei'e Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Li J, Yao C, Song B, Zhang Z, Brock AL, Trapp S, Zhang J. Enrichment of sulfur-oxidizing bacteria using S-doped NiFe 2O 4 nanosheets as the anode in microbial fuel cell enhances power production and sulfur recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156973. [PMID: 35772559 DOI: 10.1016/j.scitotenv.2022.156973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFCs) have great promise for power generation by oxidizing organic wastewater, yet the challenge to realize high efficiency in simultaneous energy production and resource recovery remains. In this study, we designed a novel MFC anode by synthesizing S-doped NiFe2O4 nanosheet arrays on carbon cloth (S10-NiFe2O4@CC) to build a three-dimensional (3D) hierarchically porous structure, with the aim to regulate the microbial community of sulfur-cycling microbes in order to enhance power production and elemental sulfur (S0) recovery. The S10-NiFe2O4@CC anode obtained a faster start-up time of 2 d and the highest power density of 4.5 W/m2 in acetate-fed and mixed bacteria-based MFCs. More importantly, sulfide removal efficiency (98.3 %) (initial concentration of 50 mg/L S2-) could be achieved within 3 d and sulfur (S8) could be produced. Microbial community analysis revealed that the S10-NiFe2O4@CC anode markedly enriched sulfur-oxidizing bacteria (SOB) and promoted enrichment of SOB and sulfate-reducing bacteria (SRB) in the bulk solution as well, leading to the enhancement of power generation and S0 recovery. This study shows how carefully designing and optimizing the composition and structure of the anode can lead to the enrichment of a multifunctional microbiota with excellent potential for sulfide removal and resource recovery.
Collapse
Affiliation(s)
- Jiaxin Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chongchao Yao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bo Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhihao Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Libonati Brock
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Jing Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Starch-Stabilized Iron Oxide Nanoparticles for the Photocatalytic Degradation of Methylene Blue. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The photocatalytic Fenton process, which produces a strong oxidant in the form of hydroxyl radicals, is a useful method to degrade organic contaminants in water. The Fenton reaction uses hydrogen peroxide and Fe2+ ions under relatively acidic conditions (typically pH 2–3) to maintain solubility of the iron catalyst but is troublesome due to the large volumes of decontaminated yet highly acidic water generated. Starch-stabilized iron (Fe2+/Fe3+) oxide nanoparticles were synthesized to serve as a colloidal catalyst system as the hydrophilic starch effectively prevents precipitation of the nanoparticles under conditions closer to neutrality. To evaluate the usefulness of this catalyst system for the photo-Fenton degradation of methylene blue as a model dye, the preparation protocol used and the iron loading in the starch were varied. The photocatalytic Fenton reaction was investigated at pH values up to 4. Not only were the starch-stabilized catalysts able to decolorize the dye but also to mineralize it in part, that is, to degrade it to carbon dioxide and water. The catalysts could be reused in several degradation cycles. This demonstrates that starch is an efficient stabilizer for iron oxide nanoparticles in aqueous media, enabling their use as environmentally friendly and cost-effective photo-Fenton catalysts. These starch-stabilized iron nanoparticles may also be useful to degrade other dyes and pollutants in water, such as pesticides.
Collapse
|
5
|
Rapid and selective adsorption of organic dyes with ultrahigh adsorption capacity using Na and Fe co-doped g-C3N4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Wang R, Yu R, Wang J, Xiang J, Chen C, Liu G, Liao X. Hierarchical collagen fibers complexed with tannic acid and Fe 3+ as a heterogeneous catalyst for enhancing sulfate radical-based advanced oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58675-58684. [PMID: 35366724 DOI: 10.1007/s11356-022-19907-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Efficient sulfate radical-based advanced oxidation processes (SR-AOPs) are important for treating organic contaminants of industrial wastewater. To achieve this goal, tannic acid (TA)-modified skin collagen fibers (CFs) were prepared for the enhanced immobilization of Fe3+ based on multiple complexation interactions, resulting in a heterogeneous catalyst with more catalytic sites (defined as TA-Fe-CFs) for activating peroxymonosulfate (PMS). During the removal of an organic dye (rhodamine B, RhB) from water, the hierarchical TA-Fe-CFs exhibited excellent adsorption capacity at the early stage before the introduction of PMS, which can be ascribed to the π-π interaction between TA and aromatic RhB. Such improved mass transfer of target contaminants into the catalytic support was proved to be beneficial for improving the utilization efficiency of sulfate radicals in subsequent SR-AOPs. After introducing PMS, the reductive TA moieties of the heterogeneous catalyst were able to accelerate the redox cycle of Fe3+/Fe2+ in Fenton reactions, facilitating the activation of PMS to generate sulfate radicals for the degradation of organic RhB.
Collapse
Affiliation(s)
- Rui Wang
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Ruiquan Yu
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Junchao Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jun Xiang
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gongyan Liu
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China.
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China.
| | - Xuepin Liao
- College of Biomass Science and Engineering, National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Ni-Doped Ordered Nanoporous Carbon Prepared from Chestnut Wood Tannins for the Removal and Photocatalytic Degradation of Methylene Blue. NANOMATERIALS 2022; 12:nano12101625. [PMID: 35630848 PMCID: PMC9145437 DOI: 10.3390/nano12101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
In this work, Ni-doped ordered nanoporous carbon was prepared by a simple and green one-pot solvent evaporation induced self-assembly process, where chestnut wood tannins were used as a precursor, Pluronic® F-127 as a soft template, and Ni2+ as a crosslinking agent and catalytic component. The prepared carbon exhibited a 2D hexagonally ordered nanorod array mesoporous structure with an average pore diameter of ~5 nm. Nickel was found to be present on the surface of nanoporous carbon in the form of nickel oxide, nickel hydroxide, and metallic nickel. Nickel nanoparticles, with an average size of 13.1 nm, were well dispersed on the carbon surface. The synthesized carbon was then tested for the removal of methylene blue under different conditions. It was found that the amount of methylene blue removed increased with increasing pH and concentration of carbon but decreased with increasing concentration of methylene blue. Furthermore, photocatalytic tests carried out under visible light illumination showed that purple light had the greatest effect on the methylene blue adsorption/degradation, with the maximum percent degradation achieved at ~4 h illumination time, and that the percent degradation at lower concentrations of methylene blue was much higher than that at higher concentrations. The adsorption/degradation process exhibited pseudo second-order kinetics and strong initial adsorption, and the prepared carbon showed high magnetic properties and good recyclability.
Collapse
|