1
|
Yi K, Chen W, Zhou X, Xie C, Zhong C, Zhu J. Bisphenol S exposure promotes stemness of triple-negative breast cancer cells via regulating Gli1-mediated Sonic hedgehog pathway. ENVIRONMENTAL RESEARCH 2025; 264:120293. [PMID: 39505130 DOI: 10.1016/j.envres.2024.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bisphenol S (BPS), one of the most common alternatives for bisphenol A (BPA), has been implied to increase the risk of breast cancer. Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with a poor prognosis. However, the association between BPS and TNBC remains unclear. Cancer stem cells (CSCs) have a crucial role in breast cancer initiation, metastasis, and recurrence. Here, we proposed that BPS, equivalent to the human internal exposure and the environmental concentrations, enhanced CSC-like properties by upregulating sphere formation, self-renewal, the percentage of CD44+/CD24- cells, and the expression of CSC markers. Moreover, BPS promoted the migration, invasion, and epithelial-mesenchymal transition (EMT) in TNBC cells. Mechanistically, BPS activated the Sonic Hedgehog (SHH) signaling pathway in TNBC cells. Molecular docking analysis further showed that BPS upregulated SHH signaling pathway via directly binding Gli1 protein. Furthermore, inhibitor of SHH pathway or Gli1 siRNA attenuated the promoting effects of BPS on stemness, invasion, and migration of TNBC cells. In summary, our data firstly provide evidence that environmentally relevant BPS concentration treatment significantly enhanced TNBC malignant phenotype by activating the Sonic Hedgehog/Gli1 signaling pathway, raising high concerns about the potential population biology hazards of BPS.
Collapse
Affiliation(s)
- Kefan Yi
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiyi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Wang X, Li P, Lv X, Deng L, Zhou Y, Zhang X. Elucidating the molecular interactions and immune modulation of bisphenols exposure in the pathogenesis of polycystic ovary syndrome. Reprod Toxicol 2024; 130:108723. [PMID: 39313041 DOI: 10.1016/j.reprotox.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Bisphenols (BPs) are known endocrine disruptors potentially contributing to the pathogenesis of Polycystic Ovary Syndrome (PCOS). This study aims to elucidate the molecular interactions between BPs and PCOS-related genes and their combined effects on PCOS development. We identified common genes associated with BPs and PCOS using the CTD. Differential expression analysis was performed on three GEO datasets, leading to the identification of differentially expressed genes (DEGs). Protein-Protein Interaction (PPI) network construction, enrichment analysis, single-gene Gene Set Enrichment Analysis (GSEA), and immune cell infiltration analysis were carried out. A nomogram was developed for PCOS risk prediction, and molecular docking studies were performed using AutoDock Vina, with interaction visualizations via PyMOL. We identified 139 common genes between BPs exposure and PCOS, enrichment analysis highlighted pathways related to hormone metabolism, ovarian steroidogenesis, and p53 signaling. Four hub DEGs (PBK, CCNE2, LPCAT2, S100P) were identified, and a nomogram incorporating these genes demonstrated excellent predictive accuracy. GSEA revealed roles in cell adhesion, immune response, and metabolism. ssGSEA analysis showed significant differences in immune cell infiltration between PCOS and control groups, with notable correlations between hub DEGs and immune cells. Molecular docking indicated strong binding affinities between the hub DEGs and BPAF, suggesting potential disruptions induced by BPs. BPs exposure is associated with significant molecular and immunological changes in PCOS, impacting genes involved in hormone regulation, immune response, and metabolic pathways. The strong binding affinities between BPs and key PCOS-related genes reveal their potential role in exacerbating PCOS, providing insights for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xiaofei Wang
- Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan Province, China
| | - Penghao Li
- Jinxin Xinan Women and Children's Hospital, Sichuan Province, China
| | - Xingyu Lv
- Jinxin Xinan Women and Children's Hospital, Sichuan Province, China
| | - Ling Deng
- Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan Province, China
| | - Yan Zhou
- The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuehong Zhang
- The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
3
|
Hafeez S, Ishaq A, Intisar A, Mahmood T, Din MI, Ahmed E, Tariq MR, Abid MA. Predictive modeling for the adsorptive and photocatalytic removal of phenolic contaminants from water using artificial neural networks. Heliyon 2024; 10:e37951. [PMID: 39386831 PMCID: PMC11462199 DOI: 10.1016/j.heliyon.2024.e37951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Numerous harmful phenolic contaminants are discharged into water that pose a serious threat to environment where two of the most important purification methodologies for the mitigation of phenolic contaminants are adsorption and photocatalysis. Besides cost, each process has drawbacks in terms of productivity, environmental impact, sludge creation, and the development of harmful by-products. To overcome these limitations, the modeling and optimization of water treatment methods is required. Artificial Intelligence (AI) is employed for the interpretation of treatment-based processes due to powerful learning, simplicity, high estimation accuracy, effectiveness, and improvement of process efficiency where artificial neural networks (ANNs) are most frequently employed for predicting and analyzing the efficiency of processes applied for the mitigation of these phenolic contaminants from water. ANNs are superior to conventional linear regression models because the latter are incapable of dealing with non-linear systems. ANNs can also reduce the operational cost of treating phenol-contaminated water. A correlation coefficient of >0.99 can be achieved using ANN with enhanced phenol mitigation percentage accuracy generally ranging from 80 % to 99.99 %. Using ANN optimization, the maximum phenol mitigation efficiencies achieved were 99.99 % for phenol, 99.93 % for bisphenol A, 99.6 % for nonylphenol, 97.1 % for 2-nitrophenol, 96.6 % for 4-chlorophenol and 90 % for 2,6-dichlorophenol. In numerous ANN models, Levenberg-Marquardt backpropagation algorithm for training was employed using MATLAB software. This study overviews their employment and application for optimization and modeling of removal processes and explicitly discusses the important input and output parameters necessary for better performance of the system. The comparison of ANNs with other AI techniques revealed that ANNs have better predictability for mitigation of most of the phenolic contaminants. Furthermore, several challenges and future prospects have also been discussed.
Collapse
Affiliation(s)
- Shahzar Hafeez
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ayesha Ishaq
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Azeem Intisar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Tariq Mahmood
- Centre for High Energy Physics, University of the Punjab, 54590, Pakistan
| | - Muhammad Imran Din
- Centre for Physical Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ejaz Ahmed
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, 54590, Pakistan
| | | | | |
Collapse
|
4
|
Chandra R, Kumari S. Environment and gynaecologic cancers. Oncol Rev 2024; 18:1430532. [PMID: 39440071 PMCID: PMC11493732 DOI: 10.3389/or.2024.1430532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In the current era, environmental factors are well established as major causative agents for all cancers especially lung and breast cancer. We sought to review the current available literature on the topic pertaining to gynaecologic cancers. Although a few factors are well established in literature, others need more research to conclude.
Collapse
Affiliation(s)
- Rudrika Chandra
- Obstetrics and Gynaecology, Command Hospital, Panchkula, Haryana, India
| | - Sarita Kumari
- Department of Gynaecologic Oncology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Ko MY, Park H, Kim Y, Min E, Cha SW, Lee BS, Hyun SA, Ka M. Bisphenol S (BPS) induces glioblastoma progression via regulation of EZH2-mediated PI3K/AKT/mTOR pathway in U87-MG cells. Toxicology 2024; 507:153898. [PMID: 39032682 DOI: 10.1016/j.tox.2024.153898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Bisphenol S (BPS), an alternative to bisphenol A (BPA), exerts proliferative effects similar to those of BPA. BPS is a representative endocrine disruptor associated with cancer progression. However, the mechanisms underlying BPS-induced glioblastoma progression are not fully understood. To investigate the effects of BPS on glioblastoma, U-87 MG cancer cell lines were exposed to BPS. The study focused on analyzing the proliferation and migration of U-87 MG cells. Furthermore, the involvement of the enhancer of the zeste homolog 2 (EZH2)-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of the rapamycin (mTOR) pathway was examined. Pharmacological approaches were employed to inhibit EZH2 activity and observe its effects on BPS-induced changes. The results indicated that BPS promoted the proliferation and migration of U-87 MG cells at a concentration of 0.1 µM. These changes appeared to be linked to the activation of the EZH2-mediated PI3K/AKT/mTOR pathway. Moreover, inhibiting EZH2 activity using pharmacological approaches restored the BPS-mediated induction of proliferation and migration. In conclusion, the results of this study indicated that BPS induces glioblastoma progression through EZH2 upregulation. Therefore, targeting the EZH2-mediated PI3K/AKT/mTOR pathway could be considered a potential therapeutic strategy for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Euijun Min
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
6
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
7
|
Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Ma Z, Kunnumakkara AB. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol 2024; 14:1383939. [PMID: 39077471 PMCID: PMC11284039 DOI: 10.3389/fonc.2024.1383939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
8
|
Kumar Issac P, Ravindiran G, Velumani K, Jayaseelan A, Greff B, Mani R, Woong Chang S, Ravindran B, Kumar Awasthi M. Futuristic advancements in phytoremediation of endocrine disruptor Bisphenol A: A step towards sustainable pollutant degradation for rehabilitated environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:216-233. [PMID: 38489980 DOI: 10.1016/j.wasman.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species-mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green-biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Gokulam Ravindiran
- Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad 500090, Telengana, India
| | - Kadhirmathiyan Velumani
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Arun Jayaseelan
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Babett Greff
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Lucsony street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, South Korea.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
9
|
McLaughlin AJ, Kaniski AI, Matti DI, Monear NC, Tischler JL, Xhabija B. Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies. Curr Res Toxicol 2023; 5:100133. [PMID: 37964943 PMCID: PMC10641737 DOI: 10.1016/j.crtox.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Fluorene-9-bisphenol (BHPF) has recently attracted interest as it is increasingly used in industrial settings as a substitute for Bisphenol A (BPA). However, the effects of BHPF exposure on embryonic stem cell (ESC) self-renewal, pluripotency, and differentiation remain poorly understood. This study investigates the impacts of BHPF on mouse embryonic stem cells (mESCs) and embryonic bodies (EBs). Our results reveal that BHPF exposure leads to a morphological shift in mESCs, reducing the percentage of dome-shaped colonies and indicating loss of self-renewal and pluripotency. BHPF exposure also appeared to affect the early stages of EB formation and their growth dynamics, with a reduction in EB numbers and an increase in their size. Subsequent gene expression analysis revealed that BHPF exposure led to increased expression of the inflammatory gene Il6, indicating a potential stress response. Furthermore, BHPF affected the terminal differentiation pathway, modulating the expression of 16 genes associated with distinct cell types, including lymphatic endothelium, keratinocyte epithelium, pancreatic beta cells, macrophages, monocytes, T-cells, neurons, retinal ganglion cells, nephrons proximal tubule cells, and cardiomyocytes. These findings offer insights into the impact of BHPF on ESC biology and suggest potential implications for developmental and neurodegenerative disorders. Future work should focus on elucidating the underlying mechanisms of BHPF-mediated effects on stem cell function. This may offer new perspectives for understanding the health impacts of environmental exposure to BHPF.
Collapse
Affiliation(s)
- Aidan J. McLaughlin
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United States
| | - Anthony I. Kaniski
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United States
| | - Darena I. Matti
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United States
| | - Nicodemus C. Monear
- College of Arts Sciences, Department of Natural Science, University of Michigan-Flint, Flint, MI, United States
| | - Jessica L. Tischler
- College of Arts Sciences, Department of Natural Science, University of Michigan-Flint, Flint, MI, United States
| | - Besa Xhabija
- College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United States
| |
Collapse
|
10
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
11
|
Gomez SL, Chirikova E, McGuire V, Collin LJ, Dempsey L, Inamdar PP, Lawson-Michod K, Peters ES, Kushi LH, Kavecansky J, Shariff-Marco S, Peres LC, Terry P, Bandera EV, Schildkraut JM, Doherty JA, Lawson A. Role of neighborhood context in ovarian cancer survival disparities: current research and future directions. Am J Obstet Gynecol 2023; 229:366-376.e8. [PMID: 37116824 PMCID: PMC10538437 DOI: 10.1016/j.ajog.2023.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
Ovarian cancer is the fifth leading cause of cancer-associated mortality among US women with survival disparities seen across race, ethnicity, and socioeconomic status, even after accounting for histology, stage, treatment, and other clinical factors. Neighborhood context can play an important role in ovarian cancer survival, and, to the extent to which minority racial and ethnic groups and populations of lower socioeconomic status are more likely to be segregated into neighborhoods with lower quality social, built, and physical environment, these contextual factors may be a critical component of ovarian cancer survival disparities. Understanding factors associated with ovarian cancer outcome disparities will allow clinicians to identify patients at risk for worse outcomes and point to measures, such as social support programs or transportation aid, that can help to ameliorate such disparities. However, research on the impact of neighborhood contextual factors in ovarian cancer survival and in disparities in ovarian cancer survival is limited. This commentary focuses on the following neighborhood contextual domains: structural and institutional context, social context, physical context represented by environmental exposures, built environment, rurality, and healthcare access. The research conducted to date is presented and clinical implications and recommendations for future interventions and studies to address disparities in ovarian cancer outcomes are proposed.
Collapse
Affiliation(s)
- Scarlett L Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA.
| | - Ekaterina Chirikova
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Valerie McGuire
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Lindsay J Collin
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Lauren Dempsey
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Pushkar P Inamdar
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Katherine Lawson-Michod
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Edward S Peters
- Department of Epidemiology, University of Nebraska Medical Center College of Public Health, Omaha, NE
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Juraj Kavecansky
- Department of Hematology and Oncology, Kaiser Permanente Northern California, Antioch, CA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Lauren C Peres
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Paul Terry
- Department of Medicine, University of Tennessee, Knoxville, TN
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Jennifer A Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Andrew Lawson
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC; Usher Institute, School of Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Kozieł MJ, Piastowska-Ciesielska AW. Estrogens, Estrogen Receptors and Tumor Microenvironment in Ovarian Cancer. Int J Mol Sci 2023; 24:14673. [PMID: 37834120 PMCID: PMC10572993 DOI: 10.3390/ijms241914673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancer is one of the most common cancers in women and the most concerning issues in gynecological oncology in recent years. It is postulated that many factors may contribute to the development of ovarian cancer, including hormonal imbalance. Estrogens are a group of hormones that have an important role both in physiological and pathological processes. In ovarian cancer, they may regulate proliferation, invasiveness and epithelial to mesenchymal transition. Estrogen signaling also takes part in the regulation of the biology of the tumor microenvironment. This review summarizes the information connected with estrogen receptors, estrogens and their association with a tumor microenvironment. Moreover, this review also includes information about the changes in estrogen receptor expression upon exposition to various environmental chemicals.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
13
|
Kozieł MJ, Habrowska-Górczyńska DE, Urbanek KA, Domińska K, Piastowska-Ciesielska AW, Kowalska K. Estrogen receptor α mediates alternariol-induced apoptosis and modulation of the invasiveness of ovarian cancer cells. Toxicol Lett 2023; 386:9-19. [PMID: 37683805 DOI: 10.1016/j.toxlet.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Mycotoxins are secondary metabolites of fungi that may affect both human and animal health. Some of them possess estrogenic activity, due to direct binding to estrogen receptors (ERs) and hence disturb the hormonal balance of the organism. Alternariol (AOH) was previously reported as genotoxic, estrogenic and immunomodulatory agent. However, detailed mechanism of its action has not been fully elucidated. Estrogen receptor α (ERα) was previously reported to modulate the proliferation and invasiveness of ovarian cancer cells. Thus, we decided to verify whether estrogenic-like mycotoxin may affect ovarian cancer cells via ERα. The results showed that AOH induces apoptosis and oxidative stress and that these effects are partially modulated by ERα. Moreover, AOH decreases the invasion and migration of ovarian cancer cells and promotes changes in the expression of genes and proteins that are associated with the invasiveness of cancer i.e. MMP9, SNAIL1/2, ZEB1/2, VIM, CDH1 and CDH2. In conclusion, we postulate that AOH might significantly affect the viability and invasiveness of ovarian cancer cells via modulation of ERα and therefore possibly act as an endocrine disruptive agent in ovarian cancer cells.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Lodz, Poland; Medical University of Lodz, BRaIn Laboratories, Lodz, Poland
| | | | - Kinga Anna Urbanek
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Lodz, Poland
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Lodz, Poland; Medical University of Lodz, BRaIn Laboratories, Lodz, Poland
| | - Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Lodz, Poland.
| |
Collapse
|
14
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
15
|
Zhang Y, Xie X, Cheng H, Zhang Y, Li H, Zhu Y, Wang R, Li W, Wang R, Wu F. Bisphenol A interferes with lncRNA Fhadlos2 and RUNX3 association in adolescent mouse ovary. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115060. [PMID: 37229876 DOI: 10.1016/j.ecoenv.2023.115060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) has a number of adverse effects on the reproductive development of females. In particular, the mechanism of disruption of ovarian development in adolescent mice is still unclear. Based on transcriptome sequencing results, a differentially expressed lncRNA, Fhad1os2, was detected in the ovaries of BPA-exposed pubertal mice. In our study, the lncRNA Fhad1os2, localized in the ovarian granulosa cell cytoplasm, could regulate the proliferation of mouse ovarian granulosa cells. Mechanistically, the results of RNA pull-down experiments as well as mass spectrometry analysis showed that ERα, an interfering signaling molecule of BPA, could directly bind lncRNA Fhad1os2 and decrease the transcription of lncRNA Fhad1os2 in response to the estrogen-like effect of BPA. BPA exposure also caused abnormal lncRNA Fhad1os2 pulldown protein-related signaling pathways in the ovaries of adolescent mice. Furthermore, lncRNA Fhad1os2 interacted with RUNX3, a transcription factor related to follicle development and hormone synthesis. As a negative regulator, lncRNA Fhad1os2 transactivated the expression of Runx3, which in turn induced RUNX3 to positively regulate aromatase (Cyp19a1) expression in mouse ovarian granulosa cells and promote estrogen synthesis. In conclusion, our study indicates that BPA exposure interferes with ERα-regulated lncRNA Fhad1os2 interactions with RUNX3 in pubertal mice, affecting estrogen synthesis in mouse granulosa cells and contributing to premature ovarian maturation in pubertal mice.
Collapse
Affiliation(s)
- Yilei Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xin Xie
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Huimin Cheng
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yadi Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Haili Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yan Zhu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Ruitao Wang
- The Second People's Hospital of Fuyang, Fuyang, China.
| | - Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.
| |
Collapse
|
16
|
Xie X, Zhu Y, Cheng H, Li H, Zhang Y, Wang R, Li W, Wu F. BPA exposure enhances the metastatic aggression of ovarian cancer through the ERα/AKT/mTOR/HIF-1α signaling axis. Food Chem Toxicol 2023; 176:113792. [PMID: 37080528 DOI: 10.1016/j.fct.2023.113792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Long-term exposure to bisphenol A (BPA) in humans may promote ovarian cancer development. In present study, the mechanisms by which BPA mediates the aggression metastatic behavior of ovarian cancer were investigated in vitro/in vivo. The results showed that BPA (10 μM) significantly promoted the proliferation, migration and invasion of human ovarian cancer cells (ES-2 and OVCAR-3 cells); moreover, it promoted ES-2 and OVCAR-3 cell glucose uptake, lactic acid release and intracellular ATP synthesis. After administration of 5 μg/kg/day BPA, tumor volume was increased compared with that in control group. KEGG and GO enrichment analyses showed that the genes from ES-2 cell in 10 μM BPA-treated group were enriched mainly in central carbon metabolism and PI3K-AKT signaling pathway. Then, qRT‒PCR and western blotting results showed that BPA (10 μM) increased the mRNA and protein expression levels of glycolysis-related genes and mTOR, p-AKT HIF-1α and ERα in vitro/vivo; whereas this effect was reduced after treatment with the ERα inhibitor methyl-piperidino-pyrazole. Furthermore, coimmunoprecipitation and mass spectrometry showed that BPA promoted the direct interaction of ERα with lactate dehydrogenase A. These results show that BPA directly promoted the proliferation, migration and invasion of ovarian cancer cells through the ERα/AKT/mTOR/HIF-1α signaling axis to enhance glycolysis.
Collapse
Affiliation(s)
- Xin Xie
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Yan Zhu
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Huimin Cheng
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Haili Li
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Yadi Zhang
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Rong Wang
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Wenyong Li
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China.
| | - Fengrui Wu
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China.
| |
Collapse
|
17
|
Yao C, Liu X, Tang Y, Wang C, Duan C, Liu X, Chen M, Zhou Y, Tang E, Xiang Y, Li Y, Ji A, Cai T. Lipopolysaccharide induces inflammatory microglial activation through CD147-mediated matrix metalloproteinase expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35352-35365. [PMID: 36534246 PMCID: PMC9761036 DOI: 10.1007/s11356-022-24292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Microglia-mediated neuroinflammation plays a vital role in the pathophysiological processes of multiple neurodegenerative diseases. Lipopolysaccharide (LPS) is an environmental poison that can induce inflammatory microglial activation. Matrix metalloproteinases (MMPs) are vital factors regulating microglial activation, and CD147 is a key MMP inducer, which can induce inflammation by inducing MMPs. However, whether it is involved in the regulation of microglial activation has not been reported. In this study, the role of CD147 in LPS-induced microglial inflammatory activation was investigated by establishing in vivo and in vitro models. The results suggested that LPS-induced microglial activation was accompanied by the induction of CD147 expression while the inhibition of CD147 expression could inhibit LPS-induced microglial inflammatory activation. In addition, the results also indicated that the role of CD147 in LPS-induced pro-inflammatory activation of microglia was related to its downstream MMP-3, MMP-8, and autophagy. Furthermore, the inhibition of MMP-3, MMP-8, and autophagy attenuated LPS-induced inflammatory activation of microglia. At the same time, there was a certain interaction between MMPs and autophagy, which is shown that inhibiting the expression of MMPs could inhibit autophagy, whereas inhibiting autophagy could inhibit the expression of MMPs. Taken together, we provided the first evidence that CD147/MMPs can be involved in LPS-induced inflammatory activation of microglia through an autophagy-dependent manner.
Collapse
Affiliation(s)
- Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Chenggang Duan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China.
| |
Collapse
|
18
|
Chen Y, Hu Z, Tang M, Huang F, Xiong Y, Ouyang D, He J, He S, Xian H, Hu D. Lysosome-related exosome secretion mediated by miR-26b / Rab31 pathway was associated with the proliferation and migration of MCF-7 cells treated with BPA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114563. [PMID: 36701876 DOI: 10.1016/j.ecoenv.2023.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA), one of the typical environmental endocrine disruptors (EEDs), can promote the proliferation and migration of cancer cells, but the mechanism of which remains largely unclear. Exosome secretion plays an important role in the stress response of cells to environmental stimuli. This study was designed to explore whether exosome secretion was involved in the toxic effect of BPA on the proliferation and migration of MCF-7 cells, and the related mechanism. Our data shows that the IC50 value of MCF-7 exposure to BPA was about 65.82 µM. The exposure of MCF-7 to 10 µM BPA resulted in a decreased miR-26b expression and the activation of miR-26b/Rab-31 pathway, consequently, the number and activity of lysosomes decreased, the secretion of exosomes increased, cell proliferation and migration were enhanced obviously. Interestingly, miR-26b mimic up-regulated the number and activity of lysosomes via miR-26b/miR-31 pathway, exosome secretion was down-regulated, cell proliferation and migration decreased. Further, when GW4869 was used to directly inhibit the exosome secretion of MCF-7 treated with BPA, their proliferation and migration were down-regulated. Herein, we concluded that the stimulating effect of BPA on the proliferation and migration of MCF-7 cells was associated with the lysosome - related exosome secretion via miR-26b / Rab31 pathway.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Department of Clinical Medicine, Jiamusi University, China
| | - Meilin Tang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Fan Huang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Grade 2019 Undergraduate Student Majoring in Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China.
| |
Collapse
|
19
|
Liu J, Kong W, Liu Y, Ma Q, Shao Q, Zeng L, Chao Y, Song X, Zhang J. Stage-Related Neurotoxicity of BPA in the Development of Zebrafish Embryos. TOXICS 2023; 11:toxics11020177. [PMID: 36851052 PMCID: PMC9963847 DOI: 10.3390/toxics11020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is one of the most widely produced chemicals in the world used in the production of epoxy resins and polycarbonate plastics. BPA is easily migrated from the outer packaging to the contents. Due to the lipophilic property, BPA is easily accumulated in organisms. Perinatal low-dose BPA exposure alters brain neural development in later generations. In this study, after BPA treatment, the spontaneous movement of zebrafish larvae from the cleavage period to the segmentation period (1-24 hpf) was significantly decreased, with speed decreasing by 18.97% and distance decreasing between 18.4 and 29.7% compared to controls. Transcriptomics analysis showed that 131 genes were significantly differentially expressed in the exposed group during the 1-24 hpf period, among which 39 genes were significantly upregulated and 92 genes were significantly downregulated. The GO enrichment analysis, gene function analysis and real-time quantitative PCR of differentially expressed genes showed that the mRNA level of guanine deaminase (cypin) decreased significantly in the 1-24 hpf period. Moreover, during the 1-24 hpf period, BPA exposure reduced guanine deaminase activity. Therefore, we confirmed that cypin is a key sensitive gene for BPA during this period. Finally, the cypin mRNA microinjection verified that the cypin level of zebrafish larvae was restored, leading to the restoration of the locomotor activity. Taken together, the current results show that the sensitive period of BPA to zebrafish embryos is from the cleavage period to the segmentation period (1-24 hpf), and cypin is a potential target for BPA-induced neurodevelopmental toxicity. This study provides a potential sensitive period and a potential target for the deep understanding of neurodevelopmental toxicity mechanisms caused by BPA.
Collapse
|
20
|
Comparative Analysis of Transcriptomic Changes including mRNA and microRNA Expression Induced by the Xenoestrogens Zearalenone and Bisphenol A in Human Ovarian Cells. Toxins (Basel) 2023; 15:toxins15020140. [PMID: 36828454 PMCID: PMC9967916 DOI: 10.3390/toxins15020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Xenoestrogens are natural or synthetic compounds that mimic the effect of endogenous estrogens and might cause cancer. We aimed to compare the global transcriptomic response to zearalenone (ZEA; mycotoxin) and bisphenol A (BPA; plastic additive) with the effect of physiological estradiol (E2) in the PEO1 human ovarian cell line by mRNA and microRNA sequencing. Estrogen exposure induced remarkable transcriptomic changes: 308, 288 and 63 genes were upregulated (log2FC > 1); 292, 260 and 45 genes were downregulated (log2FC < -1) in response to E2 (10 nM), ZEA (10 nM) and BPA (100 nM), respectively. Furthermore, the expression of 13, 11 and 10 miRNAs changed significantly (log2FC > 1, or log2FC < -1) after exposure to E2, ZEA and BPA, respectively. Functional enrichment analysis of the significantly differentially expressed genes and miRNAs revealed several pathways related to the regulation of cell proliferation and migration. The effect of E2 and ZEA was highly comparable: 407 genes were coregulated by these molecules. We could identify 83 genes that were regulated by all three treatments that might have a significant role in the estrogen response of ovarian cells. Furthermore, the downregulation of several miRNAs (miR-501-5p, let-7a-2-3p, miR-26a-2-3p, miR-197-5p and miR-582-3p) was confirmed by qPCR, which might support the proliferative effect of estrogens in ovarian cells.
Collapse
|
21
|
Téteau O, Vitorino Carvalho A, Papillier P, Mandon-Pépin B, Jouneau L, Jarrier-Gaillard P, Desmarchais A, Lebachelier de la Riviere ME, Vignault C, Maillard V, Binet A, Uzbekova S, Elis S. Bisphenol A and bisphenol S both disrupt ovine granulosa cell steroidogenesis but through different molecular pathways. J Ovarian Res 2023; 16:30. [PMID: 36737804 PMCID: PMC9896735 DOI: 10.1186/s13048-023-01114-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERβ). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France
| | | | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique Et Brûlés, CHRU de Tours, 37000, Tours, France
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
22
|
Nair VA, Malhab LJB, Abdel-Rahman WM. Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci 2022; 23:ijms231911620. [PMID: 36232920 PMCID: PMC9569561 DOI: 10.3390/ijms231911620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is a common cancer with a poor prognosis in both males and females. The influence of bisphenol A (BPA), a widely used environmental contaminant, in colon cancer development and progression is not well identified, in spite of the fact that the most common mode of exposure to BPA is ingestion. The aim of this work is to elucidate the carcinogenic effects of BPA in the colon in vitro. We analyzed BPA’s effects on human colon epithelial (HCoEpiC) and colon cancer (HCT116) cells. BPA exerted cytotoxic effects and augmented the 5FU cytotoxicity on both cell lines at high doses, while it did not show this effect at low doses. Therefore, we focused on studying the effects of low-dose (0.0043 nM) exposure on normal colonic epithelial cells for a long period of time (two months), which is more consistent with environmental exposure levels and patterns. BPA increased cellular invasiveness through collagen and the ability to anchorage-independent cell growth, as measured by colony formation in soft agar, which could support oncogenicity. To gain insights into the mechanism of these actions, we performed transcriptomic analysis using next-generation sequencing, which revealed 340 differentially expressed transcripts by BPA in HCT116 and 75 in HCoEpiC. These transcripts belong in many cancer-related pathways such as apoptosis, cell proliferation, signal transduction, and angiogenesis. Some of the significant genes (FAM83H, CXCL12, PITPNA, HMOX1, DGKZ, NR5A2, VMP1, and ID1) were confirmed by quantitative RT-PCR. Furthermore, BPA induced the phosphorylation of protein kinases such as JNK1/2/3, GSK-3α/β, AMPKα1, AKT1/2/3, AMPKα2, HSP27, β-catenin, STAT2, Hck, Chk2, FAK, and PRAS40 in HCoEpiC, as well as GSK-3α/β, p53, AKT1/2/3, p70 S6 kinase, and WNK1 in HCT116. The majority of these proteins are involved in potential carcinogenic pathways. Taken together, these data suggest that BPA plays a role in colon carcinogenesis, and they provide insights into the molecular mechanisms of colon epithelial cell transformation by BPA. Increasing exposure to environmental toxins such as BPA can explain the increasing incidence of colorectal cancer.
Collapse
Affiliation(s)
- Vidhya A Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wael M. Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057556
| |
Collapse
|
23
|
Ansari MI, Bano N, Kainat KM, Singh VK, Sharma PK. Bisphenol A exposure induces metastatic aggression in low metastatic MCF-7 cells via PGC-1α mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity. Life Sci 2022; 302:120649. [PMID: 35597549 DOI: 10.1016/j.lfs.2022.120649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
AIMS The frequency of estrogen receptor alpha (ERα)-positive breast cancers and their metastatic progression is prevalent in females globally. Aberrant interaction of estrogen-like endocrine-disrupting chemicals (EDCs) is highly implicated in breast carcinogenesis. Studies have shown that single or acute exposures of weak EDCs such as bisphenol A (BPA) may not have a substantial pro-carcinogenic/metastatic effect. However, repeated exposure to EDCs is expected to strongly induce carcinogenic/metastatic progression, which remains to be studied. MAIN METHODS Low metastatic ERα-positive human breast cancer cells (MCF-7) were exposed to nanomolar doses of BPA every 24 h (up to 200 days) to study the effect of repeated exposure on metastatic potential. Following the designated treatment of BPA, markers of epithelial-mesenchymal transition (EMT), migration and invasion, mitochondrial biogenesis, ATP levels, and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) knockdown assays were performed. KEY FINDINGS A repeated exposure of low dose BPA induced stable epithelial-mesenchymal plasticity in MCF-7 cells to augment migration and invasion in the ERα-dependent pathway. Repeated exposures of BPA increased the levels of several mesenchymal markers such as N-cadherin, vimentin, cluster of differentiation 44 (CD44), slug, and alpha-smooth muscle actin (α-SMA), whereas reduced the level of E-cadherin drastically. BPA-induced mitochondrial biogenesis favored metastatic aggression by fulfilling bioenergetics demand via PGC-1α/NRF1/ERRα signaling. Knockdown of PGC-1α resulted in suppressing both mitochondrial biogenesis and EMT in BPA exposed MCF-7 cells. SIGNIFICANCE Repeated exposures of low dose BPA may induce metastatic aggression in ERα-positive breast cancer cells via PGC-1α-mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nuzhat Bano
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K M Kainat
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vipendra Kumar Singh
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Kumar Sharma
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Li X, Ni M, Xiong W, Tian L, Yang Z, Zhang L, Chen J. Transcriptomics analysis and benchmark concentration estimating-based in vitro test with IOSE80 cells to unveil the mode of action for female reproductive toxicity of bisphenol A at human-relevant levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113523. [PMID: 35429799 DOI: 10.1016/j.ecoenv.2022.113523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is of great concern in public health, of which female reproductive toxicity is one major adverse health effect with the unclear mode of action (MOA) yet. Based on the principle of Toxicity Testing in the 21st Century, the purpose of this study is to explore the MOA for female reproductive toxicity using human normal ovarian epithelial cells IOSE80 at 28-day human-relevant-level exposure. A physiological based pharmacokinetic model was used to select the administration concentrations according to the BPA levels in female gonads at human actual exposure scenario. Enrichment KEGG pathways interrupted by BPA consisted of RNA transport, ribosome biogenesis in eukaryotes, cell cycle, cellular senescence, progesterone-mediated oocyte maturation, and oocyte meiosis. Increased relative mRNA and protein expressions of ERK and CDKN3, and proportion of S phase, as well as decreased proportion of G0/G1 phase were observed with increasing BPA concentrations, which could be partially inhibited by ERK inhibitor U0126. Among all the benchmark concentration lower confidence limits, mRNA expression of MAPK3 served as the lowest. In conclusion, the MOA of BPA induced female reproductive toxicity at human-relevant levels may include: key event (KE)1-ERK activation, KE2-increased expression of CDKN3, and KE3-cell cycle arrest. However, more in vivo studies may be needed to complete the MOA.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Xiong
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
25
|
Téteau O, Liere P, Pianos A, Desmarchais A, Lasserre O, Papillier P, Vignault C, Lebachelier de la Riviere ME, Maillard V, Binet A, Uzbekova S, Saint-Dizier M, Elis S. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes With Contrasted Metabolic Status. Front Endocrinol (Lausanne) 2022; 13:892213. [PMID: 35685208 PMCID: PMC9172638 DOI: 10.3389/fendo.2022.892213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Philippe Liere
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Pianos
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours, France
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
26
|
Xing J, Zhang S, Zhang M, Hou J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109275. [PMID: 35077873 DOI: 10.1016/j.cbpc.2022.109275] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a synthetic organic compound that is mainly used in the production of polymer materials polycarbonate and epoxy resin. Widespread use and irregular processing methods have led to BPA being detected globally, raising concerns about its environmental and health effects. This review outlines an overview of the presence and removal of BPA in the environment and consumer products. We also summarized the endocrine-disrupting toxicity of BPA, and the relatively less summarized neurotoxicity, cytotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity. Human exposure data show that humans have been exposed to low concentrations of BPA for a long time, future research should focus on the long-term exposure and the migration of BPA from consumer products to humans and the possible health risks associated with human exposure to BPA. Exploring economical and effective methods to reduce and remove BPA from the environment is imperative. The development of safe, functional and reproducible BPA analogs and the study of its degradation products can be the focus of subsequent research.
Collapse
Affiliation(s)
- Jianing Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
27
|
Edaes FS, de Souza CB. BPS and BPF are as Carcinogenic as BPA and are Not Viable Alternatives for its Replacement. Endocr Metab Immune Disord Drug Targets 2022; 22:927-934. [PMID: 35297356 DOI: 10.2174/1871530322666220316141032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plastic polymers are omnipresent, and life without them is virtually impossible. Despite the advantages provided by the material, conventional plastic also has harmful effects on the environment and human health. Plastics release microplastics and compounds, such as BPA, which is a xenoestrogen and once absorbed by the body, have an affinity for estrogen receptors α and β, acting as an agonist on human cells, being an endocrine disrupter able to cause various diseases and acting as a potential neoplastic inducer. BPS and BPF are BPA's analogs, a proposed solution to solve its harmful effects incorporated into the market. The analogs can be found in daily use products and are used in several industrial applications. OBJECTIVES In the present work, the researchers aimed to develop a revisional study of BPA's harmful effects on human health, focusing on its carcinogenic potential, discussing its mechanisms of action, as well as its analogs effects, and identifying if they are a viable alternative to BPA's substitution in plastic polymers' production. METHODS In this review, articles published in the last 15 years related to the different aspects of conventional plastics and BPA were analyzed and revised with precision. The subjects ranged from conventional plastics and the problems related to their large-scale production, BPA, its negative aspects, and the feasibility of using its analogs (BPS and BPF) to replace the compound. The articles were extensively reviewed and concisely discussed. RESULTS This study demonstrated that BPA has a high carcinogenic potential, with known mechanisms to trigger breast, ovarian, prostate, cervical, and lung cancers, thus elucidating that its analogs are also xenoestrogens, that they can exert similar effects to BPA and, therefore, cannot be considered viable alternatives for its replacement. Conclusion This study suggests that new research should be carried out to develop such alternatives, allowing the substitution of plastic materials containing BPA in their composition, such as developing economically viable and sustainable biodegradable bioplastics for socio-environmental well-being.
Collapse
Affiliation(s)
- Felipe Sanches Edaes
- Academic Center for Studies and Research in Biotechnology and Molecular Biology (NAPBBM), Lusíada University Center (UNILUS), Santos, Brazil
| | - Cleide Barbieri de Souza
- Academic Center for Studies and Research in Biotechnology and Molecular Biology (NAPBBM), Lusíada University Center (UNILUS), Santos
| |
Collapse
|