1
|
Sharma N, Ajima MNO, Rather MA, Sharma R, Ahmad I. Behavioural changes, DNA damage and histological alterations in Labeo rohita fingerlings in response to organic-coated silver nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47789-47800. [PMID: 39007970 DOI: 10.1007/s11356-024-34360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Silver nanoparticles (AgNPs) have garnered significant global attention from researchers due to their unique physicochemical properties and wide-ranging applications in industry and medicine. However, their release into aquatic ecosystems has raised concerns regarding potential ecotoxicological consequences. The present study investigated the effects of polyvinyl pyrrolidone-coated silver nanoparticles on Labeo rohita fingerlings, focusing on behavioural reactions, genotoxic effects, histological changes and bioaccumulation. L. rohita fingerlings were exposed to polyvinyl pyrrolidone-coated silver nanoparticles with sizes ranging from 18 to 29 nm for 7 days at concentrations of 100, 200, 400 and 800 ug/l. The nanoparticle zeta potential was found to be extremely negative, measuring - 55.5 mV for 18 nm and - 31.4 mV for 29 nm. Behavioural abnormalities, including respiratory distress, reduced responsiveness and erratic swimming, were observed in exposed groups compared to controls, with severity increasing with higher nanoparticle concentrations. Genotoxicity assessment revealed significantly higher DNA damage in kidney cells compared to gill cells. Histological examination of gill tissues showed clogging in primary and secondary lamellae, along with distorted anatomy, necrosis and vacuolar atrophy in peripheral tubules of the kidneys. The kidneys exhibited greater nanoparticle accumulation than the gills with prolonged exposure. Moreover, 18 nm AgNPs induced more pronounced DNA damage and histological alterations in the kidney and gill tissues compared to 29 nm nanoparticles. This study elucidates the critical role of monitoring AgNPs in aquatic systems, providing essential data on their behaviour and environmental impacts. The findings highlight the need for improved detection techniques and effective management of AgNP contamination. Future research should focus on developing more sensitive analytical methods, understanding long-term ecological effects and exploring innovative remediation strategies.
Collapse
Affiliation(s)
- Niti Sharma
- Central Inland Fisheries Research Institute, Regional Centre, Guwahati, Assam, 781006, India
| | - Malachy N O Ajima
- Department of Fisheries and Aquaculture Technology, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil Ganderbal, SKUAST-Kashmir, Srinagar, India.
| | - Rupam Sharma
- Fish Genetics and Biotechnology Division, Central Institute of Fisheries Education, Panch Marg Off Yari Road, Versova, Andheri West, Mumbai, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil Ganderbal, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
2
|
Zhang ZF, Fan YY, Lu XM, Min XZ, Ma WL, Liu LY, Li YF, Li WL. Seasonal patterns, fate and ecological risk assessment of pharmaceutical compounds in a wastewater treatment plant with Bacillus bio-reactor treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120732. [PMID: 38560954 DOI: 10.1016/j.jenvman.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.
Collapse
Affiliation(s)
- Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Ying-Ying Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Wadsworth Center, New York State Department of Health, Albany, NY, 12237, United States.
| |
Collapse
|
3
|
Mikula P, Hollerova A, Hodkovicova N, Doubkova V, Marsalek P, Franc A, Sedlackova L, Hesova R, Modra H, Svobodova Z, Blahova J. Long-term dietary exposure to the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen can affect the physiology of common carp (Cyprinus carpio) on multiple levels, even at "environmentally relevant" concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170296. [PMID: 38301789 DOI: 10.1016/j.scitotenv.2024.170296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
The aim of the study was to evaluate the effects of emerging environmental contaminants, the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and ibuprofen (IBP), on physiological functions in juvenile common carp (Cyprinus carpio). Fish were exposed for 6 weeks, and for the first time, NSAIDs were administered through diet. Either substance was tested at two concentrations, 20 or 2000 μg/kg, resulting in four different treatments (DCF 20, DCF 2000, IBP 20, IBP 2000). The effects on haematological and biochemical profiles, the biomarkers of oxidative stress, and endocrine disruption were studied, and changes in RNA transcription were also monitored to obtain a comprehensive picture of toxicity. Fish exposure to high concentrations of NSAIDs (DCF 2000, IBP 2000) elicited numerous statistically significant changes (p < 0.05) in the endpoints investigated, with DCF being almost always more efficient than IBP. Compared to control fish, a decrease in total leukocyte count attributed to relative lymphopenia was observed. Plasma concentrations of total proteins, ammonia, and thyroxine, and enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase, and alkaline phosphatase (ALP) were significantly elevated in either group, as were the activities of certain hepatic antioxidant enzymes (superoxide dismutase, glutathione-S-transferase) in the DCF 2000 group. The transcriptomic profile of selected genes in the tissues of exposed fish was affected as well. Significant changes in plasma total proteins, ammonia, ALT, and ALP, as well as in the transcription of genes related to thyroid function and the antioxidant defense of the organism, were found even in fish exposed to the lower DCF concentration (DCF 20). As it was chosen to match DCF concentrations commonly detected in aquatic invertebrates (i.e., the potential feed source of fish), it can be considered "environmentally relevant". Future research is necessary to shed more light on the dietary NSAID toxicity to fish.
Collapse
Affiliation(s)
- Premysl Mikula
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Aneta Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Lucie Sedlackova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Renata Hesova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Helena Modra
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic; Department of Environmentalistics and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generala Piky 7, 613 00 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic.
| |
Collapse
|
4
|
Van Nguyen T, Bořík A, Sims JL, Kouba A, Žlábek V, Koubová A. Toxicological effects of diclofenac on signal crayfish (Pacifastacus leniusculus) as related to weakly acidic and basic water pH. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106777. [PMID: 38035650 DOI: 10.1016/j.aquatox.2023.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The widespread use and continuous discharge of pharmaceuticals to environmental waters can lead to potential toxicity to aquatic biota. Pharmaceuticals and their metabolites are often complex organic and environmentally persistent compounds that are bioactive at low doses. This study aimed to investigate the effects of diclofenac (DCF) on the antioxidant defence system and neurotoxicity biomarkers in signal crayfish (Pacifastacus leniusculus) under weakly acidic and basic conditions. Crayfish were exposed to 200 µg/L of DCF at pH 6 and 8 for 96 h and subsequently underwent the depuration phase for 96 h. Gills, hepatopancreas, and muscle were sampled after the exposure and depuration phases to assess the toxicological biomarker responses of DCF in crayfish by evaluating lipid peroxidation (LPO) levels, activities of antioxidant enzymes and acetylcholinesterase. After the exposure phase, the hemolymph DCF concentration was detected one order higher at pH 6 than at pH 8. The DCF was subsequently fully eliminated from the hemolymph during the depuration phase. Our results showed that DCF caused alteration in the activities of six of the seven tested biomarkers in at least one crayfish tissue. Although exposure to DCF caused imbalances in the detoxification system on multiple tissue levels, it was regenerated to a balanced state after the depuration phase. Integrated biomarker response (IBRv2) showed that the highest toxicological response to DCF exposure was elicited in the gills, whereas the hepatopancreas was the highest-responding tissue after the depuration phase. Exposure to DCF at pH 6 caused higher toxicological effects than at pH 8; however, crayfish antioxidant mechanisms recovered more quickly at pH 6 than at pH 8 after the depuration phase. Our results showed that water pH influenced the toxicological effects of DCF, an ionisable compound in crayfish.
Collapse
Affiliation(s)
- Tuyen Van Nguyen
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Jaylen L Sims
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic; Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Vladimír Žlábek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Anna Koubová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic.
| |
Collapse
|
5
|
Muñoz-Peñuela M, Moreira RG, Gomes ADO, Tolussi CE, Branco GS, Pinheiro JPS, Zampieri RA, Lo Nostro FL. Neurotoxic, biotransformation, oxidative stress and genotoxic effects in Astyanax altiparanae (Teleostei, Characiformes) males exposed to environmentally relevant concentrations of diclofenac and/or caffeine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103821. [PMID: 35093559 DOI: 10.1016/j.etap.2022.103821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The present study evaluated neurotoxic, biotransformation, genotoxic and antioxidant responses to relevant environmental concentrations of diclofenac (0.4 μg L-1) and caffeine (27.5 μg L-1), separate and combined, in adult males of the freshwater fish Astyanax altiparanae after a subchronic exposure (14 days). Fish exposed to diclofenac and caffeine, both separate and combined, revealed a neurotoxic effect through the inhibition of acetylcholinesterase activity in the muscle, while diclofenac alone and in combination caused cyclooxygenase inhibition. Caffeine alone produces genotoxicity on this species but, when combined with diclofenac, it potentiates hepatic lipoperoxidation and the inhibition of oxidative stress enzymes, while diclofenac alone or in combination produces a general inhibition of important enzymes. This study suggests that aquatic contamination produced by these pharmaceuticals has the potential to affect homeostasis and locomotion in A. altiparanae and compromise their immune system and general health.
Collapse
Affiliation(s)
- Marcela Muñoz-Peñuela
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, Brazil.
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, Brazil
| | - Aline Dal Olio Gomes
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, Brazil
| | | | - Giovana Souza Branco
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, Brazil
| | | | - Ricardo Andrade Zampieri
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, Brazil
| | - Fabiana Laura Lo Nostro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática and IBBEA, CONICET-UBA. Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
6
|
Bouly L, Courant F, Bonnafé E, Carayon JL, Malgouyres JM, Vignet C, Gomez E, Géret F, Fenet H. Long-term exposure to environmental diclofenac concentrations impairs growth and induces molecular changes in Lymnaea stagnalis freshwater snails. CHEMOSPHERE 2022; 291:133065. [PMID: 34848232 DOI: 10.1016/j.chemosphere.2021.133065] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
As pharmaceutical substances are highly used in human and veterinary medicine and subsequently released in the environment, they represent emerging contaminants in the aquatic compartment. Diclofenac (DCF) is one of the most commonly detected pharmaceuticals in water and little research has been focused on its long-term effects on freshwater invertebrates. In this study, we assessed the chronic impacts of DCF on the freshwater gastropod Lymnaea stagnalis using life history, behavioral and molecular approaches. These organisms were exposed from the embryo to the adult stage to three environmentally relevant DCF concentrations (0.1, 2 and 10 μg/L). The results indicated that DCF impaired shell growth and feeding behavior at the juvenile stage, yet no impacts on hatching, locomotion and response to light stress were noted. The molecular findings (metabolomics and transcriptomic) suggested that DCF may disturb the immune system, energy metabolism, osmoregulation and redox balance. In addition, prostaglandin synthesis could potentially be inhibited by DCF exposure. The molecular findings revealed signs of reproduction impairment but this trend was not confirmed by the physiological tests. Combined omics tools provided complementary information and enabled us to gain further insight into DCF effects in freshwater organisms.
Collapse
Affiliation(s)
- Lucie Bouly
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France; HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France.
| | - Elsa Bonnafé
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Luc Carayon
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Elena Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florence Géret
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|