1
|
Mravcová L, Jašek V, Hamplová M, Navrkalová J, Amrichová A, Zlámalová Gargošová H, Fučík J. Assessing Lettuce Exposure to a Multipharmaceutical Mixture under Hydroponic Conditions: Findings through LC-ESI-TQ Analysis and Ecotoxicological Assessments. ACS OMEGA 2024; 9:49707-49718. [PMID: 39713641 PMCID: PMC11656385 DOI: 10.1021/acsomega.4c08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The escalating global water scarcity demands innovative solutions, one of which is hydroponic vegetable cultivation systems that increasingly use reclaimed wastewater. Nevertheless, even treated wastewater may still harbor various emerging organic contaminants, including pharmaceuticals. This study aimed to comprehensively assess the impact of pharmaceuticals, focusing on bioconcentration factors (BCFs), translocation factors (TFs), pharmaceutical persistence in aqueous environment, ecotoxicological end points, and associated environmental and health risks. Lettuce (Lactuca sativa) was cultivated hydroponically throughout its entire growth cycle, exposed to seven distinct concentration levels of contaminants ranging from 0 to 500 μg·L-1 over a 35-day period. The findings revealed a diverse range of BCFs (2.3 to 880 L·kg-1) and TFs (0.019-1.48), suggesting a high potential of pharmaceutical uptake and translocation by L. sativa. The degradation of 20 pharmaceuticals within the water-lettuce system followed first-order degradation kinetics. Substantial ecotoxicological effects on L. sativa were observed, including increased mortality, alterations in root morphology and length, and changes in biomass weight (p < 0.05). Furthermore, the estimated daily intake of pharmaceuticals through L. sativa consumption suggested considerable health risks, even if lettuce would be one of the many vegetables consumed. It is hypothetical, as the values were calculated. Moreover, this study assessed the environmental risk associated with the emergence of antimicrobial resistance (AMR) in aquatic environments, revealing a significantly high risk of AMR emergence. In conclusion, these findings emphasize the multifaceted challenges posed by pharmaceutical contamination in aquatic environments and the necessity of proactive measures to mitigate associated risks to both environmental and human health.
Collapse
Affiliation(s)
- Ludmila Mravcová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Marie Hamplová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jitka Navrkalová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anna Amrichová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jan Fučík
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Li D, Xing Y, Li L, Yao Y, Li Y, Zhu H, Du P, Wang F, Yu D, Yang F, Yao Z, Thomas KV. Accumulation, translocation and transformation of artificial sweeteners in plants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125517. [PMID: 39667574 DOI: 10.1016/j.envpol.2024.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Artificial sweeteners (ASs) have become an increasingly significant concern as an emerging contaminant. The widespread utilization has given rise to environmental consequences that are progressively harder to disregard. ASs infiltrate both aquatic and terrestrial ecosystems through the discharge of wastewater effluents and the application of manure and biosolids. These compounds can be absorbed and accumulated by plants from soil, water and the atmosphere, posing potential risks to ecological systems and human health. However, limited data available on plant absorption, translocation, and metabolism of ASs hinders a comprehensive understanding of their impact on ecosystem. This study aims to comprehensively summarize the global distribution of ASs, along with elucidating patterns of their uptake and accumulation within plants. Furthermore, it seeks to elucidate the pivotal factors governing ASs absorption and translocation, encompassing hydrophilicity, ionic nature, plant physiology, and environmental conditions. Notably, there remains a significant knowledge gap in understanding the biodegradation of ASs within plants, with their specific degradation pathways and mechanisms largely unexplored, thereby necessitating further investigation. Additionally, this review provides valuable insights into the ecotoxicological effects of ASs on plants. Finally, it identifies research gaps and outlines potential avenues for future research, offering a forward-looking perspective on this critical issue.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yeye Xing
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
3
|
Błaszczyk W, Siatecka A, Tlustoš P, Oleszczuk P. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173517. [PMID: 38821290 DOI: 10.1016/j.scitotenv.2024.173517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Sewage sludge, a complex mixture of contaminants and pathogenic agents, necessitates treatment or stabilization like anaerobic digestion (AD) before safe disposal. AD-derived products (solid digestate and liquid fraction) can be used as fertilizers. During AD, biogas is also produced, and used for energy purposes. All these fractions can be contaminated with various compounds, whose amount depends on the feedstocks used in AD (and their mutual proportions). This paper reviews studies on the distribution of organic contaminants across AD fractions (solid digestate, liquid fraction, and biogas), delving into the mechanisms behind contaminant dissipation and proposing future research directions. AD proves to be a relatively effective method for removing polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pharmaceuticals, antibiotic resistance genes and hydrocarbons. Contaminants are predominantly removed through biodegradation, but many compounds, especially hydrophobic (e.g. per- and polyfluoroalkyl substances), are also sorbed onto digestate particles. The process of sorption is suggested to reduce the bioavailability of contaminants. As a result of sorption, contaminants accumulate in the largest amount in the solid digestate, whereas in smaller amounts in the other AD products. Polar pharmaceuticals (e.g. metformin) are particularly leached, while volatile methylsiloxanes and polycyclic aromatic hydrocarbons, characterized by a high Henry's law constant, are volatilized into the biogas. The removal of compounds can be affected by AD operational parameters, the type of sludge, physicochemical properties of contaminants, and the sludge pretreatment used.
Collapse
Affiliation(s)
- Wiktoria Błaszczyk
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Anna Siatecka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 129 Kamýcká Street, Praha 6 - Suchdol 165 00, Czech Republic
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 Maria Curie-Sklodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
4
|
Hofmann AH, Liesegang SL, Keuter V, Eticha D, Steinmetz H, Katayama VT. Nutrient recovery from wastewater for hydroponic systems: A comparative analysis of fertilizer demand, recovery products, and supply potential of WWTPs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119960. [PMID: 38198838 DOI: 10.1016/j.jenvman.2023.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Nutrient recovery from wastewater treatment plants (WWTPs) for hydroponic cultivation holds promise for closing the nutrient loop and meeting rising food demands. However, most studies focus on solid products for soil-based agriculture, thus raising questions about their suitability for hydroponics. In this study, we address these questions by performing the first in-depth assessment of the extent to which state-of-the-art nutrient recovery processes can generate useful products for hydroponic application. Our results indicate that less than 11.5% of the required nutrients for crops grown hydroponically can currently be recovered. Potassium nitrate (KNO3), calcium nitrate (Ca(NO3)2), and magnesium sulfate (MgSO4), constituting over 75% of the total nutrient demand for hydroponics, cannot be recovered in appropriate form due to their high solubility, hindering their separated recovery from wastewater. To overcome this challenge, we outline a novel nutrient recovery approach that emphasizes the generation of multi-nutrient concentrates specifically designed to meet the requirements of hydroponic cultivation. Based on a theoretical assessment of nutrient and contaminant flows in a typical municipal WWTP, utilizing a steady-state model, we estimated that this novel approach could potentially supply up to 56% of the nutrient requirements of hydroponic systems. Finally, we outline fundamental design requirements for nutrient recovery systems based on this new approach. Achieving these nutrient recovery potentials could be technically feasible through a combination of activated sludge processes for nitrification, membrane-based desalination processes, and selective removal of interfering NaCl. However, given the limited investigation into such treatment trains, further research is essential to explore viable system designs for effective nutrient recovery for hydroponics.
Collapse
Affiliation(s)
- Anna Hendrike Hofmann
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, Environment and Resources, Osterfelder Str. 3, 46047, Oberhausen, Germany.
| | - Sica Louise Liesegang
- University of Kaiserslautern-Landau (RPTU), Resource Efficient Wastewater Technology, 67663, Kaiserslautern, Germany.
| | - Volkmar Keuter
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, Environment and Resources, Osterfelder Str. 3, 46047, Oberhausen, Germany.
| | - Dejene Eticha
- Yara International, Research Center Hanninghof, 48249, Duelmen, Germany.
| | - Heidrun Steinmetz
- University of Kaiserslautern-Landau (RPTU), Resource Efficient Wastewater Technology, 67663, Kaiserslautern, Germany.
| | - Victor Takazi Katayama
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, Environment and Resources, Osterfelder Str. 3, 46047, Oberhausen, Germany.
| |
Collapse
|
5
|
Liang F, Shi Z, Wei S, Yan S. Biogas slurry purification-lettuce growth nexus: Nutrients absorption and pollutants removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164383. [PMID: 37216991 DOI: 10.1016/j.scitotenv.2023.164383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
As a main by-product of anaerobic digestion in biogas plants, biogas slurry contains a high concentration of mineral elements (such as ammonia‑nitrogen and potassium) and chemical oxygen demand (COD). So determining how to dispose the biogas slurry in a harmless and value-added ways is crucial from the perspective of ecological and environmental protections. This study explored a novel nexus between biogas slurry and lettuce, in which the biogas slurry was concentrated and saturated with carbon dioxide (CO2) to serve as a hydroponic solution for lettuce growth. Meanwhile, the lettuce was used to purify the biogas slurry through removing pollutants. Results showed that when concentrating the biogas slurry, the total nitrogen and ammonia nitrogen contents in the biogas slurry decreased with the increase of concentration factor. The CO2-rich 5-time-concentrated biogas slurry (CR-5CBS) was screened as the most suitable hydroponic solution for lettuce growth after comprehensively considering the nutrient element balance, energy consumption of concentrating the biogas slurry and CO2 absorption performance. The quality of lettuce cultivated in CR-5CBS was comparable to that of the Hoagland-Arnon nutrient solution in terms of physiological toxicity, nutritional quality, and mineral uptake. Obviously, the hydroponic lettuce could effectively utilize the nutrients in CR-5CBS to purify CR-5CBS, meeting the standard of reclaimed water quality for agricultural reuse. Interestingly, when the same yield of lettuce is targeted, using CR-5CBS as the hydroponic solution to cultivate lettuce can save about US $151/m3-CR-5CBS for lettuce production compared to the Hoagland-Arnon nutrient solution. This study might provide a feasible method for high-value utilization and harmless disposal of biogas slurry.
Collapse
Affiliation(s)
- Feihong Liang
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; College of Life Science, Yulin University, Yilin 719000, PR China
| | - Zhan Shi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, PD 350207, Italy
| | - Shihui Wei
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuiping Yan
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Anielak AM, Styszko K, Kwaśny J. The Importance of Humic Substances in Transporting "Chemicals of Emerging Concern" in Water and Sewage Environments. Molecules 2023; 28:6483. [PMID: 37764263 PMCID: PMC10535854 DOI: 10.3390/molecules28186483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we examined the sorption of selected "chemicals of emerging concern" (CEC) on humic substances commonly found in water and municipal wastewater. These were ibuprofen, diclofenac, caffeine, carbamazepine, estrone, triclosan, bisphenol A, and isoproturon. The humic substances (HSs) were synthetic and not contaminated by the tested organic substances. The elemental composition and content of mineral micropollutants, gravimetric curves, and the IR spectrum of HSs were determined. We determined a relationship between the process efficiency and the characteristics of a sorbent and sorbate using the properties of organic substances sorbed on HSs. This relationship was confirmed by sorption tests on the HS complex, i.e., the HS-organic micropollutant. It has been shown that the given complexes have a greater affinity for hydrophobic surfaces than hydrophilic surfaces. To confirm the nature of the sorbent surfaces, we determined their zeta potential dependence on the pH of the solution. Studies have shown that HSs are carriers of both mineral substances and CEC in water and sewage environments.
Collapse
Affiliation(s)
- Anna Maria Anielak
- Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Katarzyna Styszko
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland;
| | - Justyna Kwaśny
- Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| |
Collapse
|
7
|
Smalla K, Kabisch J, Fiedler G, Hammerl JA, Tenhagen BA. [Health risks from crop irrigation with treated wastewater containing antibiotic residues, resistance genes, and resistant microorganisms]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023:10.1007/s00103-023-03710-7. [PMID: 37233812 DOI: 10.1007/s00103-023-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
This review describes the effects and potential health risks of resistant microorganisms, resistance genes, and residues of drugs and biocides that occur when re-using wastewater for crop irrigation. It focusses on specific aspects of these contaminants and their interactions, but does not provide a general risk assessment of the microbial load when using reclaimed water.Antimicrobial residues, antimicrobial resistant microorganisms, and resistance genes are frequently detected in treated wastewater. They have effects on the soil and plant-associated microbiota (total associated microorganisms) and can be taken up by plants. An interaction of residues with microorganisms is mainly expected before using the water for irrigation. However, it may also occur as a combined effect on the plant microbiome and all the abundant resistance genes (resistome). Special concerns are raised as plants are frequently consumed raw, that is, without processing that might reduce the bacterial load. Washing fruits and vegetables only has minor effects on the plant microbiome. On the other hand, cutting and other processes may support growth of microorganisms. Therefore, after such process steps, cooling of the foods is required.Further progress has to be made in the treatment of wastewater that will be used for crop irrigation with respect to removing micropollutants and microorganisms to minimize the risk of an increased exposure of consumers to transferable resistance genes and resistant bacteria.
Collapse
Affiliation(s)
- Kornelia Smalla
- Institut für Epidemiologie und Pathogendiagnostik, Julius Kühn-Institut (JKI), Braunschweig, Deutschland
| | - Jan Kabisch
- Institut für Mikrobiologie und Biotechnologie, Max Rubner-Institut (MRI), Kiel, Deutschland
| | - Gregor Fiedler
- Institut für Mikrobiologie und Biotechnologie, Max Rubner-Institut (MRI), Kiel, Deutschland
| | - Jens Andre Hammerl
- Abteilung Biologische Sicherheit, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Bernd-Alois Tenhagen
- Abteilung Biologische Sicherheit, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland.
| |
Collapse
|
8
|
Menacherry SPM, Kodešová R, Švecová H, Klement A, Fér M, Nikodem A, Grabic R. Selective accumulation of pharmaceutical residues from 6 different soils by plants: a comparative study on onion, radish, and spinach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54160-54176. [PMID: 36869956 PMCID: PMC10119051 DOI: 10.1007/s11356-023-26102-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The accumulation of six pharmaceuticals of different therapeutic uses has been thoroughly investigated and compared between onion, spinach, and radish plants grown in six soil types. While neutral molecules (e.g., carbamazepine (CAR) and some of its metabolites) were efficiently accumulated and easily translocated to the plant leaves (onion > radish > spinach), the same for ionic (both anionic and cationic) molecules seems to be minor to moderate. The maximum accumulation of CAR crosses 38,000 (onion), 42,000 (radish), and 7000 (spinach) ng g-1 (dry weight) respectively, in which the most majority of them happened within the plant leaves. Among the metabolites, the accumulation of carbamazepine 10,11-epoxide (EPC - a primary CAR metabolite) was approximately 19,000 (onion), 7000 (radish), and 6000 (spinach) ng g-1 (dry weight) respectively. This trend was considerably similar even when all these pharmaceuticals applied together. The accumulation of most other molecules (e.g., citalopram, clindamycin, clindamycin sulfoxide, fexofenadine, irbesartan, and sulfamethoxazole) was restricted to plant roots, except for certain cases (e.g., clindamycin and clindamycin sulfoxide in onion leaves). Our results clearly demonstrated the potential role of this accumulation process on the entrance of pharmaceuticals/metabolites into the food chain, which eventually becomes a threat to associated living biota.
Collapse
Affiliation(s)
- Sunil Paul M Menacherry
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic.
| | - Radka Kodešová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Helena Švecová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 38925, Vodňany, Czech Republic
| | - Aleš Klement
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Miroslav Fér
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Antonín Nikodem
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Roman Grabic
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 38925, Vodňany, Czech Republic
| |
Collapse
|
9
|
Extraction of ibuprofen from baby lettuces by Natural Deep Eutectic Systems. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Gautam K, Seth M, Dwivedi S, Jain V, Vamadevan B, Singh D, Roy SK, Downs CA, Anbumani S. Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 213:113689. [PMID: 35718163 DOI: 10.1016/j.envres.2022.113689] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C A Downs
- Haereticus Environmental Laboratory, Clifford, VA, 24522, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|