1
|
Tan A, Wang H, Zhang H, Zhang L, Yao H, Chen Z. Reduction of Cr(VI) by Bacillus toyonensis LBA36 and its effect on radish seedlings under Cr(VI) stress. PeerJ 2024; 12:e18001. [PMID: 39346031 PMCID: PMC11430171 DOI: 10.7717/peerj.18001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024] Open
Abstract
Chromium, being among the most toxic heavy metals, continues to demand immediate attention in the remediation of Cr-contaminated environments. In this study, a strain of LBA36 (Bacillus toyonensis) was isolated from heavy metal contaminated soil in Luanchuan County, Luoyang City, China. The reduction and adsorption rates of LBA36 in 30 mg·L-1 Cr-containing medium were 97.95% and 8.8%, respectively. The reduction mechanism was confirmed by Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cr(VI) reduction by this strain predominantly occurred outside the cell, with hydroxyl, amide, carboxyl, C-N group, carbonyl, and sulfur carbonyl as the main reaction sites. XPS analysis revealed the presence of Cr2p1/2 and Cr2p3/2. Furthermore, the hydroponic experiment showed that the fresh weight and plant height of radish seedlings increased by 87.87% and 37.07%, respectively, after inoculation with LBA36 strain under 7 mg·L-1 Cr(VI) stress. The levels of chlorophyll, total protein, malondialdehyde, superoxide dismutase and catalase were also affected to different degrees. In conclusion, this study demonstrated the potential of microbial and phytoremediation in the treatment of heavy metal toxicity, and laid the foundation for the development of effective bioremediation methods for Cr(VI) pollution.
Collapse
Affiliation(s)
- Aobo Tan
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hui Wang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hehe Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longfei Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hanyue Yao
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhi Chen
- Department of Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
2
|
Giaccio GCM, Saez JM, Estévez MC, Salinas B, Corral RA, De Gerónimo E, Aparicio V, Álvarez A. Developing a glyphosate-bioremediation strategy using plants and actinobacteria: Potential improvement of a riparian environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130675. [PMID: 36608579 DOI: 10.1016/j.jhazmat.2022.130675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate (Gly) and its principal degradation product, the aminomethylphosphonic acid (AMPA) were found in soils from a riparian environment in Argentina. Sixty-five actinobacteria were isolated from these soils, rhizosphere, and plants (Festuca arundinacea and Salix fragilis). The isolate Streptomyces sp. S5 was selected to be used as bioinoculant in a greenhouse test, in which plants, actinobacteria, and their combinations were assessed to bioremediate the riparian soil. The dissipation of both compounds were estimated. All treatments dissipated similarly the Gly, reaching 87-92 % of dissipation. AMPA, dissipation of 38 % and 42 % were obtained by Salix and Festuca, respectively, while they increased to 57 % and 70 % when the actinobacterium was added to each planted system. Regarding the total dissipation, the higher efficiencies for both compounds were achieved by the non-planted soils bioaugmented with the actinobacterium, with 91 % of Gly dissipated and 56 % for AMPA. According to our study, it could be suggested which strategy could be applied depending on the bioremediation type needed. If in situ bioremediation is necessary, the combination of phytoremediation and actinobacteria bioaugmentation could be convenient. On the other hand, if ex situ bioremediation is needed, the inoculation of the soil with an actinobacterium capable to dissipate Gly and AMPA could be the more efficient and easier alternative.
Collapse
Affiliation(s)
- Gustavo C M Giaccio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Chacra Experimental Integrada Barrow (MDA-INTA), Ruta 3 Km 488. 7500 Tres Arroyos, Buenos Aires, Argentina
| | - Juliana M Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina
| | - María C Estévez
- Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET), Batalla de Chacabuco 461, 4000 Tucumán, Argentina
| | - Bárbara Salinas
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Raúl A Corral
- Instituto Nacional de Tecnología Agropecuaria (INTA), Chacra Experimental Integrada Barrow (MDA-INTA), Ruta 3 Km 488. 7500 Tres Arroyos, Buenos Aires, Argentina
| | - Eduardo De Gerónimo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5. 7620 Balcarce, Buenos Aires, Argentina
| | - Virginia Aparicio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5. 7620 Balcarce, Buenos Aires, Argentina
| | - Analía Álvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
3
|
Pang F, Solanki MK, Wang Z. Streptomyces can be an excellent plant growth manager. World J Microbiol Biotechnol 2022; 38:193. [PMID: 35980475 DOI: 10.1007/s11274-022-03380-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces, the most abundant and arguably the most important genus of actinomycetes, is an important source of biologically active compounds such as antibiotics, and extracellular hydrolytic enzymes. Since Streptomyces can have a beneficial symbiotic relationship with plants they can contribute to nutrition, health and fitness of the latter. This review article summarizes recent research contributions on the ability of Streptomyces to promote plant growth and improve plant tolerance to biotic and abiotic stress responses, as well as on the consequences, on plant health, of the enrichment of rhizospheric soils in Streptomyces species. This review summarizes the most recent reports of the contribution of Streptomyces to plant growth, health and fitness and suggests future research directions to promote the use of these bacteria for the development of a cleaner agriculture.
Collapse
Affiliation(s)
- Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-701, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
4
|
Alvarez A, Rodríguez-Garrido B, Cerdeira-Pérez A, Tomé-Pérez A, Kidd P, Prieto-Fernández A. Enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingobium sp. strain D4 in the presence of root exudates or in co-culture with HCH-mobilizing strains. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128764. [PMID: 35390620 DOI: 10.1016/j.jhazmat.2022.128764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Lindane and other 1,2,3,4,5,6-hexachlorocyclohexane (HCH) isomers are persistent organic pollutants highly hydrophobic, which hampers their availability and biodegradation. This work aimed at (i) investigating genes encoding enzymes involved in HCH degradation in the bacterium Sphingobium sp. D4, (ii) selecting strains, from a collection of environmental isolates, able to mobilize HCHs from contaminated soil, and (iii) analysing the biodegradation of HCHs by strain D4 in co-culture with HCH-mobilizing strains or when cultivated with root exudates. Fragments of the same size and similar sequence to linA and linB genes were successfully amplified. Two isolates, Streptomyces sp. M7 and Rhodococcus erythropolis ET54b able to produce emulsifiers and to mobilize HCH isomers from soil were selected. Biodegradation of HCH isomers by strain D4 was enhanced when co-inoculated with HCH mobilizing strains or when cultivated with root exudates. The degrader strain D4 was able to decompose very efficiently HCHs isomers, reducing their concentration in soil slurries by more than 95% (from an average initial amount of 50 ± 8 mg HCH kg-1 soil) in 9 days. The combination of HCH-degrading and HCH-mobilizing strains can be considered a promising inoculum for future soil bioremediation studies using bioaugmentation techniques or in combination with plants in rhizodegradation assays.
Collapse
Affiliation(s)
- Analía Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina
| | - Beatriz Rodríguez-Garrido
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Andrea Cerdeira-Pérez
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Alba Tomé-Pérez
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Angeles Prieto-Fernández
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain.
| |
Collapse
|