1
|
Grigoraș CG, Simion AI, Drob C. Hydrogels Based on Chitosan and Nanoparticles and Their Suitability for Dyes Adsorption from Aqueous Media: Assessment of the Last-Decade Progresses. Gels 2024; 10:211. [PMID: 38534629 PMCID: PMC10970373 DOI: 10.3390/gels10030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Water is one of the fundamental resources for the existence of humans and the environment. Throughout time, due to urbanization, expanding population, increased agricultural production, and intense industrialization, significant pollution with persistent contaminants has been noted, placing the water quality in danger. As a consequence, different procedures and various technologies have been tested and used in order to ensure that water sources are safe for use. The adsorption process is often considered for wastewater treatment due to its straightforward design, low investment cost, availability, avoidance of additional chemicals, lack of undesirable byproducts, and demonstrated significant efficacious potential for treating and eliminating organic contaminants. To accomplish its application, the need to develop innovative materials has become an essential goal. In this context, an overview of recent advances in hydrogels based on chitosan and nanocomposites and their application for the depollution of wastewater contaminated with dyes is reported herein. The present review focuses on (i) the challenges raised by the synthesis process and characterization of the different hydrogels; (ii) the discussion of the impact of the main parameters affecting the adsorption process; (iii) the understanding of the adsorption isotherms, kinetics, and thermodynamic behavior; and (iv) the examination of the possibility of recycling and reusing the hydrogels.
Collapse
Affiliation(s)
- Cristina-Gabriela Grigoraș
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Andrei-Ionuț Simion
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Cătălin Drob
- Department of Engineering and Management, Mechatronics, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania;
| |
Collapse
|
2
|
Murashko K, Karhunen T, Meščeriakovas A, Subedi N, Lähde A, Jokiniemi J. Oxalic acid-assisted preparation of LTO-carbon composite anode material for lithium-ion batteries. NANOTECHNOLOGY 2024; 35:165603. [PMID: 38154136 DOI: 10.1088/1361-6528/ad1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/27/2023] [Indexed: 12/30/2023]
Abstract
This study presents an oxalic acid-assisted method for synthesizing spinel-structured lithium titanate (Li4Ti5O12; LTO)/carbon composite materials. The Ag-doped LTO nanoparticles (NPs) are synthesized via flame spray pyrolysis (FSP). The synthesized material is used as a precursor for synthesizing the LTO-NP/C composite material with chitosan as a carbon source and oxalic acid as an additive. Oxalic acid improves the dissolution of chitosan in water as well as changes the composition and physical and chemical properties of the synthesized LTO-NP/C composite material. The oxalic acid/chitosan ratio can be optimized to improve the electrochemical performance of the LTO-NP/C composite material, and the electrode synthesized with a high mass loading ratio (5.44 mg cm-2) exhibits specific discharge capacities of 156.5 and 136 mAh g-1at 0.05 C- and 10 C-rate currents, respectively. Moreover, the synthesized composite LTO-NP/C composite material exhibits good cycling stability, and only 1.7% decrease in its specific capacity was observed after 200 charging-discharging cycles at 10 C-rate discharging current.
Collapse
Affiliation(s)
- Kirill Murashko
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Tommi Karhunen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Arūnas Meščeriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Nabin Subedi
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Anna Lähde
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Jorma Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, FI-70211, Kuopio, Finland
| |
Collapse
|
3
|
Zhang R, Song C, Zhao Y, Zhang G, Xie L, Wei Z, Li H. A new strategy for treating Pb 2+ and Zn 2+ pollution with industrial waste derivatives Humin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121236. [PMID: 36758929 DOI: 10.1016/j.envpol.2023.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Metal pollution caused by industrial waste accumulation is a long-term and far-reaching problem. Humin (HM), as a highly condensed organic component insoluble in alkaline or water solution, is often discarded as humic acid industrial waste. However, the abundant active functional groups in HM reported by some researches make it possible for HM to remove metals. In this study, a waste reuse strategy was proposed to reduce the pressure of industrial metal pollution on the environment. HM was obtained from lignite waste residue. Scanning electron microscopy, energy spectrum and Fourier infrared spectroscopy, combined with the adsorption models were employed to reveal the mechanism of HM adsorption. The results showed that HM had multiple adsorption mechanism and high biological stability. The adsorption capacity of HM to Zn2+ and Pb2+ were 194.88 mg/g and 289.59 mg/g respectively. HM adsorbed Zn2+ mainly by physical multilayer adsorption. And the adsorption of Pb2+ by HM was mainly a monolayer chemical reaction, which depended on its active functional groups and the exchange of valence electrons. Notably, HM could simultaneously remove Pb2+ and Zn2+ and almost did not affect its original adsorption capacity to single ions. These results will provide a new strategy for the treatment of metal pollution in the future and alleviate the pressure of multiple metal pollution of the environment.
Collapse
Affiliation(s)
- Ruju Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Huiying Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
4
|
Gomase V, Jugade R, Doondani P, Deshmukh S, Saravanan D, Pandey S. Dual modifications of chitosan with PLK for amputation of cyanide ions: Equilibrium studies and optimization using RSM. Int J Biol Macromol 2022; 223:636-651. [PMID: 36370863 DOI: 10.1016/j.ijbiomac.2022.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
The aim of the study is to characterize and hierarchically modify chitosan using partially lateritized khondalite (PLK) rock. PLK is a metamorphic rock rich in mineral oxides and is not commercialized thus, treated as a mining reject. Chitosan was sequentially altered to Chitosan-PLK (Ch-PLK) and Chitosan-PLK-Epichlorohydrin (Ch-PLK-ECH) and both the materials were characterized by FT-IR, SEM, EDX, XRD, XRF and BET surface area analysis. The adsorbents were used for removal of cyanide ions from aqueous solution using batch adsorption experiments. The experiments were performed varying operational parameters and were optimized using RSM. The conditions optimized by RSM were carried out, more than 90 % of CN- adsorption was observed. The isotherm and kinetics studies have shown that the adsorption process fitted well with Langmuir isotherm model and pseudo second order kinetics. Using Langmuir isotherm, the maximum adsorption capacities of Ch-PLK and Ch-PLK-ECH towards cyanide ions at 30 °C were found to be 23.98 mg g-1 and 65.27 mg g-1 respectively. Thermodynamic studies described that adsorption process was spontaneous, enthalpy-driven over entire temperature range. Column studies established that the adsorbents may be applicable to large volume of samples. The adsorbents were tested for regeneration for 5 adsorption-desorption cycles suggesting reusability of the materials.
Collapse
Affiliation(s)
- Vaishnavi Gomase
- Department of Chemistry, R.T.M. Nagpur University, Nagpur 440033, India
| | - Ravin Jugade
- Department of Chemistry, R.T.M. Nagpur University, Nagpur 440033, India.
| | - Priyanka Doondani
- Department of Chemistry, R.T.M. Nagpur University, Nagpur 440033, India
| | | | - D Saravanan
- Department of Chemistry, National College, Tiruchirappalli, Tamilnadu 620001, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Luo Q, Cui W, Wang H, Xiao B, Chen L, Wang Y, Zhang Z, Liu Y, Cao X. Efficient capture of U(VI) by magnetic Zr(IV)-ethylenediamine tetramethylene phosphonic acid inorganic-organic hybrid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68320-68331. [PMID: 35536467 DOI: 10.1007/s11356-022-20548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The separation of magnetic adsorbents from aqueous solutions is made simple by using an external magnetic field. Herein, magnetic Zr(IV)-ethylenediamine tetramethylene phosphonic acid (EDTMPA) hybrids (MZrOP-x-T, x, and T were the different quality of Fe3O4@C and temperature in the synthesis process, respectively). A study was conducted on the uses of MZrOP-x-T in the capture of U(VI). The influences of pH, adsorption period, initial concentration, and temperature were all investigated. Furthermore, the desorption and reusability of the materials were explored. The optimal values of x and T were 0.2 g and 100 °C, respectively. At 298.15 K, the maximum adsorption capacity of MZrOP-0.2-100 was 330.30 mg·g-1. The current research demonstrates that MZrOP-0.2-100 is a potentially effective material in removing U(VI) from radioactive solution.
Collapse
Affiliation(s)
- Qie Luo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Wenzheng Cui
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Ministry of Education, Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Huan Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Bo Xiao
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Lei Chen
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Ministry of Education, Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Ministry of Education, Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Ministry of Education, Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Ministry of Education, Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
6
|
Ayub A, Srithilat K, Fatima I, Panduro-Tenazoa NM, Ahmed I, Akhtar MU, Shabbir W, Ahmad K, Muhammad A. Arsenic in drinking water: overview of removal strategies and role of chitosan biosorbent for its remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64312-64344. [PMID: 35849228 DOI: 10.1007/s11356-022-21988-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Accessibility to clean drinking water often remains a crucial task at times. Among other water pollutants, arsenic is considered a more lethal contaminant and has become a serious threat to human life globally. This review discussed the sources, chemistry, distribution, and toxicity of arsenic and various conventional technologies that are in option for its removal from the water system. Nowadays, biosorbents are considered the best option for arsenic-contaminated water treatment. We have mainly focused on the need and potential of biosorbents especially the role of chitosan-based composites for arsenic removal. The chitosan-based sorbents are economically more efficient in terms of their, low toxicity, cost-effectiveness, biodegradability, eco-friendly nature, and reusability. The role of various modification techniques, such as physical and chemical, has also been evaluated to improve the physicochemical properties of biosorbent. The importance of adsorption kinetic and isotherm models and the role of solution pH and pHPZC for arsenic uptake from the polluted water have also been investigated. Some other potential applications of chitosan-based biosorbents have also been discussed along with its sustainability aspect. Finally, some suggestions have been highlighted for further improvements in this field.
Collapse
Affiliation(s)
- Asif Ayub
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Khaysy Srithilat
- Faculty of Economics and Business Management, National University of Laos, Vientiane, Laos
| | - Irum Fatima
- Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt, Rawalpindi, 47040, Pakistan
| | - Nadia Masaya Panduro-Tenazoa
- Department of Aquaculture Agroforestry Engineering, National Intercultural University of the Amazon, Pucallpa, Peru
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Usman Akhtar
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Waqas Shabbir
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khalil Ahmad
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ali Muhammad
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
7
|
Luo L, Huang H, Heng Y, Shi R, Wang W, Yang B, Zhong C. Hierarchical-pore UiO-66-NH 2 xerogel with turned mesopore size for highly efficient organic pollutants removal. J Colloid Interface Sci 2022; 628:705-716. [PMID: 35944301 DOI: 10.1016/j.jcis.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023]
Abstract
Persistent organic pollutants in water are not only a potential threat to human health, but also cause damage to the ecological environment. Hence, the removal of large organic pollutants from wastewater is of great importance for environmental protection. Herein, hierarchical-pore UiO-66-NH2 xerogels (H-UiO-66-NH2 xerogels) with different mesopore size, H-UiO-66-NH2-11.6 nm and H-UiO-66-NH2-3.7 nm, were successfully synthesized by combining sol-gel-based method and acid modulator, featuring the characteristics of simple operation, rapid and scalable process, low cost, and the high space-time yield (STY). N2 adsorption-desorption isotherms reveal that the obtained H-UiO-66-NH2 xerogels possess high surface area, hierarchical-pore structures, large pore volume, and turntable mesopore size. Batch adsorption experiments demonstrate that H-UiO-66-NH2-11.6 nm has excellent adsorption performance for reactive red 195 (RR 195) dye removal. The maximum adsorption capacity of H-UiO-66-NH2-11.6 nm is 884.96 mg g-1, which is 4.7 times of the microporous UiO-66-NH2 (185.15 mg g-1). Moreover, the removal efficiency of H-UiO-66-NH2-11.6 nm for RR 195 can exceed 99 %. The adsorption mechanism reveals that the excellent RR 195 capture stems from the large mesoporous structure and abundant adsorption sites provided by the Zr cluster and -NH2 groups in H-UiO-66-NH2-11.6 nm. Besides, H-UiO-66-NH2-11.6 nm also exhibits a much larger adsorption capacity for some other organic pollutants, such as tetracycline, reactive black 5, and amoxicillin, demonstrating that the H-UiO-66-NH2 xerogel has great potential for organic pollutant removal.
Collapse
Affiliation(s)
- Liqiong Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Yu Heng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Ruimin Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Wenqiang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Bai Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
8
|
Balderas K, Taylor CL, Kang J. Comment on "The potential use of ultrasound-assisted bleaching in removing heavy metals and pigments from soybean oil using kinetic, thermodynamic and equilibrium modeling". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41863-41865. [PMID: 35314934 DOI: 10.1007/s11356-022-19844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Karen Balderas
- Department of Biology, Valdosta State University, Valdosta, GA, 31698, USA
| | - Caden L Taylor
- Department of Biology, Valdosta State University, Valdosta, GA, 31698, USA
| | - Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, GA, 31698, USA.
| |
Collapse
|
9
|
Zhang F, Liu J, Wu Y, Jin L, Wang Y, Xu Z. Study on the adsorption properties of multiple-generation hyperbranched collagen fibers towards isolan-series acid dyes. RSC Adv 2022; 12:6855-6868. [PMID: 35424590 PMCID: PMC8981992 DOI: 10.1039/d1ra08845a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
In the present study, collagen fibers derived from leather solid wastes were used and modified as insoluble vectors and successfully employed as adsorbents for the removal of acid dyes. A “one-step” method was applied to synthesis effective adsorbents, which provided a sustainable way to reuse leather solid wastes via multifunctional modification. The adsorption properties of amino-terminated hyperbranched polymer (HBPN)-modified collagen fibers for the removal of different kinds of acid dyestuff from aqueous solutions were studied. The adsorption capacities of the second generation of modified collagen fibers (CF-HBPN-II) toward Isolan Black 2S-LD, Supralan Yellow, Isolan Grey K-PBL 02, Isolan Dark Blue 2S-GL 03, and Isolan Brown NHF-S were determined to be 224.87, 340.14, 287.36, 317.80, and 251.25 mg g−1, respectively. Three kinetic models, namely, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were used to analyze the kinetic data. The fitting result indicated that the adsorption process of Isolan Black 2S-LD on CF-HBPN-II followed a pseudo-second-order rate model. The adsorption equilibrium of amino-terminated hyperbranched polymer-modified collagen fibers (CF-HBPN) was analyzed using the Langmuir, Freundlich and Temkin isotherm models. The Langmuir isotherm was suitable to describe the adsorption process of Isolan Black 2S-LD. RL was observed to be in the range of 0–1. The values of ΔH, ΔS and ΔG suggest that adsorption is an endothermic and spontaneous process. The adsorbed dye from the modified collagen fiber was successfully desorbed by 0.1 M NaOH. This research provides theoretical guidance for the engineering and recycling application of bio-based adsorbents. Collagen fibers extracted from leather wastes were modified by amino-terminated hyperbranched polymers to prepare CF-HBPN-I and CF-HBPN-II. The adsorption process of CF-HBPN-II toward Isolan Black 2S-LD is in accordance with the pseudo-second-order and Langmuir model.![]()
Collapse
Affiliation(s)
- Feifei Zhang
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Jie Liu
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Yuwei Wu
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Liqiang Jin
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Yulu Wang
- Faculty of Light Industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China .,Key Laboratory for Green Leather Manufacture Technology of China National Light Industry Council, Faculty of light industry, Qilu University of Technology (Shandong academy of sciences) Jinan 250353 China
| | - Zhou Xu
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province Yibin 644000 China
| |
Collapse
|