1
|
Mangla A, Goswami P, Sharma B, Suramya S, Jindal G, Javed M, Saifi MA, Parvez S, Nag TC, Raisuddin S. Obesity aggravates neuroinflammatory and neurodegenerative effects of bisphenol A in female rats. Toxicol Mech Methods 2024; 34:781-794. [PMID: 38699799 DOI: 10.1080/15376516.2024.2349538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Bisphenol A (BPA), a common plasticizer, is categorized as a neurotoxic compound. Its impact on individuals exhibits sex-linked variations. Several biological and environmental factors impact the degree of toxicity. Moreover, nutritional factors have profound influence on toxicity outcome. BPA has been demonstrated to be an obesogen. However, research on the potential role of obesity as a confounding factor in BPA toxicity is lacking. We studied the neurodegenerative effects in high-fat diet (HFD)-induced obese female rats after exposure to BPA (10 mg/L via drinking water for 90 days). Four groups were taken in this study - Control, HFD, HFD + BPA and BPA. Cognitive function was evaluated through novel object recognition (NOR) test. Inflammatory changes in brain, and changes in hormonal level, lipid profile, glucose tolerance, oxidative stress, and antioxidants were also determined. HFD + BPA group rats showed a significant decline in memory function in NOR test. The cerebral cortex (CC) of the brain showed increased neurodegenerative changes as measured by microtubule-associated protein-2 (MAP-2) accompanied by histopathological confirmation. The increased level of neuroinflammation was demonstrated by microglial activation (Iba-1) and protein expression of nuclear factor- kappa B (NF-КB) in the brain. Obesity also caused significant (p < 0.05) increase in lipid peroxidation accompanied by reduced activities of antioxidant enzymes (glutathione S-transferase, catalase and glutathione peroxidase) and decrease in reduced-glutathione (p < 0.05) when compared to non-obese rats with BPA treatment. Overall, study revealed that obesity serves as a risk factor in the toxicity of BPA which may exacerbate the progression of neurological diseases.
Collapse
Affiliation(s)
- Anuradha Mangla
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Poonam Goswami
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Bhaskar Sharma
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Suramya Suramya
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Garima Jindal
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mehjbeen Javed
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mohd Anas Saifi
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Suhel Parvez
- Neurobiology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Tapas Chandra Nag
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheikh Raisuddin
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
2
|
Al-Shami AS, Abd Elkader HTAE, Moussa N, Essawy AE, Haroun M. Early-life bisphenol A exposure causes neuronal pyroptosis in juvenile and adult male rats through the NF-κB/IL-1β/NLRP3/caspase-1 signaling pathway: exploration of age and dose as effective covariates using an in vivo and in silico modeling approach. Mol Cell Biochem 2024:10.1007/s11010-024-05039-4. [PMID: 38941031 DOI: 10.1007/s11010-024-05039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Bisphenol A (BPA), a common endocrine-disrupting chemical, is found in a wide range of home plastics. Early-life BPA exposure has been linked to neurodevelopmental disorders; however, the link between neuroinflammation, pyroptosis, and the development of psychiatric disorders is rarely studied. The current study attempted to investigate the toxic effect of BPA on inflammatory and microglial activation markers, as well as behavioral responses, in the brains of male rats in a dose- and age-dependent manner. Early BPA exposure began on postnatal day (PND) 18 at dosages of 50 and 125 mg/kg/day. We started with a battery of behavioral activities, including open field, elevated plus- and Y-maze tests, performed on young PND 60 rats and adult PND 95 rats. BPA causes anxiogenic-related behaviors, as well as cognitive and memory deficits. The in vivo and in silico analyses revealed for the first time that BPA is a substantial activator of nuclear factor kappa B (NF-κB), interleukin (IL)-1β, -2, -12, cyclooxygenase-2, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with higher beclin-1 and LC3B levels in BPA rats' PFC and hippocampus. Furthermore, BPA increased the co-localization of caspase-1 immunoreactive neurons, as well as unique neurodegenerative histopathological hallmarks. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation are involved with changes in the brain after postnatal BPA exposure and that these alterations may be linked to the development of psychiatric conditions later in life. Collectively, our findings indicate that BPA triggers anxiety-like behaviors and pyroptotic death of nerve cells via the NF-κB/IL-1β/NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Nermine Moussa
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Ahmad I, Kaur M, Tyagi D, Singh TB, Kaur G, Afzal SM, Jauhar M. Exploring novel insights into the molecular mechanisms underlying Bisphenol A-induced toxicity: A persistent threat to human health. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104467. [PMID: 38763439 DOI: 10.1016/j.etap.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of polycarbonate plastics and epoxy resins, found in numerous consumer products. Despite its widespread use, its potential adverse health effects have raised significant concerns. This review explores the molecular mechanisms and evidence-based literature underlying BPA-induced toxicities and its implications for human health. BPA is an endocrine-disrupting chemical (EDC) which exhibits carcinogenic properties by influencing various receptors, such as ER, AhR, PPARs, LXRs, and RARs. It induces oxidative stress and contributes to cellular dysfunction, inflammation, and DNA damage, ultimately leading to various toxicities including but not limited to reproductive, cardiotoxicity, neurotoxicity, and endocrine toxicity. Moreover, BPA can modify DNA methylation patterns, histone modifications, and non-coding RNA expression, leading to epigenetic changes and contribute to carcinogenesis. Overall, understanding molecular mechanisms of BPA-induced toxicity is crucial for developing effective strategies and policies to mitigate its adverse effects on human health.
Collapse
Affiliation(s)
- Israel Ahmad
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Mandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Devansh Tyagi
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Tejinder Bir Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Gurpreet Kaur
- School of Business Studies, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Shaikh Mohammad Afzal
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Mohsin Jauhar
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| |
Collapse
|
4
|
Yahyazadeh A. The effectiveness of hesperidin on bisphenol A-induced spinal cord toxicity in a diabetic rat model. Toxicon 2024; 243:107724. [PMID: 38649116 DOI: 10.1016/j.toxicon.2024.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
The potential health risks of bisphenol A (BS) and diabetes (DI) has sparked public concern due to be ubiquitous worldwide. The purpose of this study was to investigate the detrimental impact of BS (200 mg/kg) on the spinal cord tissue in a rat diabetic model. We also evaluated the antioxidant capacity of hesperidin (HS) (100 mg/kg) on spinal cord in BS-treated diabetic rat. Seventy male Wistar albino rats, weighing 180-230 g and 8 weeks old, were randomly chosen, and assigned into seven groups of 10 rats: Control (KON), BS, DI, BS + DI, HS + BS, HS + DI, HS + BS + DI. At the end of the 14-day experimental period, all samples were examined using stereological, biochemical, and histopathological techniques. Our biochemical findings revealed that the SOD level was significantly lower in the BS, DI, and BS + DI groups compared to the KON group (p < 0.05). Compared to the KON group, there was a significant decrease in the number of motor neurons and an increase in the mean volume of central canals in the BS, DI, and BS + DI groups (p < 0.05). In the HS + BC group than the BS group and in the HS + DI group than the DI group, SOD activity and the number of motor neurons were significantly higher; also, the mean volume of spinal central canal was significantly lower (p < 0.05). The novel findings gathered from the histopathological assessment supported our quantitative results. Our speculation was that the exposure to BS and DI was the main cause of neurological alteration in the spinal cord tissues. The administration of HS had the therapeutic potential to mitigate spinal cord abnormalities resulting from BS and DI. However, HS supplementation did not alleviate spinal cord complications in BS-treated diabetic rats.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
5
|
Musachio EAS, Janner DE, Meichtry LB, Fernandes EJ, Gomes NS, Romio LC, Guerra GP, Prigol M. Bisphenol F and Bisphenol S exposure during development reduce neuronal ganglia integrity and change behavioral profile of Drosophila melanogaster larvae. Behav Brain Res 2024; 459:114753. [PMID: 37949320 DOI: 10.1016/j.bbr.2023.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The behavior and neuronal ganglia integrity of Drosophila melanogaster larvae exposed to Bisphenol F (BPF) and Bisphenol S (BPS) (0.25, 0.5 and 1 mM) was evaluated. Larvae exposed to BPF and BPS (0.5 and 1 mM) showed hyperactivity, reduced decision-making capacity and were not responsive to touch (no sensitivity to physical stimuli). There was also a reduction in the tunneling capacity induced by 1 mM of BPF and BPS (innate behaviors for survival). Behaviors resulting from changes in neuronal functioning, thermotaxis and phototaxis showed that BPS was more harmful compared to BPF. Furthermore, the concentration of 1 mM BPS generated greater damage to neuronal ganglia when compared to BPF. This difference may be related to the LC50 of the 10.04 mM BPS and 15.07 mM BPF. However, these behavioral changes presented by the larvae here are characteristic of those presented in neurodevelopmental disorders. Our findings are novel and refute the possibility that BPF and BPS are safer alternatives.
Collapse
Affiliation(s)
- Elize A Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | - Nathalie Savedra Gomes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil
| | | | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil; Department of Food Science and Technology, Federal University of Pampa, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui, RS, Brazil.
| |
Collapse
|
6
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
7
|
Huang S, Wang K, Huang D, Su X, Yang R, Shao C, Jiang J, Wu J. Bisphenol AF Induces Prostatic Dorsal Lobe Hyperplasia in Rats through Activation of the NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:16221. [PMID: 38003411 PMCID: PMC10671145 DOI: 10.3390/ijms242216221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bisphenol AF (BPAF) represents a common environmental estrogenic compound renowned for its capacity to induce endocrine disruptions. Notably, BPAF exhibits an enhanced binding affinity to estrogen receptors, which may have more potent estrogenic activity compared with its precursor bisphenol A (BPA). Notwithstanding, the existing studies on BPAF-induced prostate toxicity remain limited, with related toxicological research residing in the preliminary stage. Our previous studies have confirmed the role of BPAF in the induction of ventral prostatic hyperplasia, but its role in the dorsal lobe is not clear. In this study, BPAF (10, 90 μg/kg) and the inhibitor of nuclear transcription factor-κB (NF-κB), pyrrolidinedithiocarbamate (PDTC, 100 mg/kg), were administered intragastrically in rats for four weeks. Through comprehensive anatomical and pathological observations, as well as the assessment of PCNA over-expression, we asserted that BPAF at lower doses may foster dorsal prostatic hyperplasia in rats. The results of IHC and ELISA indicated that BPAF induced hyperplastic responses in the dorsal lobe of the prostate by interfering with a series of biomarkers in NF-κB signaling pathways, containing NF-κB p65, COX-2, TNF-α, and EGFR. These findings confirm the toxic effect of BPAF on prostate health and emphasize the potential corresponding mechanisms.
Collapse
Affiliation(s)
- Sisi Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Kaiyue Wang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Dongyan Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Xin Su
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Rongfu Yang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Congcong Shao
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Juan Jiang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Jianhui Wu
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| |
Collapse
|
8
|
Abd Elkader HTAE, Al-Shami AS. Chronic exposure to bisphenol A induces behavioural, neurochemical, histological, and ultrastructural alterations in the ganglia tissue of the date mussels Lithophaga lithophaga. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109041-109062. [PMID: 37768489 PMCID: PMC10622395 DOI: 10.1007/s11356-023-29853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA), a common plastic additive, has been demonstrated mechanistically to be a potential endocrine disruptor and to affect a variety of body functions in organisms. Although previous research has shown that BPA is toxic to aquatic organisms, the mechanism of neurotoxic effects in marine bivalves remains unknown. The current study aimed to elucidate the neurotoxic effects of BPA when administered at different concentrations (0.25, 1, 2, and 5 µg/L) for twenty-eight days in the ganglia of a bivalve model, the Mediterranean mussel (Lithophaga lithophaga), which is an ecologically and economically important human food source of bivalve species in the Mediterranean Sea. Our findings revealed an increase in behavioural disturbances and malondialdehyde levels in treated mussel ganglia compared to the control group. Furthermore, superoxide dismutase activity increased in the ganglia of L. lithophaga treated with 0.25 and 2 µg/L. However, at BPA concentrations of 1 and 5 µg/L, SOD activity was significantly reduced, as was total glutathione concentration. BPA causes neurotoxicity, as evidenced by concentration-dependent inhibition of acetylcholinesterase, dopamine, and serotonin. After chronic exposure to BPA, neurons showed distortion of the neuronal cell body and varying degrees of pyknosis. The ultrastructure changes in BPA-treated groups revealed the lightening of the nucleoplasm and a shrunken nuclear envelope. Overall, our findings suggest that BPA exposure altered antioxidation, neurochemical biomarkers, histopathological, and ultrastructural properties, resulting in behavioural changes. As a result, our findings provide a basis for further study into the toxicity of BPA in marine bivalves.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
10
|
Law J, Orbach SM, Weston BR, Steele PA, Rajagopalan P, Murali TM. Computational Construction of Toxicant Signaling Networks. Chem Res Toxicol 2023; 36:1267-1277. [PMID: 37471124 PMCID: PMC10445288 DOI: 10.1021/acs.chemrestox.2c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 07/21/2023]
Abstract
Humans and animals are regularly exposed to compounds that may have adverse effects on health. The Toxicity Forecaster (ToxCast) program was developed to use high throughput screening assays to quickly screen chemicals by measuring their effects on many biological end points. Many of these assays test for effects on cellular receptors and transcription factors (TFs), under the assumption that a toxicant may perturb normal signaling pathways in the cell. We hypothesized that we could reconstruct the intermediate proteins in these pathways that may be directly or indirectly affected by the toxicant, potentially revealing important physiological processes not yet tested for many chemicals. We integrate data from ToxCast with a human protein interactome to build toxicant signaling networks that contain physical and signaling protein interactions that may be affected as a result of toxicant exposure. To build these networks, we developed the EdgeLinker algorithm, which efficiently finds short paths in the interactome that connect the receptors to TFs for each toxicant. We performed multiple evaluations and found evidence suggesting that these signaling networks capture biologically relevant effects of toxicants. To aid in dissemination and interpretation, interactive visualizations of these networks are available at http://graphspace.org.
Collapse
Affiliation(s)
- Jeffrey
N. Law
- Interdisciplinary
Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Blacksburg, Virginia 24061, United States
| | - Sophia M. Orbach
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bronson R. Weston
- Interdisciplinary
Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Blacksburg, Virginia 24061, United States
| | - Peter A. Steele
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Padmavathy Rajagopalan
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T. M. Murali
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Kim H, Park H, Hwang B, Kim S, Choi YH, Kim WJ, Moon SK. Bisphenol A exposure inhibits vascular smooth muscle cell responses: Involvement of proliferation, migration, and invasion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104060. [PMID: 36610522 DOI: 10.1016/j.etap.2023.104060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have associated bisphenol A (BPA) with malignant tumor formation, infertility, and atherosclerosis in vitro and in vivo. However, the precise mechanisms through which BPA affects the cardiovascular system under normal conditions remain unclear. Therefore, this study investigated the biological mechanisms through which BPA affects the responses of aortic vascular smooth muscle cells (VSMCs). BPA treatment inhibited the proliferative activity of VSMCs and induced G2/M-phase cell cycle arrest via stimulation of the ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade in VSMCs. Furthermore, BPA treatment upregulated the phosphorylation of mitogen-activated protein kinase (MAPK) pathways such as ERK, JNK, and p38 MAPK in VSMCs. However, the phosphorylation level of AKT was down-regulated by BPA treatment. Additionally, the phosphorylation of ERK, JNK, and p38 MAPK was suppressed when the cells were treated with their respective inhibitors (U0126, SP600125, and SB203580). BPA suppressed MMP-9 activity by reducing the binding activity of AP-1, Sp-1, and NF-κB, thus inhibiting the invasive and migratory ability of VSMCs. These data demonstrate that BPA interferes with the proliferation, migration, and invasion capacities of VSMCs. Therefore, our findings suggest that overexposure to BPA can lead to cardiovascular damage due to dysregulated VSMC responses.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hongbum Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Soobin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Institute of Urotech, Cheongju, Chungbuk 28120, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
12
|
Shawahna R. Effects of a grapeseed oil (Vitis vinifera L.) loaded dermocosmetic nanoemulgel on biophysical parameters of facial skin: A split-face, blinded, placebo-controlled study. J Cosmet Dermatol 2022; 21:5730-5738. [PMID: 35713012 DOI: 10.1111/jocd.15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Worldwide, grapes (Vitis vinifera L.; family: Vitaceae) are one of the most important fruits. Grapeseed oil is rich in bioactive constituents that could be beneficial to the health and aesthetic features of human skin. OBJECTIVE This study was conducted to evaluate the effects of a novel grapeseed oil-loaded dermocosmetic nanoemulgel on biophysical parameters of facial skin. METHODS This was a split-face, blinded, placebo-controlled study. A novel grapeseed oil-loaded dermocosmetic nanoemulgel was developed, and its effects on the biophysical parameters of the facial skin were evaluated and compared to those of a placebo formulation on the cheeks of 15 healthy volunteers. Melanin, erythema, sebum production, fine and large facial pores, moisture, and elasticity levels were measured using Mexameter®, Corneometer®, Sebumeter®, Cutometer®, and VisioFace®. Measurements were made on weekly basis for 12 weeks. RESULTS Compared to the placebo, the novel grapeseed oil-loaded dermocosmetic nanoemulgel received significantly higher sensory scores with regard to appearance, color, odor, consistency, adhesion, sensation, cohesiveness, and spreadability (p-value < 0.05). Additionally, the novel nanoemulgel continuously and significantly reduced skin melanin, erythema, sebum production, and fine and large pores (p-value < 0.05). On the contrary, the novel nanoemulgel continuously and significantly increased skin moisture contents and elasticity (p-value < 0.05). CONCLUSION The novel grapeseed oil-loaded dermocosmetic nanoemulgel had attractive cosmetic attributes that could be useful for improving imperfections of the human skin. Future studies are still needed to test and evaluate the benefits of this novel grapeseed oil-loaded dermocosmetic nanoemulgel in disease conditions.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.,An-Najah BioSciences Unit, Centre for Poisons Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine
| |
Collapse
|
13
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
14
|
Grape Seed Proanthocyanidins Exert a Neuroprotective Effect by Regulating Microglial M1/M2 Polarisation in Rats with Spinal Cord Injury. Mediators Inflamm 2022; 2022:2579003. [PMID: 35966334 PMCID: PMC9371824 DOI: 10.1155/2022/2579003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a highly disabling disorder for which few effective treatments are available. Grape seed proanthocyanidins (GSPs) are polyphenolic compounds with various biological activities. In our preliminary experiment, GSP promoted functional recovery in rats with SCI, but the mechanism remains unclear. Therefore, we explored the protective effects of GSP on SCI and its possible underlying mechanisms. We found that GSP promoted locomotor recovery, reduced neuronal apoptosis, increased neuronal preservation, and regulated microglial polarisation in vivo. We also performed in vitro studies to verify the effects of GSP on neuronal protection and microglial polarisation and their potential mechanisms. We found that GSP regulated microglial polarisation and inhibited apoptosis in PC12 cells induced by M1-BV2 cells through the Toll-like receptor 4- (TLR4-) mediated nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinase/serine threonine kinase (PI3K/AKT) signaling pathways. This suggests that GSP regulates microglial polarisation and prevents neuronal apoptosis, possibly by the TLR4-mediated NF-κB and PI3K/AKT signaling pathways.
Collapse
|