1
|
Lu L, Shan C, Tong D, Yu Y, Zhang W, Zhang X, Shu Y, Li W, Liu G, Shi W. Olfactory toxicity of tetrabromobisphenol A to the goldfish Carassius auratus. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135661. [PMID: 39213767 DOI: 10.1016/j.jhazmat.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and its increasing use in consumer products has raised concerns about its ecotoxicity. Given the ubiquity of TBBPA in aquatic environments, it is inevitable that these chemicals will enter the olfactory chambers of fish via water currents. Nevertheless, the olfactory toxicity of TBBPA to aquatic organisms and the underlying toxic mechanisms have yet to be elucidated. Therefore, we investigated the olfactory toxicity of TBBPA in the goldfish Carassius auratus, a model organism widely used in sensory biology. Results showed that exposure to TBBPA resulted in abnormal olfactory-mediated behaviors and diminished electro-olfactogram (EOG) responses, indicating reduced olfactory acuity. To uncover the underlying mechanisms of action, we examined the structural integrity of the olfactory epithelium (OE), expression levels of olfactory G protein-coupled receptors (GPCRs), enzymatic activities of ion transporters, and fluctuations in neurotransmitters. Additionally, comparative transcriptomic analysis was employed to investigate the molecular mechanisms further. Our study demonstrates for the first time that TBBPA at environmentally relevant levels can adversely affect the olfactory sensitivity of aquatic organisms by interfering with the transmission of aqueous stimuli to olfactory receptors, impeding the binding of odorants to their receptors, disrupting the olfactory signal transduction pathway, and ultimately affecting the generation of action potentials.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Ahmed A, Rahman MS. Histological, biochemical and immunohistochemical assessments of Roundup®, atrazine, and 2,4-D mixtures on tissue architecture, body fluid conditions, nitrotyrosine protein and Na +/K +-ATPase expressions in the American oyster, Crassostera virginica. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109951. [PMID: 38844188 DOI: 10.1016/j.cbpc.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Pesticides are widely used to control weeds and pests in agricultural settings but harm non-target aquatic organisms. In this study, our objective was to evaluate the effect of short-term exposure (one week) to environmentally relevant concentrations of pesticides mixture (low concentration: 0.4 μg/l atrazine, 0.5 μg/l Roundup®, and 0.5 μg/l 2,4-D; high concentration: 0.8 μg/l atrazine, 1 μg/l Roundup®, and 1 μg/l 2,4-D) on tissue architecture, body fluid conditions, and 3-nitrotyrosine protein (NTP) and Na+/K+-ATPase, expressions in tissues of American oyster (Crassostrea virginica) under controlled laboratory conditions. Histological analysis demonstrated the atrophy in the gills and digestive glands of oysters exposed to pesticides mixture. Periodic acid-Schiff (PAS) staining showed the number of hemocytes in connective tissue increased in low- and high-concentration pesticides exposure groups. However, pesticides treatment significantly (P < 0.05) decreased the amount of mucous secretion in the gills and digestive glands of oysters. The extrapallial fluid (i.e., body fluid) protein concentrations and glucose levels were dropped significantly (P < 0.05) in oysters exposed to high-concentration pesticides exposure groups. Moreover, immunohistochemical analysis showed significant upregulations of NTP and Na+/K+-ATPase expressions in the gills and digestive glands in pesticides exposure groups. Our results suggest that exposure to environmentally relevant pesticides mixture causes morphological changes in tissues and alters body fluid conditions and NTP and Na+/K+-ATPase expressions in tissues, which may lead to impaired physiological functions in oysters.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
3
|
de Souza SS, Bruce KHR, da Costa JC, Pereira D, da Silva GS, Val AL. Effects of climate change and mixtures of pesticides on the Amazonian fish Colossoma macropomum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171379. [PMID: 38431165 DOI: 10.1016/j.scitotenv.2024.171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Several studies highlighted the complexity of mixing pesticides present in Amazonian aquatic environments today. There is evidence that indicates that ongoing climate change can alter the pattern of pesticide use, increasing the concentration and frequency of pesticide applications. It is known that the combination of thermal and chemical stress can induce interactive effects in aquatic biota, which accentuates cell and molecular damage. However, considering that the effects of climate change go beyond the increase in temperature the objective of this study was to evaluate the effect of climate change scenarios proposed by 6 th IPCC report and a mixture of pesticides on the tambaqui (Colossoma macropomum). The hypothesis of this study is that the negative effects will be accentuated by the combination of an extreme climate changes scenario and a mixture of pesticides. To test the hypothesis, juvenile tambaqui were exposed to a combination of four pesticides (chlorpyrifos, malathion, carbendazim and atrazine) in two scenarios, one that simulates current environmental conditions and another that predicted the environmental scenario for the year 2100. Fish were subjected to the experimental conditions for 96 h. At the end of the experiment, samples of blood, gills, liver, brain, and muscle were obtained for hematological, genotoxic, biochemical, and histopathological analyses. The results demonstrate that environmentally realistic concentrations of pesticides, when mixed, can alter the biochemical responses of tambaqui. The extreme scenario promotes hematological adjustments, but impairs branchial antioxidant enzymes. There is an interaction between the mixture of pesticides and the extreme scenario, accentuating liver tissue damage, which demonstrates that even increased activity of antioxidant and biotransformation enzymes were not sufficient to prevent liver damage.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| | - Kerem Hapuque Rodrigues Bruce
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Jaqueline Custódio da Costa
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Desyree Pereira
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| |
Collapse
|
4
|
Noor MI, Rahman MS. Roundup® disrupts tissue architecture, attenuates Na +/K +-ATPase expression, and induces protein oxidation/nitration, cellular apoptosis, and antioxidant enzyme expressions in the gills of goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109710. [PMID: 37532112 DOI: 10.1016/j.cbpc.2023.109710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Extensive agricultural activities to feed the growing population are one major driving force behind aquatic pollution. Different types of pesticides are used in farmlands to increase crop production and wash up into water bodies. Glyphosate-based herbicide Roundup® is one of the most used pesticides in the United States; however, its effects on teleost species are still poorly understood. This study focused on the effects of environmentally relevant concentrations of Roundup exposure (low- and high-dose: 0.5 and 5 μg/L for 2-week) on Na+/K+-ATPase (NKA, a biomarker for sodium‑potassium ion pump efficacy), cytochrome P450-1A (CYP1A, a monooxygenase enzyme), 2,4-dinitrophenyl protein (DNP, a biomarker for protein oxidation), 3-nitrotyrosine protein (NTP, a biomarker for protein nitration), superoxidase dismutase (SOD, an antioxidant enzyme), catalase (CAT, an antioxidant enzyme) expressions, and cellular apoptosis in the gills of goldfish. Histopathological and in situ TUNEL analyses showed widespread tissue damage, including lamellar fusion, loss of gill architecture, club shape of primary lamellae, mucous formation, and distortion in the epithelium layer, as well as apoptotic nuclei in gills. Immunohistochemical and qRT-PCR analyses provided insights into the expressions of molecular indicators in gills. Fish exposed to Roundup exhibited a significant (P < 0.05) downregulation of NKA expression in gills. Additionally, we observed upregulation of CYP1A, DNP, NTP, SOD, and CAT expressions in the gills of goldfish. Overall, our results suggest that exposure to Roundup causes disruption of gill architecture, induces protein oxidation/nitration and cellular apoptosis, and alters prooxidant-antioxidant homeostasis in tissues, which may lead to reduced fitness and survivability of teleost species.
Collapse
Affiliation(s)
- Md Imran Noor
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
5
|
Chowdhury A, Rahman MS. Molecular and biochemical biomarkers in the American oyster Crassostrea virginica exposed to herbicide Roundup® at high temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94757-94778. [PMID: 37540412 DOI: 10.1007/s11356-023-28862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Aquatic organisms are frequently exposed to various environmental stressors. Thus, the effects of high temperatures and herbicides on aquatic organisms are a major subject of interest. In this study, we studied the effects of short-term exposure (1 week) to Roundup®, a glyphosate-based herbicide (concentrations: 0.5 and 5 µg/L), on the morphology of gills, digestive glands, and connective tissues, and the expression of heat shock protein-70 (HSP70, a chaperone protein), cytochrome P450 (CYP450, a biomarker of environmental contaminants), dinitrophenyl protein (DNP, a biomarker of protein oxidation), nitrotyrosine protein (NTP, a biomarker of protein nitration), antioxidant enzymes such as superoxidase dismutase (SOD) and catalase (CAT) in tissues of American oyster, Crassostrea virginica (Gmelin, 1791) maintained at high temperature (30 °C). Histological analyses showed an increase in mucous production in the gills and digestive glands, and in hemocyte aggregation in the connective tissues as well as a structural change of lumen in the digestive glands of oysters exposed to Roundup. Immunohistochemical and quantitative RT-PCR analyses showed significant (P < 0.05) increases in HSP70, CYP450, DNP, NTP, CAT, and SOD mRNA and protein expressions in the tissues of oysters exposed to Roundup. Taken together, these results suggest that exposure to Roundup at high temperature induces overproduction of reactive oxygen species/reactive nitrogen species which in turn leads to altered prooxidant-antioxidant activity in oyster tissues. Moreover, our results provide new information on protein oxidation/nitration and antioxidant-dependent mechanisms for HSP70 and CYP450 regulations in oysters exposed to Roundup at high temperature.
Collapse
Affiliation(s)
- Afsana Chowdhury
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, 1 West University Blvd, TX, 78520, Brownsville, USA.
| |
Collapse
|
6
|
Lacy B, Rivera M, Flores L, Rahman MS. Combined effects of high temperature and pesticide mixture exposure on free-swimming behaviors and hepatic cytochrome P450 1A expression in goldfish, Carassius auratus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:144-165. [PMID: 36756740 DOI: 10.1080/15287394.2023.2174463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synergy between multiple compounds and other stressors, including heat, creates volatility and greater unpredictability than standard single-chemical toxicity testing, especially in the case of pesticides and metabolites which might contain several noxious ingredients resulting in adverse ecological effects. To address this, the aim of this study was to examine the dose- and time-dependent effects of low- and high-dose pesticide mixture (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, azinphos-methyl) and heat stress co-exposure (22°C control/32°C treatment for 4-week) on free-swimming behaviors and cumulative actionless time (CAT) of goldfish. Behavioral analysis showed a dose- and time-dependent decrease in distance swam, as well as a subsequent increase in CAT. Vertical and horizontal spatial behavioral use were affected under heat and pesticides co-exposure conditions. In 3- and 4-week(s) exposure groups, horizontal spatial behavioral use demonstrated elevated time spent in the lower third of the aquarium. Similarly, during 3- and 4-week(s) exposure (32°C control and 32°C high doses) vertical spatial behavioral use was found to increase time spent in the outermost edges of the aquarium. In all treatment groups, the final condition factor (KM) showed significant attenuation when compared to the initial KM. However, there was an unclear relationship between heat/pesticide co-exposure and growth most notably in 32°C high-dose groups. In addition, the expression of hepatic cytochrome P450 1A mRNA was significantly higher in pesticide-exposed groups. Taken together, data demonstrated that co-exposure with low- or high-dose pesticide mixture and heat stress significantly impacted natural swimming patterns, which over time might result in the broader population and ecological effects.
Collapse
Affiliation(s)
- Brittney Lacy
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Michelle Rivera
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Leinady Flores
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
7
|
Rahman MF, Billah MM, Kline RJ, Rahman MS. Effects of elevated temperature on 8-OHdG expression in the American oyster ( Crassostrea virginica): Induction of oxidative stress biomarkers, cellular apoptosis, DNA damage and γH2AX signaling pathways. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100079. [PMID: 36589260 PMCID: PMC9798191 DOI: 10.1016/j.fsirep.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8‑hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters.
Collapse
Key Words
- 8-OHdG, 8‑hydroxy-2′-deoxyguanosine
- BAX, bcl-2-associate X
- BSA, bovine serum albumin
- CAS-3, caspase-3
- Caspase 3
- DSBs, double-stranded breaks
- EP, extrapallial
- Extrapallial fluid
- HSP70
- HSP70, heat shock protein 70
- Heat stress
- Marine mollusks
- PBS, Phosphate buffer saline
- SSBs, single-stranded breaks
- TUNEL, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling
- dsDNA breaks
- dsDNA, double-stranded DNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- ssDNA, single-stranded DNA
- γ-H2AX, γ-histone family member X
Collapse
Affiliation(s)
- Md Faizur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J. Kline
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA,Corresponding author at: Department of Biology, University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, Texas 78520, USA.
| |
Collapse
|