1
|
Li H, Liu C, Ni JQ, Zhuo G, Li Y, Zheng Y, Zhen G. Impact of cellulolytic nitrogen-fixing composite inoculants on humification pathways and nitrogen cycling in kitchen waste composting. BIORESOURCE TECHNOLOGY 2025; 416:131819. [PMID: 39547296 DOI: 10.1016/j.biortech.2024.131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Low humification and nitrogen loss pose substantial challenges to the resource utilization in kitchen waste composting. This study investigated the effects of brown-rot fungi (BRF), cellulolytic nitrogen fixing bacteria (CNFB), and their composite microbial inoculants (CMI) during composting. Results indicated that microbial inoculants extended the thermophilic phase and enhanced cellulose degradation. Compared with the control, the degree of polymerization (HA/FA) in BRF, CNFB, and CMI was 2.28, 1.85, and 2.68 times higher, respectively, while increasing total nitrogen by 11.15%, 15.50%, and 19.73%. BRF and CMI primarily enhanced the Maillard humification pathway, while CNFB promoted the polyphenol humification pathway. Additionally, BRF enhanced nitrification and reduced denitrification, whereas CNFB and CMI improved nitrification, nitrogen fixation, and ammonification while reducing denitrification. Overall, BRF primarily promoted humification, while CNFB excelled in nitrogen retention. The CMI achieved optimal humification and nitrogen retention, indicating a potential sustainable solution for kitchen waste composting.
Collapse
Affiliation(s)
- Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China.
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Yuhui Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Guangyin Zhen
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China; School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Liu C, Li H, Ni JQ, Zhuo G, Zhang Q, Zheng Y, Zhen G. Synergistic effects of heterogeneous mature compost and aeration rate on humification and nitrogen fixing during kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123743. [PMID: 39693993 DOI: 10.1016/j.jenvman.2024.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Sludge mature compost (SMC) is notable for its high production, easy accessibility, and stable supply. This study investigated the impact of the SMC addition and different aeration rates on the humification and nitrogen fixing process during kitchen waste composting. The results demonstrated that addition of SMC prolonged the thermophilic phase, as a comparison, increased aeration shortened this phase. The addition of SMC and increased aeration enhanced humus formation and nitrogen retention. SMC introduced more amide and polysaccharide compounds into the compost, promoting the Maillard humification pathway. Additionally, both SMC and high aeration inhibited denitrification: the SMC reduced the abundance of the nirK gene, while high aeration decreased the abundance of nosZ gene. Network analysis revealed that higher aeration enhanced fungal interactions but diminished bacterial interactions. Conversely, SMC addition bolstered both bacterial and fungal interactions. The final compost product with SMC addition showed a 11.56%-44.19% reduction in antibiotic resistance gene content compared with the control group, and heavy metal contents remained within safe application limits. The combination of high SMC addition and high aeration achieved optimal humification and nitrogen retention, underscoring its potential as a promising solution for kitchen waste composting.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350013, China
| | - Qingyi Zhang
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China.
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Chen L, Zhang Z, Yang R, Wang X, Yu J, Jiang H, Zhang W, Xi B, Sun X, Li N. Nano Fe 3O 4 improved the electron donating capacity of dissolved organic matter during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122354. [PMID: 39226814 DOI: 10.1016/j.jenvman.2024.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The effect of Fe3O4 nanoparticles (Fe3O4 NPs) on the electron transfer process in aerobic composting systems remains unexplored. In this study, we compared the electron transfer characteristics of DOM in sludge composting without additives (group CK) and with the addition of 50 mg/kg Fe3O4 NPs additive (group Fe). It was demonstrated that the electron transfer capacity (ETC) and electron donating capacity (EDC) of compost-derived DOM increased by 13%-29% and 40%-47%, respectively, with the addition of Fe3O4 NPs during sludge composting. Analyzing the composition and structure of DOM revealed that Fe3O4 NPs promoted the formation of humic acid-like substances and enhanced the aromatic condensation degree of DOM. Correlation analysis indicated that the increase in EDC of DOM was closely associated with the phenolic group in DOM and influenced by quinone groups and the degree of aromatization of DOM. The higher EDC and the structural evolution of DOM in group Fe reduced the bioaccessibility of Cu, Cr, Ni, Zn. This study contributes to a deeper understanding of the redox evolutionary mechanism of DOM in sludge composting and broadens the application of iron oxides additives.
Collapse
Affiliation(s)
- Liu Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Zeyu Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Rui Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaojie Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jieyu Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Beidou Xi
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Ningjie Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
4
|
Chang H, Sun X, Zhang H, Tan Z, Xi B, Xing M, Dong B, Zhu H. The evolution of structural characteristics and redox properties of humin during the composting of sludge and corn straw. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39221761 DOI: 10.1080/09593330.2024.2397589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Humins (HMs), the insoluble faction of humic substances (HSs), play a pivotal role in the bioremediation of pollutants by acting as electron shuttles that modulate the interactions between microorganisms and pollutants. This crucial function is intricately linked to their structural composition and electron transfer capabilities. However, the dynamics of the electron transfer capacity (ETC) of HM extracted during the composting process and its determinants have yet to be fully elucidated. This study undertakes a comprehensive analysis of the ETC of HM derived from composting, employing electrochemical techniques alongside spectroscopic methods and elemental analysis to explore the influencing factors, including the electron accepting capacity (EAC), electron donating capacity (EDC), and electron reversible rate (ERR). Our findings reveal substantial variations in the EAC and EDC of HM throughout the composting process, with EAC values ranging from 133.03-220.98 μmol e- gC-1 and EDC values from 111.17-229.33 μmol e- gC-1. Notably, the composting process enhances the ERR and EDC of HM while diminishing their EAC. This shift is accompanied by an augmented presence of aromatic structures, polar functional groups, quinones, and nitrogen - and sulfur-containing moieties, thereby boosting the HM's EDC. Conversely, the reduction in EAC is associated with a decline in lignin carbon content and the abundance of oxygen-containing moieties, as well as the diminishment of visible fulvic-like and protein-like substances within HM. Importantly, humic-like substances and nitrogen-containing moieties within HM demonstrated the capacity for repeated electron transfer, underscoring their significance in the context of environmental remediation.
Collapse
Affiliation(s)
- Haoyu Chang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Bin Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Hongxiang Zhu
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
5
|
Cao X, Li X, Wang H, Zhang S, Zhang H, Sakamaki T, Li X. The promotion of the polycyclic aromatic hydrocarbons degradation mechanism by humic acid as electron mediator in a sediment microbial electrochemical system. BIORESOURCE TECHNOLOGY 2024; 404:130909. [PMID: 38815696 DOI: 10.1016/j.biortech.2024.130909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
To enhance the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in sediments and to elucidate the mechanisms by which microbial electrochemical action aids in the degradation of PAHs, humic acid was used as an electron mediator in the microbial electrochemical system in this study. The results revealed that the addition of humic acids led to increases in the removal efficiencies of naphthalene, phenanthrene, and pyrene by 45.91%, 97.83%, and 85.56%, respectively, in areas remote from the anode, when compared to the control group. The investigation into the microbial community structure and functional attributes showed that the presence of humic acid did not significantly modify the microbial community composition or its functional expression at the anode. However, an examination of humic acid transformations demonstrated that humic acid extended the electron transfer range in sediment via the redox reactions of quinone and semiquinone groups, thereby facilitating the PAHs degradation within the sediment.
Collapse
Affiliation(s)
- Xian Cao
- College of Energy and Environment, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinyu Li
- College of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hui Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Haochi Zhang
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan
| | - Xianning Li
- College of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Liu Z, Dai Y, Zhu H, Liu H, Zhang J. Effects of additive on formation and electron transfer capacity of humic substances derived from silkworm-excrement compost during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119673. [PMID: 38043316 DOI: 10.1016/j.jenvman.2023.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Amending biochar or MnO2 is a common strategy to regulate humification during manure composting. However, how these additives affect the formation, spectrum characteristics (UV-vis, FTIR, EEM) of humic substances (HSs) in silkworm-excrement (SE) compost and their electron transfer capacities (ETC) remains unclear. Thus, the SE composting pilot separately added with 10% corncob biochar (CB) (w/w) and 0.5% MnO2 (w/w) was run to investigate the effects. The results revealed that adding 10% CB slightly affected the HA/FA (humic acids/fulvic acids) ratios, UV-vis and FTIR spectra of the final SE-compost HSs and EEM components in the FA, but remarkably improved fulvic-like (C1)/quinone-like (C3) substances and reduced humic-like (C2)/protein-like substances (C4) in the HA. Meanwhile, 0.5% MnO2 had a noticeable positive effect on the aromatization of SE-compost FA and HA but only weak impact on SUVAs and EEM components in these HSs except C4 in the FA. Moreover, 10% CB obviously reduced EAC/EDC of FA and HA in the final SE compost by 31.1%/22.0% and 19.7%/24.0%, while MnO2 improved EDC of these HSs by 6.5%/9.1% (FA/HA). These results showed MnO2 can be used as a useful amendment to enhance the promotion effect of SE-compost HA in the soil remediation other than CB. Further investigation is suggested to focus on the effects of adding MnO2 on SE-compost HSs enhancing soil remediation and its effect on ETC derived from other manure compost.
Collapse
Affiliation(s)
- Zhihao Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yu Dai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Hongxiang Zhu
- Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, 541004, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
7
|
Cai R, Zuo S, Cao X, Jiang X, Xu C. Effects of turning frequency on fermentation efficiency and microbial community metabolic function of sheep manure composting on the Qinghai-Tibet Plateau. BIORESOUR BIOPROCESS 2023; 10:53. [PMID: 38647985 PMCID: PMC10992442 DOI: 10.1186/s40643-023-00675-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/06/2023] [Indexed: 04/25/2024] Open
Abstract
This study explored the effects of turning frequency on fermentation efficiency and microbial metabolic function of sheep manure composting on the Qinghai-Tibet Plateau (QTP). Five treatments with different turning frequencies were set up in this study: turning every 1 day (T1), 2 days (T2), 4 days (T3), 6 days (T4), and 8 days (T5). Results showed that the high temperature period for T1 and T5 lasted only 4 days, while that for T2-T4 lasted more than 8 days. The germination index of T1 and T5 was lower than 80%, while that of T2-T4 was 100.6%, 97.8%, and 88.6%, respectively. This study further predicted the microbial metabolic function of T2-T4 using the bioinformatics tool PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) and determining the activities of various functional enzymes. The results showed that carbohydrate metabolism, protein metabolism, and nucleotide metabolism were the main metabolic pathways of microorganisms, and that T2 increased the abundance of functional genes of these metabolic pathways. The activities of protease, cellulase, and peroxidase in T2 and T3 were higher than those in T4, and the effect of T2 was more significant. In conclusion, turning once every 2 days can improve the quality of sheep manure compost on the QTP.
Collapse
Affiliation(s)
- Rui Cai
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Sasa Zuo
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Xiaohui Cao
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Xin Jiang
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China.
| |
Collapse
|
8
|
Khaleghi H, Jaafarzadeh N, Esmaeili H, Ramavandi B. Alginate@Fe 3O 4@Bentonite nanocomposite for formaldehyde removal from synthetic and real effluent: optimization by central composite design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29566-29580. [PMID: 36417060 DOI: 10.1007/s11356-022-24189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In this study, Alginate@ Fe3O4/Bentonite nanocomposite was utilized to eliminate formaldehyde from wastewater. Structural features of bentonite, bentonite@Fe3O4, and Alginate@Fe3O4@Bentonite were determined using FT-IR, PXRD, Mapping, EDX, TEM, SEM, VSM, and BET analyses. The central composite design method was employed to find the optimal conditions for formaldehyde removal using Alg@Fe3O4@Bent nanocomposite. The maximum formaldehyde uptake efficiency (94.56%) was obtained at formaldehyde concentration of 10.69 ppm, the nanocomposite dose of 1.28 g/L, and pH of 9.96 after 16.53 min. Also, Alginate@Fe3O4@Bentonite composite was used to eliminate formaldehyde from Razi petrochemical wastewater and was able to eliminate 91.24% of formaldehyde, 70% of COD, and 68.9% of BOD5. The isotherm and kinetic investigations demonstrated that the formaldehyde uptake process by the foresaid adsorbent follows the Langmuir isotherm and quasi-first-order kinetic models, respectively. Also, the maximum uptake capacity was obtained at 50.25 mg/g. Moreover, the formaldehyde uptake process by the aforementioned nanocomposite was exothermic and spontaneous. Furthermore, the formaldehyde adsorption efficiency decreased slightly after six reuse cycles (less than 10%), indicating that Alginate@Fe3O4@Bentonite nanocomposite has remarkable recyclability. Besides, the influence of interfering ions like nitrate, carbonate, chloride, phosphate, and sulfate was studied on the formaldehyde removal efficiency and the results displayed that all ions except nitrate ion have low interaction with formaldehyde (less than 3% reduction in removal efficiency).
Collapse
Affiliation(s)
- Hossein Khaleghi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Neamatollah Jaafarzadeh
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
9
|
Imran M, Hayat N, Saeed MA, Sattar A, Wahab S. Spatial green growth in China: exploring the positive role of investment in the treatment of industrial pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10272-10285. [PMID: 36071363 DOI: 10.1007/s11356-022-22851-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The industrial sector of China is critical to the country's economic growth. On the other side, industrialisation has resulted in a high rate of emissions, pushing China to spend extensively on industrial pollution remediation. As a result, this study looks at the relationship between investment completed in the treatment of industrial pollution and economic development. Initially, the study used the global Moran's I test (Queen's contiguity matrix) to find spatial autocorrelation for the 'investment completed in the treatment of industrial pollution' factor, where the study found a positive association across Chinese provinces, and suggest the existence of spatial autocorrelation. Thereafter, a time-fixed effect spatial error model was used due to the lowest Akaike information criterion and Bayesian information criterion to analyse regional data of China from 1999 to 2018. The data reveal a positive association between investment completed in the treatment of industrial pollution and regional economic growth, both in the short and long term. Furthermore, the negative consequences of urban wages and foreign investment on investment completed in the treatment of industrial pollution are having the reverse effect on regional green development, necessitating ecologically friendly actions to mitigate the negative environmental effects of both. The results highlight the need for policymakers in other countries to review their plans for economic expansion and create environmentally friendly legislation. By implementing the Chinese green economic growth model, policymakers in industrially polluting nations can reduce industrial pollution and foster green growth in their nation.
Collapse
Affiliation(s)
- Muhammad Imran
- School of Business Studies, Bahria University, Islamabad, Pakistan.
| | - Naveed Hayat
- Department of Economics, University of Education, Lahore, Pakistan
| | | | - Abdul Sattar
- Bahria Business School, Bahria University, Islamabad, Pakistan
| | - Salman Wahab
- School of Economics, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Liu Q, Wen M, Guo Y, Song S, Li G, An T. Efficient Catalytic Combustion of Cyclohexane over PdAg/Fe 2O 3 Catalysts under Low-Temperature Conditions: Establishing the Degradation Mechanism Using PTR-TOF-MS and in Situ DRIFTS. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55503-55516. [PMID: 36456474 DOI: 10.1021/acsami.2c14515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cyclohexane, a typical volatile organic compound (VOC), poses high risks to the environment and humans. Herein, synthesized PdAg/Fe2O3 catalysts exhibited exceptional catalytic performance for cyclohexane combustion at lower temperatures (50% mineralization temperature (T50) of 199 °C, 90% mineralization temperature (T90) of 315 °C) than Pd/Fe2O3 (T50 of 262 °C, T90 of 335 °C) and Fe2O3 (T50 of 305 °C, T90 of 360 °C). In addition, PdAg/Fe2O3 displayed enhanced stability by alloying Ag with Pd. The redox and acidity of the PdAg/Fe2O3 were studied by XPS, H2-TPR, and NH3-TPD. In situ diffuse reflectance infrared Fourier transform spectroscopy and proton-transfer-reaction time-of-flight mass spectrometry were applied to identify the intermediates formed on the catalyst surface and in the tail gas during oxidation, respectively. Results suggested that loading PdAg onto Fe2O3 significantly enhanced the adsorption and activation of oxygen and cyclohexane, oxidative dehydrogenation of cyclohexane to benzene, and catalytic cracking of cyclohexane to olefins at low temperatures. This in-depth study will benefit the design and application of efficient catalysts for the effective combustion of VOCs at low temperatures.
Collapse
Affiliation(s)
- Qiuxia Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Yunlong Guo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Shengnan Song
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China
| |
Collapse
|
11
|
Xuchun W. Utility of boron carbide nanotube for removal of Eriochrome blue black from wastewater: a DFT study. J Mol Model 2022; 29:10. [PMID: 36526941 DOI: 10.1007/s00894-022-05410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
This paper adopts density functional theory (DFT) to examine the electronic properties, intermolecular interactions, structural characteristics, and durability of BC3 nanotube (BC3NT)/Eriochrome blue black (EBB) dye complexes. Potential BC3NT-based EBB removal was studied. The adsorption energy was measured to be nearly -37.22 kcal/mol for the dye and BC3NT (the interaction of the O head of the dye and the B head of the BC3NT). EBB was found to dramatically change the electronic properties of BC3NT. Hence, BC3NT can be an efficient adsorbent for EBB. The EBB adsorption mechanism was controlled by the donor-acceptor interaction. Furthermore, affordable heteroatom C-based material enhancement was studied. The adsorption mechanism of heteroatom C-based materials for EBB was studied from a systematic perspective.
Collapse
Affiliation(s)
- Wang Xuchun
- Jiangsu Fangyang Water Company Limited, Lianyungang, Jiangsu, 222000, China.
| |
Collapse
|
12
|
Yan J, Li G, Qi G, Yao X, Song M. Improved feed forward with bald eagle search for conjunctive water management in deficit region. CHEMOSPHERE 2022; 309:136614. [PMID: 36181848 DOI: 10.1016/j.chemosphere.2022.136614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Due to increasing requirements on water resources and a lower recharge rate, the farming seasons are a vital season for the management of groundwater and surface water resource management. This condition necessitates the use of combined water distribution to meet the full water requirements. Analysis of existing surface water resources and related restrictions, this research suggested an algorithm for aquifer stabilization and fulfilling optimum water requirements. To manage the optimum withdrawals and the subsequent drop, this technique first employed the MODFLOW model for simulating the water levels. Next, an improved feed-forward neural network (IFFNN) was combined with an optimization method to create a machine learning (ML) framework. During the last phase, the findings of the optimized connectives approach as well as the relevant fields technologies to determine using improved bald eagle search with least square SVM(IBES-LSSVM) method that predicted the level of water deficit for every period, especially during farming seasons. This approach is based on an improved bald eagle search (IBES) optimization technique for finding the best settings for a least-squares support vector machine (LSSVM). The findings revealed that between 2005 and 2020, the year with the biggest water deficit was 2018 when only roughly 64 percent of water need was satisfied by groundwater (69 percent) and surface water (64 percent) (33 percent). The water depth may have risen by around 0.7 m during the study period if the optimum model had been used. The outcome of this research will help the management forecast future water shortages and make smarter water strategic choices.
Collapse
Affiliation(s)
- Jixuan Yan
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China; College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Guang Li
- Gansu Agricultural University, Lanzhou, 730070, China
| | - Guangping Qi
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiangdong Yao
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Miao Song
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
13
|
Zhu J, Jiang Z, Feng L. Improved neural network with least square support vector machine for wastewater treatment process. CHEMOSPHERE 2022; 308:136116. [PMID: 36037940 DOI: 10.1016/j.chemosphere.2022.136116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
This research offers a unique interval by using the predicting approach for discharge indicators of water quality data such as biochemical oxygen demand (BOD) and ammonia nitrogen (NH3-N). This is considered one of the significant quality metrics in wastewater treatment plants for water quality management as well as surveillance. To begin, the effluent information for BOD/NH3-N and their supplementary parameters are gathered. Hence BOD and NH3 are considered major feature sources for estimating water pollutants. BOD is high then oxygen level is very low in the water due to pollutants or algae. Ammonia nitrogen is an organic waste component in water from sewage. The significant characteristics with good correlation levels of BOD and NH3-N are examined and identified using a grey correlation analysis method after certain basic data pre-processing procedures. The BOD/NH3-N effluent information of a water treatment plant is predicted using an upgraded feed-forward neural network with the least square support vector machine (FFNN-LSSVM) method. An optimization approach for an enhanced feed-forward neural network (IFFNN) is built by Machine Learning Algorithms. The IFFNN used regular influent water quality, influent rate of flow, and Wastewater performance monitoring and operational conditions as input parameters. For future prediction, input variables were previous different wastewater quality measurements. Lastly, the analysis shows that, when compared to other current algorithms, the proposed methodology can forecast wastewater quality of water with high accuracy in predicting BOD and NH3 levels, limited computation duration, mean error less than 10% and R2 is 90% proves better than existing techniques.
Collapse
Affiliation(s)
- Junren Zhu
- Chongqing City Management College, Chongqing, 401331, PR China
| | - Zhenzhen Jiang
- Chongqing Vocational Institute of Engineering, Chongqing, 402260, PR China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
14
|
Acylhydrazone-modified guar gum material for the highly effective removal of oily sewage. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Yousaf M, Akram M, Bhatti IA, Ahmad M, Usman M, Khan MU, Sarwar A, Sultan M, Sohoo I. On-Site Application of Solar-Activated Membrane (Cr-Mn-Doped TiO 2@Graphene Oxide) for the Rapid Degradation of Toxic Textile Effluents. MEMBRANES 2022; 12:membranes12121178. [PMID: 36557085 PMCID: PMC9784706 DOI: 10.3390/membranes12121178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Solar-activated water treatment has become an emerging research field due to its eco-friendly nature and the economic feasibility of green photocatalysis. Herein, we synthesized promising, cost-effective, and ultralong-semiconductor TiO2 nanowires (NW), with the aim to degrade toxic azo dyes. The band gap of TiO2 NW was tuned through transition metals, i.e., chromium (Cr) and manganese (Mn), and narrowed by conjugation with high surface area graphene oxide (GO) sheets. Cr-Mn-doped TiO2 NWs were chemically grafted onto GO nanosheets and polymerized with sodium alginate to form a mesh network with an excellent band gap (2.6 eV), making it most suitable to act as a solar photocatalytic membrane. Cr-Mn-doped TiO2 NW @GO aerogels possess high purity and crystallinity confirmed by Energy Dispersive X-ray spectroscopy and X-ray diffraction pattern. A Cr-Mn-doped TiO2 NW @GO aerogels membrane was tested for the photodegradation of Acid Black 1 (AB 1) dye. The synthesized photocatalytic membrane in the solar photocatalytic reactor at conditions optimized by response surface methodology (statistical model) and upon exposure to solar radiation (within 180 min) degraded 100% (1.44 kg/m3/day) AB 1dye into simpler hydrocarbons, confirmed by the disappearance of dye color and Fourier transform infrared spectroscopy. An 80% reduction in water quality parameters defines Cr-Mn-doped TiO2 NW @GO aerogels as a potential photocatalytic membrane to degrade highly toxic pollutants.
Collapse
Affiliation(s)
- Maryam Yousaf
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Mariam Akram
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Ahmad
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, School of Civil Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 1, 21073 Hamburg, Germany
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Abid Sarwar
- Department of Irrigation & Drainage, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Sultan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ihsanullah Sohoo
- Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, New M.A. Jinnah Road, Karachi 74800, Pakistan
| |
Collapse
|
16
|
Molecular separation and computational simulation of contaminant removal from wastewater using zirconium UiO-66-(CO2H)2 metal–organic framework. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Mehrkhah R, Mohammadi M, Zenhari A, Baghayeri M, Roknabadi MR. Antibacterial Evaporator Based on Wood-Reduced Graphene Oxide/Titanium Oxide Nanocomposite for Long-Term and Highly Efficient Solar-Driven Wastewater Treatment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roya Mehrkhah
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mojtaba Mohammadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Alireza Zenhari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mahmood Rezaee Roknabadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|