1
|
Xi S, Liu H, Zhang J, Hu L, Wang W. Key factors affecting NH 3-N in the Huaihe River Basin due to human activities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:218. [PMID: 38849659 DOI: 10.1007/s10653-024-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/25/2024] [Indexed: 06/09/2024]
Abstract
Human activity factors have a significant impact on changes in ammonia nitrogen (NH3-N) content in rivers. Existing research mainly focuses on human activity factors as type factors, and lacks research on the key factors affecting river NH3-N among human activity factors. Therefore, this paper aims to study the key factors affecting human activities on NH3-N in the Huaihe River through various statistical analysis methods. The study found that changes in NH3-N content in the Huaihe River are mainly affected by land use patterns in the basin. There are two different ways in which land use affects NH3-N in rivers: direct effects and indirect effects. We also studied the main pathways through which changes in key factors in human activities affect NH3-N in the Huaihe River by constructing a structural equation model. The results showed that crop sowing area and afforestation area have a significant direct effect on NH3-N in the Huaihe River. In addition, crop sowing area and afforestation area can also affect river NH3-N by regulating the amount of nitrogen fertilizer and human excrement. This study is of great significance for understanding how human activities regulate NH3-N content in rivers.
Collapse
Affiliation(s)
- Shanshan Xi
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei City, 230601, Anhui Province, People's Republic of China
- Anhui Provincial Institute of Ecological Civilization, Hefei, Anhui, People's Republic of China
- Anhui Province Tongyuan Environmental Environment Co. Ltd, Hefei, Anhui, People's Republic of China
| | - Hao Liu
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei City, 230601, Anhui Province, People's Republic of China.
- Anhui Provincial Institute of Ecological Civilization, Hefei, Anhui, People's Republic of China.
| | - Jiamei Zhang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei City, 230601, Anhui Province, People's Republic of China
- Anhui Provincial Institute of Ecological Civilization, Hefei, Anhui, People's Republic of China
| | - Lechang Hu
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei City, 230601, Anhui Province, People's Republic of China
- Anhui Provincial Institute of Ecological Civilization, Hefei, Anhui, People's Republic of China
| | - Wei Wang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei City, 230601, Anhui Province, People's Republic of China
- Anhui Provincial Institute of Ecological Civilization, Hefei, Anhui, People's Republic of China
| |
Collapse
|
2
|
Kustovskiy Y, Karpov P, Blume Y, Yemets A. Ivermectin affects Arabidopsis thaliana microtubules through predicted binding site of β-tubulin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108296. [PMID: 38141401 DOI: 10.1016/j.plaphy.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The ivermectin is a potent nematocide and insecticide, which has low toxicity for humans and domestic animals, but due to low biotransformation, it can be dangerous for non-target organisms. The recent determination of ivermectin absorption and accumulation in tissues of higher plants and multiple shreds of evidence of its negative impact on plant physiology provide a basis for the search for ivermectin's molecular targets and mechanisms of action in plant cells. In this research, for the first time, the ivermectin effect on microtubules of Arabidopsis thaliana cells was studied. It was revealed that ivermectin (250 μg mL-1) disrupts the microtubule network, induces the loss of microtubule orientation, leads to microtubule curvature and shrinkage, and their longitudinal and cross-linked bundling in various cells of A. thaliana primary roots. Further, the previously proposed binding of ivermectin to the β1-tubulin taxane site was developed and confirmed using molecular dynamics simulations of ivermectin complexes with Haemonchus contortus and A. thaliana β1-tubulins. It was predicted that similar to other microtubule stabilizing agents ivermectin binding causes M-loop stabilization in both H. contortus and A. thaliana β-tubulin, which leads to the enhancement of lateral contacts between subunits of adjacent protofilaments preventing microtubule depolymerization.
Collapse
Affiliation(s)
- Yevhen Kustovskiy
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho str., 2a, Kyiv, 04123, Ukraine; National University of Kyiv-Mohyla Academy, Skovorody str., 2, Kyiv, 04070, Ukraine.
| | - Pavel Karpov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho str., 2a, Kyiv, 04123, Ukraine.
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho str., 2a, Kyiv, 04123, Ukraine.
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho str., 2a, Kyiv, 04123, Ukraine; National University of Kyiv-Mohyla Academy, Skovorody str., 2, Kyiv, 04070, Ukraine.
| |
Collapse
|
3
|
de Souza M, Sammarro Silva KJ, Garbuio M, Inada NM, Bagnato VS, Lima AR. Photon spectra effects tested on the vegetal model Allium cepa. JOURNAL OF BIOPHOTONICS 2023; 16:e202300168. [PMID: 37679880 DOI: 10.1002/jbio.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The use of artificial light sources in plants is considered a type of photobiomodulation (PBM), a trend in agriculture and food industries, aiming at decontamination, pest control, and increased production yield. However, literature lacks a broader assessment to address the effects of photon light spectra on plant characteristics. Here, we aimed to describe the effects of visible light, infrared, and ultraviolet light upon Allium cepa, a known bioindicator, under various light doses. Samples irradiated under visible and infrared light did not show cytotoxicity, genotoxicity, or mutagenicity in any of the evaluated doses. Light induction at 460 and 635 nm significantly stimulated root development of the test organism. In contrast, 254 nm irradiation proved to be cytotoxic, genotoxic, and mutagenic. This work reveals and quantifies the spectral response of A. cepa seeds, suggesting that it can be proposed as a model for future research on mechanisms of PBM in plants.
Collapse
Affiliation(s)
- Mariana de Souza
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Central Paulista University, São Paulo, São Carlos, SP, Brazil
| | | | - Matheus Garbuio
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- PPG Biotec, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
4
|
Vokřál I, Podlipná R, Matoušková P, Skálová L. Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms. CHEMOSPHERE 2023; 345:140446. [PMID: 37852376 DOI: 10.1016/j.chemosphere.2023.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Anthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production. In the environment, anthelmintics are distributed in water and soil in relation to their structure and physicochemical properties. Consequently, they enter various organisms directly (e.g. plants, soil invertebrates, water animals) or indirectly through food-chain. Several anthelmintics elicit toxic effects in non-target species. Although new information has been made available, anthelmintics in ecosystems should be more thoroughly investigated to obtain complex knowledge on their impact in various environments. This review summarizes available information about the occurrence, behavior, and toxic effect of anthelmintics in environment. Several reasons why anthelmintics are dangerous contaminants are highlighted along with options to reduce contamination. Negative effects are also outlined.
Collapse
Affiliation(s)
- Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Praha 6, CZ-165 02, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| |
Collapse
|
5
|
Alias C, Piovani G, Benassi L, Abbà A, Sorlini S, Gelatti U, Zerbini I, Feretti D. Evaluation of Toxicity and Genotoxicity of Concrete Cast with Steel Slags Using Higher Terrestrial Plants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2193-2200. [PMID: 37401854 DOI: 10.1002/etc.5709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The potential impact of concrete mixtures containing steel slag (SS) as a partial replacement of natural aggregates (NA) on the terrestrial ecosystem was assessed using a battery of plant-based bioassays. Leaching tests were conducted on four concrete mixtures and one mixture containing only NA (reference concrete). Leachates were tested for phytotoxicity using seeds of Lepidium sativum, Cucumis sativus, and Allium cepa. Emerging seedlings of L. sativum and A. cepa were used to assess DNA damage (comet test). The genotoxicity of the leachates was also analyzed with bulbs of A. cepa using the comet and chromosome aberration tests. None of the samples caused phytotoxic effects. On the contrary, almost all the samples supported the seedlings; and two leachates, one from the SS-containing concrete and the other from the reference concrete, promoted the growth of C. sativus and A. cepa. The DNA damage of L. sativum and A. cepa seedlings was significantly increased only by the reference concrete sample. In contrast, the DNA damage in A. cepa bulbs was significantly enhanced by the reference concrete but also by that of a concrete sample with SS. Furthermore, all leachates caused an increase in chromosomal aberrations in A. cepa bulbs. Despite some genotoxic effects of the concrete on plant cells, the partial replacement of SS does not seem to make the concrete more hazardous than the reference concrete, suggesting the potential use of SS as a reliable recycled material. Environ Toxicol Chem 2023;42:2193-2200. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Giovanna Piovani
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Benassi
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Alessandro Abbà
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Department of Civil, Environmental, Architectural, Engineering and Mathematics, University of Brescia, Brescia, Italy
| | - Sabrina Sorlini
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Department of Civil, Environmental, Architectural, Engineering and Mathematics, University of Brescia, Brescia, Italy
| | - Umberto Gelatti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- B+LabNet-Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Alias C, Feretti D, Viola GVC, Zerbini I, Bisceglie F, Pelosi G, Zani C. Allium cepa tests: A plant-based tool for the early evaluation of toxicity and genotoxicity of newly synthetized antifungal molecules. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503654. [PMID: 37491113 DOI: 10.1016/j.mrgentox.2023.503654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Many fungal genera such as Aspergillus, Penicillium, Fusarium and Alternaria are able to produce, among many other metabolites, the aflatoxins, a group of toxic and carcinogenic compounds. To reduce their formation, synthetic fungicides are used as an effective way of intervention. However, the extensive use of such molecules generates long-term residues into the food and the environment. The need of new antifungal molecules, with high specificity and low off-target toxicity is worth. The aim of this study was to evaluate: i) the toxicity and genotoxicity of newly synthesized molecules with a good anti-mycotoxic activity, and ii) the suitability of the Allium cepa multi-endpoint assay as an early screening method for chemicals. Eight compounds were tested for toxicity by using the A. cepa bulb root elongation test and for genotoxicity using the A. cepa bulb mitotic index, micronuclei and chromosome aberrations tests. Three molecules showed no toxicity, while two induced mild toxic effects in roots exposed to the highest dose (100 µM). A more pronounced toxic effect was caused by the other three compounds for which the EC50 was approximately 50 μM. Furthermore, all molecules showed a clear genotoxic activity, both in terms of chromosomal aberrations and micronuclei. Albeit the known good antifungal activity, the different molecules caused strong toxic and genotoxic effects. The results indicate the suitability of experiments with A. cepa as a research model for the evaluation of the toxic and genotoxic activities of new molecules in plants before they are released into the environment.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Gaia V C Viola
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Claudia Zani
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy.
| |
Collapse
|
7
|
Exposure of Pisum sativum L. Seeds to Methomyl and Imidacloprid Cause Genotoxic Effects in Pollen-Mother Cells. BIOLOGY 2022; 11:biology11111549. [PMID: 36358252 PMCID: PMC9687955 DOI: 10.3390/biology11111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Pesticides are commonly used in modern agricultural systems to protect the plants from pests. Even though they potentially increase the crop yield, they have undesirable toxic effects on the consumers of plant products and nontarget host plants. However, there are limited studies to demonstrate the cytological changes induced by pesticides on plant cells. In the present study, we assess the cytological changes induced by two most commonly used insecticides, methomyl (ME) and imidacloprid (IM), using Pisum sativum L. as model plant system. P. sativum seeds were exposed to various concentrations of ME and IM (0.1, 0.2, 0.3, 0.4 and 0.5%) for 1, 3, and 6 h, and their effects on seed germination (SG), radicle length (RL), mitotic index (MI), chromosomal aberrations frequency (CAF), and micronucleus frequency (MNF) were studied. The results indicate that these insecticides decrease MI in root-tip cells, and increase in the MNF in pollen-mother cells in a dose-dependent manner. Additionally, insecticide-treated groups showed a dose- and time-dependent increase in the percentage of aberrant meiotic cells. Clumped nuclei (CNU), stickiness (STC), bridges (BRs), laggards (LGs), secondary association (SA), and precocious separation (PS) were among the frequently observed anomalies. The findings of this study indicate that commonly used insecticides ME and IM have substantial genotoxic effects on the root-tip and pollen-mother cells of P. sativum L.
Collapse
|