1
|
Xu C, Yao X, Kong W, Mu B, Duan G, Wang J, Xu Y, Li X. Ecotoxicological risk of co-exposure to fosthiazate and microplastics on earthworms (Eisenia fetida): Integrating biochemical and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125053. [PMID: 39357558 DOI: 10.1016/j.envpol.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Fosthiazate (FOS) is a widely used organophosphorus insecticide effective against soil root-knot nematodes. However, its ecotoxicity to non-target soil organisms, particularly in combination with microplastics (MPs), is unclear. This study explores the toxic-effects and molecular mechanisms of co-exposure to FOS and MPs on earthworms (Eisenia fetida) using multilevel toxicity endpoints and transcriptomics. Results showed that both FOS and MPs elevated the intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) in earthworms' cells. The superoxide dismutase (SOD) and catalase (CAT) activities followed a similar trend in all treatments, with changes observed at 14 and 28 days, indicating that co-exposure to FOS and MPs increased DNA oxidative damage. Notably, the co-exposure more significantly inhibited Ca2+-ATPase activity and exacerbated neurotoxicity compared to individual treatments, closely associated with changes in intracellular ROS levels that mediate neuroinhibition and lead to neurotoxicity. KEGG enrichment analysis revealed that MPs and FOS disrupted pathways related to metabolism, immunity, and apoptosis, while co-exposure primarily impaired endocrine and receptor pathways, showing higher toxicity. Our study offers novel insights into the ecotoxicological effects and mechanisms of pesticides and microplastics on earthworms, providing valuable data for evaluating the soil environmental health risks associated with compound pollution.
Collapse
Affiliation(s)
- Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Weizheng Kong
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Baoyan Mu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Yuxin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
2
|
Meng K, Shi YC, Li WX, Wang J, Cheng BJ, Li TL, Li H, Jiang N, Liu R. Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/ mpk-1/ fog-1/ 3. TOXICS 2024; 12:502. [PMID: 39058154 PMCID: PMC11281075 DOI: 10.3390/toxics12070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Testosterone (T), an environmental androgen, significantly disrupts endocrine systems in wildlife and ecosystems. Despite growing concern over its high levels in aquatic environments, the reproductive toxicity of testosterone and its mechanisms are not well understood. In this study, we investigated the reproductive toxicity and mechanisms of testosterone using Caenorhabditis elegans (C. elegans) and assessed its ecological toxicity through the benchmark dose (BMD) method. Our results indicate that T concentrations exceeding 0.01 μg/L significantly reduce the brood size, decrease germ cell counts, and prolong the generation time in C. elegans as T concentrations increase. Furthermore, to elucidate the specific mechanisms, we analyzed the expression of nhr-69, mpk-1, and other genes involved in sex determination. These findings suggest that the nhr-69-mediated reproductive toxicity of T primarily affects sperm formation and the offspring number by influencing its downstream targets, mpk-1 and fog-1/3, which are critical in the germ cell sex-determining pathway. Additionally, this study determined that the 10% lower boundary of the baseline dose (BMDL10) is 1.160 ng/L, offering a more protective reference dose for the ecological risk assessment of T. The present study suggests that nhr-69 mediates the reproductive toxicity of T by influencing mpk-1 and fog-1/3, critical genes at the end of the germ cell sex-determining pathway, thereby providing a basis for establishing reproductive toxicity thresholds for T.
Collapse
Affiliation(s)
- Ke Meng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Ying-Chi Shi
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Wei-Xi Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Jia Wang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Bei-Jing Cheng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Tian-Lin Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Hui Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Nan Jiang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Ran Liu
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| |
Collapse
|
3
|
Wang J, Zou L, Jiang P, Yao M, Xu Q, Hong Q, Zhu J, Chi X. Vitamin A ameliorates valproic acid-induced autism-like symptoms in developing zebrafish larvae by attenuating oxidative stress and apoptosis. Neurotoxicology 2024; 101:93-101. [PMID: 38191030 DOI: 10.1016/j.neuro.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive/stereotyped behaviors. Prenatal exposure to valproic acid (VPA) has been reported to induce ASD-like symptoms in human and rodents. However, the etiology and pathogenesis of ASD have not been well elucidated. This study aimed to explore the mechanisms underlying VPA-induced ASD-like behaviors using zebrafish model and investigated whether vitamin A could prevent VPA-induced neurotoxicity. Here, zebrafish embryos were exposed to 0, 25 and 50 μM VPA from 4 to 96 h post fertilization (hpf) and the neurotoxicity was assessed. Our results showed that VPA affected the normal development of zebrafish larvae and induced ASD-like behaviors, including reduced locomotor activity, decreased distance near conspecifics, impaired social interaction and repetitive swimming behaviors. Exposure to VPA decreased the GFP signal in transgenic HuC:egfp zebrafish according to the negative effect of VPA on the expression of neurodevelopmental genes. In addition, VPA enhanced oxidative stress by promoting the production of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) and inhibiting the activity of superoxide dismutase, then triggered apoptosis by upregulation of apoptotic genes. These adverse outcomes were mitigated by vitamin A, suggesting that vitamin A rescued VPA-induced ASD-like symptoms by inhibiting oxidative stress and apoptosis. Overall, this study identified vitamin A as a promising strategy for future therapeutic regulator of VPA-induced ASD-like behaviors.
Collapse
Affiliation(s)
- Jingyu Wang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Li Zou
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China; Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Peiyun Jiang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Mengmeng Yao
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Qu Xu
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Qin Hong
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, PR China.
| |
Collapse
|
4
|
Liu H, Fu G, Li W, Liu B, Ji X, Zhang S, Qiao K. Oxidative stress and mitochondrial damage induced by a novel pesticide fluopimomide in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91794-91802. [PMID: 37479935 DOI: 10.1007/s11356-023-28893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Fluopimomide is a novel pesticide intensively used in agricultural pest control; however, its excessive use may have toxicological effects on non-target organisms. In this study, Caenorhabditis elegans was used to evaluate the toxic effects of fluopimomide and its possible mechanisms. The effects of fluopimomide on the growth, pharyngeal pumping, and antioxidant systems of C. elegans were determined. Furthermore, the gene expression levels associated with mitochondria in the nematodes were also investigated. Results indicated that fluopimomide at 0.2, 1.0, and 5.0 mg/L notably (p < 0.001) decreased body length, pharyngeal pumping, and body bends in the nematodes compared to the untreated control. Additionally, fluopimomide at 0.2, 1.0, and 5.0 mg/L notably (p < 0.05) increased the content of malondialdehyde by 3.30-, 21.24-, and 33.57-fold, respectively, while fluopimomide at 1.0 and 5.0 mg/L significantly (p < 0.001) increased the levels of reactive oxygen species (ROS) by 49.14% and 77.06% compared to the untreated control. In contrast, fluopimomide at 1.0 and 5.0 mg/L notably reduced the activities of target enzyme succinate dehydrogenase and at 5.0 mg/L reduced the activities of antioxidant enzyme superoxide dismutase. Further evidence revealed that fluopimomide at 1.0 and 5.0 mg/L significantly inhibited oxygen consumption and at 0.2, 1.0, and 5.0 mg/L significantly inhibited ATP level in comparison to the untreated control. The expression of genes related to the mitochondrial electron transport chain mev-1 and isp-1 was significantly downregulated. ROS levels in the mev-1 and isp-1 mutants after fluopimomide treatments did not change significantly compared with the untreated mutants, suggesting that mev-1 and isp-1 may play critical roles in the toxicity induced by fluopimomide. Overall, the results demonstrate that oxidative stress and mitochondrial damage may be involved in toxicity of fluopimomide in C. elegans.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenjing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bingjie Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Gainesville, FL, 33031, USA
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Shandong Huayang Technology Co., Ltd, Tai'an, 271411, Shandong, China.
| |
Collapse
|