1
|
Alnuqaydan AM. The dark side of beauty: an in-depth analysis of the health hazards and toxicological impact of synthetic cosmetics and personal care products. Front Public Health 2024; 12:1439027. [PMID: 39253281 PMCID: PMC11381309 DOI: 10.3389/fpubh.2024.1439027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Over the past three decades, the popularity of cosmetic and personal care products has skyrocketed, largely driven by social media influence and the propagation of unrealistic beauty standards, especially among younger demographics. These products, promising enhanced appearance and self-esteem, have become integral to contemporary society. However, users of synthetic, chemical-based cosmetics are exposed to significantly higher risks than those opting for natural alternatives. The use of synthetic products has been associated with a variety of chronic diseases, including cancer, respiratory conditions, neurological disorders, and endocrine disruption. This review explores the toxicological impact of beauty and personal care products on human health, highlighting the dangers posed by various chemicals, the rise of natural ingredients, the intricate effects of chemical mixtures, the advent of nanotechnology in cosmetics, and the urgent need for robust regulatory measures to ensure safety. The paper emphasizes the necessity for thorough safety assessments, ethical ingredient sourcing, consumer education, and collaboration between governments, regulatory bodies, manufacturers, and consumers. As we delve into the latest discoveries and emerging trends in beauty product regulation and safety, it is clear that the protection of public health and well-being is a critical concern in this ever-evolving field.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
2
|
Ben Ammar A, Ben Ali M, Cherif B, Gargouri B, Tahri Y, Rouis S, Ghribi D. Lactiplantibacillus plantarum OL5 biosurfactants as alternative to chemical surfactants for application in eco-friendly cosmetics and skincare products. Bioprocess Biosyst Eng 2024; 47:1039-1056. [PMID: 38744689 DOI: 10.1007/s00449-024-03022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Cosmetics have been extremely popular throughout history and continue to be so today. Cosmetic and personal care products, including toothpaste, shampoo, lotions, and makeup, are typically made with petroleum-based surfactants. Currently, there is an increasing demand to enhance the sustainability of surface-active compounds in dermal formulations. Biosurfactants, derived from living cells, are considered more environmentally friendly than synthetic surfactants. Thus, the use of biosurfactants is a promising strategy for formulating more environmentally friendly and sustainable dermal products. Biosurfactants have the potential to replace chemical surface-active agents in the cosmetic sector due to their multifunctional qualities, such as foaming, emulsifying, and skin-moisturizing activities.In this study, two glycolipopeptide biosurfactants derived from Lactiplantibacillus plantarum OL5 were used as stabilizing factors in oil-in-water emulsions in the presence of coconut oils. Both biosurfactants increased emulsion stability, particularly in the 1:3 ratio, dispersion, and droplet size. Moreover, the cytotoxicity of the two Lactiplantibacillus plantarum biosurfactants was assessed on B lymphocytes and MCF-7 cells. Overall, the results gathered herein are very promising for the development of new green cosmetic formulations.
Collapse
Affiliation(s)
- Ameni Ben Ammar
- Laboratoire d'Amélioration Des Plantes Et de Valorisation Des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
- Bioréacteur Couplé À Un, Ultra Filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Mariem Ben Ali
- Laboratoire d'Amélioration Des Plantes Et de Valorisation Des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Boutheina Cherif
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Bochra Gargouri
- Faculté Des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Yosra Tahri
- Faculté Des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Souad Rouis
- Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Dhouha Ghribi
- Laboratoire d'Amélioration Des Plantes Et de Valorisation Des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
- Bioréacteur Couplé À Un, Ultra Filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Min XZ, Zhang ZF, Lu XM, Chen JC, Ma WL, Liu LY, Li WL, Li YF, Kallenborn R. Occurrence and fate of pharmaceuticals and personal care products in a wastewater treatment plant with Bacillus bio-reactor treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171589. [PMID: 38461988 DOI: 10.1016/j.scitotenv.2024.171589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) have attracted wide attention due to their environmental impacts and health risks. PPCPs released through wastewater treatment plants (WWTPs) are estimated to be 80 %. Nevertheless, the occurrence of PPCPs in the WWTPs equipped with Bacillus spec.-based bioreactors (BBR) treatment system remains unclear. In this study, sludge and waste water samples were collected during separate winter and summer sampling campaigns from a typical BBR treatment system. The results indicate that out of 58 target PPCPs, 27 compounds were detected in the waste water (0.06-1900 ng/L), and 23 were found in the sludge (0.6-7755 ng/g dw). Paraxanthine was the chemical of the highest abundance in the influent due to the high consumption of the parent compounds caffeine and theobromine. The profile for PPCPs in the wastewater and sludge exhibited no seasonal variation. Overall, the removal of target PPCPs in summer is more effective than the winter. In the BBR bio-reactor, it was found that selected PPCPs (at ng/L level) can be completely removed. The efficiency for individual PPCP removal was increased from 1.0 % to 50 % in this unit, after target specific adjustments of the process. The effective removal of selected PPCPs by the BBR treatment system is explained by combined sorption and biodegradation processing. The re-occurrence of PPCPs in the wastewater was monitored. Negative removal efficiency was explained by the cleavage of Phase II metabolites after the biotransformation process, and the lack of equilibrium for PPCPs in the sludge of the second clarifier. A compound specific risk quotient (RQ) was calculated and applied for studying the potential environmental risks. Diphenhydramine is found with the highest environmental risk in wastewater, and 15 other PPCPs show negligible risks in sewage sludge.
Collapse
Affiliation(s)
- Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Norway
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Jia-Cheng Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12237, United States
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Norway
| |
Collapse
|
4
|
Jałowiecki Ł, Strugała-Wilczek A, Ponikiewska K, Borgulat J, Płaza G, Stańczyk K. Constructed wetland as a green remediation technology for the treatment of wastewater from underground coal gasification process. PLoS One 2024; 19:e0300485. [PMID: 38470886 DOI: 10.1371/journal.pone.0300485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The wastewater from underground coal gasification (UCG) process has extremely complex composition and high concentrations of toxic and refractory compounds including phenolics, aliphatic and aromatic hydrocarbons, ammonia, cyanides, hazardous metals and metalloids. So, the development of biological processes for treating UCG wastewater poses a serious challenge in the sustainable coal industry. The aim of the study was to develop an innovative and efficient wetland construction technology suitable for a treatment of UCG wastewater using available and low-cost media. During the bioremediation process the toxicity of the raw wastewater decreased significantly between 74%-99%. The toxicity units (TU) ranged from values corresponding to very high acute toxic for raw wastewater to non-toxic for effluents from wetland columns after 60 days of the experiment. The toxicity results correlated with the decrease of some organic and inorganic compounds such as phenols, aromatic hydrocarbons, cyanides, metals and ammonia observed during the bioremediation process. The removal percentage of organic compounds like BTEX, PAHs and phenol was around 99% just after 14 days of treatment. A similar removal rate was indicated for cyanide and metals (Zn, Cr, Cd and Pb). Concluded, in order to effectively assess remediation technologies, it is desirable to consider combination of physicochemical parameters with ecotoxicity measurements. The present findings show that wetland remediation technology can be used to clean-up the heavily contaminated waters from the UCG process. Wetland technology as a nature-based solution has the potential to turn coal gasification wastewater into usable recycled water. It is economically and environmentally alternative treatment method.
Collapse
Affiliation(s)
- Łukasz Jałowiecki
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
| | | | - Katarzyna Ponikiewska
- Department of Energy Saving and Air Protection, Central Mining Institute, Katowice, Poland
| | - Jacek Borgulat
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
| | - Grażyna Płaza
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
- Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| | - Krzysztof Stańczyk
- Department of Energy Saving and Air Protection, Central Mining Institute, Katowice, Poland
| |
Collapse
|
5
|
Wang H, Jing Y, Yu J, Ma B, Sui M, Zhu Y, Dai L, Yu S, Li M, Wang L. Micro/nanorobots for remediation of water resources and aquatic life. Front Bioeng Biotechnol 2023; 11:1312074. [PMID: 38026904 PMCID: PMC10666170 DOI: 10.3389/fbioe.2023.1312074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays, global water scarcity is becoming a pressing issue, and the discharge of various pollutants leads to the biological pollution of water bodies, which further leads to the poisoning of living organisms. Consequently, traditional water treatment methods are proving inadequate in addressing the growing demands of various industries. As an effective and eco-friendly water treatment method, micro/nanorobots is making significant advancements. Based on researches conducted between 2019 and 2023 in the field of water pollution using micro/nanorobots, this paper comprehensively reviews the development of micro/nanorobots in water pollution control from multiple perspectives, including propulsion methods, decontamination mechanisms, experimental techniques, and water monitoring. Furthermore, this paper highlights current challenges and provides insights into the future development of the industry, providing guidance on biological water pollution control.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiuzheng Yu
- Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an, China
| | - Bo Ma
- State Engineering Laboratory of Exploration and Development of Low-Permeability Oil & Gas Field, Xi’an, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|