1
|
Kishore SC, Perumal S, Atchudan R, Edison TNJI, Sundramoorthy AK, Manoj D, Alagan M, Kumar RS, Almansour AI, Sangaraju S, Lee YR. Sustainable synthesis of spongy-like porous carbon for supercapacitive energy storage systems towards pollution control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58818-58829. [PMID: 38684614 DOI: 10.1007/s11356-024-33437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption-desorption analyses for their structural and chemical composition. The examination revealed that TC-SPC has a crystalline nature and a mesoporous and microporous structure accompanied by a disordered carbon framework that is doped with heteroatoms such as nitrogen and sulfur. Electrochemical studies are performed on TC-SPC using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. TC-SPC contributed a maximum specific capacitance of 145 F g-1 obtained at 1 A g-1. The cyclic stability of TC-SPC is significant with 10,000 cycles, maintaining the capacitance retention value of 96%. The results demonstrated that by turning the fruit of Terminalia chebula into an opulent product, a supercapacitor, TC-SPC generated from biomass has proven to be a potential candidate for energy storage application.
Collapse
Affiliation(s)
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143747, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | | | - Ashok Kumar Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Muthulakshmi Alagan
- Department of Research and Innovation, Lincoln University College, 47301, Petaling Jaya, Malaysia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
2
|
Levent A, Saka C. Mesoporous carbon particles by biomass waste based on sulfonation and copper oxide functionalization as efficient and stable electrode material for supercapacitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52511-52522. [PMID: 39147899 DOI: 10.1007/s11356-024-34710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Here, the hierarchical mesoporous-activated carbon particles obtained by KOH activation from pistachio shell wastes are modified by both the sulfonation process and CuO doping by hydrothermal heating (CuO@S-doped PSAC) for use as a supercapacitor. It is predicted that the electrochemical performance of the porous carbon electrode material obtained by such CuO doping and sulfonation process will be significantly increased with increased Faradaic capacitance. The electrochemical performance of CuO@S doped PSAC composite is systematically investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) in the presence of 1 M H2SO4, 1 M Na2SO4, and 1 M NaOH as electrolytes. The CuO@S doped PSAC-based electrode shows excellent stability with high specific capacitance up to 397.16 F/g at 0.1 A/g and 92.64% retention. Furthermore, FTIR, SEM, XRD, EDS, and nitrogen adsorption/desorption analyses are used for the characterisation of the obtained composites. Based on a significant supercapacitor performance, the synthesis strategy of carbon-based electrode material containing sulfonation and CuO modifications derived from agricultural biomass waste material is predicted to be a valuable example.
Collapse
Affiliation(s)
- Abdulkadir Levent
- Arts and Sciences Faculty, Chemistry Department, Batman University, Batman, Turkey
| | - Cafer Saka
- Health Science Faculty, Chemistry Department, Siirt University, Siirt, Turkey.
| |
Collapse
|
3
|
Bulakhe RN, Nguyen AP, Ryu C, Kim JM, In JB. Facile Synthesis of Mesoporous Nanohybrid Two-Dimensional Layered Ni-Cr-S and Reduced Graphene Oxide for High-Performance Hybrid Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6598. [PMID: 37834735 PMCID: PMC10574503 DOI: 10.3390/ma16196598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
This study describes the single-step synthesis of a mesoporous layered nickel-chromium-sulfide (NCS) and its hybridization with single-layered graphene oxide (GO) using a facile, inexpensive chemical method. The conductive GO plays a critical role in improving the physicochemical and electrochemical properties of hybridized NCS/reduced GO (NCSG) materials. The optimized mesoporous nanohybrid NCSG is obtained when hybridized with 20% GO, and this material exhibits a very high specific surface area of 685.84 m2/g compared to 149.37 m2/g for bare NCS, and the pore diameters are 15.81 and 13.85 nm, respectively. The three-fold superior specific capacity of this optimal NCSG (1932 C/g) is demonstrated over NCS (676 C/g) at a current density of 2 A/g. A fabricated hybrid supercapacitor (HSC) reveals a maximum specific capacity of 224 C/g at a 5 A/g current density. The HSC reached an outstanding energy density of 105 Wh/kg with a maximum power density of 11,250 W/kg. A 4% decrement was observed during the cyclic stability study of the HSC over 5000 successive charge-discharge cycles at a 10 A/g current density. These results suggest that the prepared nanohybrid NCSG is an excellent cathode material for gaining a high energy density in an HSC.
Collapse
Affiliation(s)
- Ravindra N. Bulakhe
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; (R.N.B.); (C.R.)
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Anh Phan Nguyen
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Changyoung Ryu
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; (R.N.B.); (C.R.)
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jung Bin In
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; (R.N.B.); (C.R.)
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea;
| |
Collapse
|