1
|
Song X, Wang S, Liu X, Ma X, Chen H, Yang Y. Occupational exposure of nail technicians to industrial chemicals: A pilot study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124791. [PMID: 39182816 DOI: 10.1016/j.envpol.2024.124791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Previous studies have observed the use of complex industrial chemicals in beauty products. However, occupational exposure of beauty practitioners to various chemicals has not been sufficiently assessed. Our study recruited 37 female nail technicians from 28 nail salons in South China and investigated the abundances and profiles of more than 60 industrial chemicals or their metabolites in indoor dust, hand wipes, and urine of nail technicians. Thirty female college students were also recruited for comparison. The results revealed broad exposure of nail technicians to 42 target chemicals or their metabolites, with mono-phthalate esters (mono-PAEs) exhibiting the highest concentrations (median 284 ng/mL), followed by parabens (median 57.9 ng/mL) and antioxidants (median 19.6 ng/mL) in urine. The urinary concentrations of mono-PAEs, parabens, triclosan (TCS) and triclocarban of nail technicians were significantly higher than those of college students. Pre-shift and post-shift urine did not exhibit significant differences for most chemicals, likely reflecting continuous and long-term exposure. Hand wipe levels of TCS and 2,6-di-tert-butyl-4-methylpheno were significantly associated with urinary levels of these chemicals or their metabolites, while such a pattern was not observed between dust and urinary levels. This highlights the influence of dermal contact or hand-to-mouth transfer on the intake of these chemicals. Collectively, our pilot study demonstrates the occupational exposure of nail technicians to industrial chemicals in beauty products and calls for vigilant self-protection measures to mitigate exposure risks in beauty practitioners.
Collapse
Affiliation(s)
- Xin Song
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shuyue Wang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaotu Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xufang Ma
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Haojia Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou, Guangdong, 515041, China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou, Guangdong, 515041, China.
| |
Collapse
|
2
|
Royano S, Navarro I, de la Torre A, Martínez MÁ. Occurrence and human risk assessment of pharmaceutically active compounds (PhACs) in indoor dust from homes, schools and offices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49682-49693. [PMID: 39080161 PMCID: PMC11324665 DOI: 10.1007/s11356-024-34459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
This study investigates the current situation and possible health risks due to pharmaceutically active compounds (PhACs) including analgesics, antibiotics, antifungals, anti-inflammatories, psychiatric and cardiovascular drugs, and metabolites, in indoor environments. To achieve this objective, a total of 85 dust samples were collected in 2022 from three different Spanish indoor environments: homes, classrooms, and offices. The analytical method was validated meeting SANTE/2020/12830 and SANTE/12682/2019 performance criteria. All indoor dust samples except one presented at least one PhAC. Although concentration levels ranged from < LOQ to 18 µg/g, only acetaminophen, thiabendazole, clotrimazole, and anhydroerythromycin showed quantification frequencies (Qf %) above 19% with median concentrations of 166 ng/g, 74 ng/g, 25 ng/g and 14 ng/g, respectively. The PhAC distribution between dust deposited on the floor and settled on elevated (> 0.5 m) surfaces was assessed but no significant differences (p > 0.05, Mann-Whitney U-test) were found. However, concentrations quantified at the three types of locations showed significant differences (p < 0.05, Kruskal-Wallis H-test). Homes turned out to be the indoor environment with higher pharmaceutical concentrations, especially acetaminophen (678 ng/g, median). The use of these medicines and their subsequent removal from the body were identified as the main PhAC sources in indoor dust. Relationships between occupant habits, building characteristics, and/or medicine consumption and PhAC concentrations were studied. Finally, on account of concentration differences, estimated daily intakes (EDIs) for inhalation, ingestion and dermal adsorption exposure pathways were calculated for toddlers, adolescents and adults in homes, classrooms and offices separately. Results proved that dust ingestion is the main route of exposure, contributing more than 99% in all indoor environments. Moreover, PhAC intakes for all studied groups, at occupational locations (classrooms and offices) are much lower than that obtained for homes, where hazard indexes (HIs) obtained for acetaminophen (7%-12%) and clotrimazole (4%-7%) at the worst scenario (P95) highlight the need for continuous monitoring.
Collapse
Affiliation(s)
- Silvia Royano
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
- International Doctoral School of the UNED (EIDUNED), National University of Distance Education (UNED), Madrid, Spain
| | - Irene Navarro
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - Adrián de la Torre
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| | - María Ángeles Martínez
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
3
|
Ballesteros-Gómez A, Ballesteros J, Rubio S. Comprehensive characterization of organic compounds in indoor dust after generic sample preparation with SUPRAS and analysis by LC-HRMS/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169390. [PMID: 38135084 DOI: 10.1016/j.scitotenv.2023.169390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In this study supramolecular solvents (SUPRAS) are employed for the first time to perform a wide screening of organic compounds in indoor dust samples. The potential of SUPRAS to efficiently extract a wide polarity range of compounds, and to simplify and improve the green properties of sample treatment in this area are discussed. SUPRAS made up of inverse aggregates of hexanol in tetrahydrofuran:water mixtures, which have been previously and successfully applied to the target determination of a variety of organic contaminants in different environmental matrices, were employed. Analysis was done with liquid chromatography and high resolution mass spectrometry. Twelve samples from public buildings (six educative buildings, two food stores, two nightclubs, one office and a coffee shop) were collected in South Spain. A total of 146 compounds were detected by target (∼33 %), suspect (∼55 %) and non-target screening (∼12 %). Around 86 % of all the compounds were identified (or tentatively identified) with levels of confidence equal or higher than 3. Novel designer drugs of abuse, unreported organophosphorus compounds and well-known organic contaminants, such as bisphenols, parabens, phthalates and flame retardants are reported. Differences with previous studies on wide screening of indoor dust reveal the influence of the employed databases for data processing and of the extraction method together with the different contamination profiles given by the sample location.
Collapse
Affiliation(s)
- Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
4
|
Moorchilot VS, P A, Aravind UK, Aravindakumar CT. Human exposure to methyl and butyl parabens and their transformation products in settled dust collected from urban, semi-urban, rural, and tribal settlements in a tropical environment. ENVIRONMENTAL RESEARCH 2024; 242:117805. [PMID: 38042518 DOI: 10.1016/j.envres.2023.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
The present study involved monitoring the distribution of two widely consumed parabens (methyl paraben (MeP) and butyl paraben (BuP)) and their transformation products in indoor dust from different categories of settlement (urban, semi-urban, rural, and tribal homes). The results revealed a prevalent occurrence of parabens in all the settlement categories. A non-normal distribution pattern for MeP and BuP levels across the sampling sites was noted. While comparing the residence time of parabens in dust samples, it was found that the half-lives of the analytes were greater in the dust from urban (MeP t1/2: 47.510 h; BuP t1/2: 22.354 h) and rural (MeP t1/2: 27.725 h and BuP t1/2: 31.500 h) areas. The presence of paraben metabolites, such as hydroxy methylparaben (OH-MeP), para hydroxy benzoic acid (p-HBA), and benzoic acid (BA) in dust samples supports their transformation within indoor spaces. The average daily intake of parabens through dust ingestion and dermal absorption by children was higher than adults. BuP was the prime contributor (>85%) to the total estradiol equivalency quotient (tEEQ) in all the settlement categories.
Collapse
Affiliation(s)
- Vishnu S Moorchilot
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Arun P
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India.
| |
Collapse
|
5
|
González N, Souza MCO, Cezarette GN, Rocha BA, Devoz PP, Dos Santos LC, Barcelos GRM, Nadal M, Domingo JL, Barbosa F. Evaluation of exposure to multiple organic pollutants in riparian communities of the Brazilian Amazon: Screening levels and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168294. [PMID: 37924872 DOI: 10.1016/j.scitotenv.2023.168294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Organic pollutants are widely distributed in the environment. Due to their physical and chemical characteristics, they tend to be biomagnified in food chains, mainly in aquatic organisms. Therefore, food consumption is a significant route of lifelong exposure. Although the Amazon River basin contains the highest freshwater biodiversity on Earth, there is scarce literature focusing on the levels of organic pollutants in the local population. The present study was aimed at assessing the levels of several environmental pollutants (polycyclic aromatic hydrocarbons, bisphenols, parabens, and benzophenones) in urine samples from riverside communities along the Tapajós and Amazon Rivers in the Brazilian Amazon region. The results show a 100 % detection of naphthalene metabolites (namely, 1-hydroxy-naphthalene (1OH-NAP), 2-hydroxy-naphthalene (2OH-NAP)), with the highest levels belonging to benzylparaben (BzP) (17.3 ng/mL). Gender-specific analysis revealed that women had significantly higher levels of certain PAH metabolites (i.e., 1OH-NAP and 2-hydroxy-fluorene (2OH-FLU)) than men. In turn, most of the evaluated compounds were higher in urine samples from people living near the Amazon River, which presents increased traffic of boats and ships than the Tapajós River. On the other hand, the human health risk assessment suggested that all communities are at risk of suffering non-carcinogenic effects from exposure to PAHs. At the same time, they are also at risk of carcinogenic effects from exposure to benzo[a]pyrene metabolites. Thus, further studies are needed in order to evaluate the potential health effects of exposure to a mixture of these organic pollutants and other contaminants present in the area, such as mercury.
Collapse
Affiliation(s)
- Neus González
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| | - Gabriel Neves Cezarette
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Paula Pícoli Devoz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Cassulatti Dos Santos
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | | | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
6
|
Tran CM, Ra JS, Rhyu DY, Kim KT. Transcriptome analysis reveals differences in developmental neurotoxicity mechanism of methyl-, ethyl-, and propyl- parabens in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115704. [PMID: 37979356 DOI: 10.1016/j.ecoenv.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Studies on the comparison of developmental (neuro) toxicity of parabens are currently limited, and unharmonized concentrations between phenotypic observations and transcriptome analysis hamper the understanding of their differential molecular mechanisms. Thus, developmental toxicity testing was conducted herein using the commonly used methyl- (MtP), ethyl- (EtP), and propyl-parabens (PrP) in zebrafish embryos. With a benchmark dose of 5%, embryonic-mortality-based point-of-departure (M-POD) values of the three parabens were determined, and changes in locomotor behavior were evaluated at concentrations of 0, M-POD/50, M-POD/10, and M-POD, where transcriptome analysis was conducted to explore the underlying neurotoxicity mechanism. Higher long-chained parabens were more toxic than short-chained parabens, as determined by the M-POD values of 154.1, 72.6, and 24.2 µM for MtP, EtP, and PrP, respectively. Meanwhile, exposure to EtP resulted in hyperactivity, whereas no behavioral effect was observed with MtP and PrP. Transcriptome analysis revealed that abnormal behaviors in the EtP-exposed group were associated with distinctly enriched pathways in signaling, transport, calcium ion binding, and metal binding. In contrast, exposure to MtP and PrP mainly disrupted membranes and transmembranes, which are closely linked to abnormal embryonic development rather than neurobehavioral changes. According to the changes in the expressions of signature mRNAs, tentative transcriptome-based POD values for each paraben were determined as MtP (2.68 µM), EtP (3.85 µM), and PrP (1.4 µM). This suggests that different molecular perturbations initiated at similar concentrations determined the extent and toxicity outcome differently. Our findings provide insight into better understanding the differential developmental neurotoxicity mechanisms of parabens.
Collapse
Affiliation(s)
- Cong Minh Tran
- Department of Energy and Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jin-Sung Ra
- Eco-testing and Risk Assessment Center, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| | - Dong Young Rhyu
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Energy and Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
7
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|