1
|
Liu M, Quan Y, Feng M, Ren C, Wang Z. Ball-milling preparation of ZnFe 2O 4/AgI nanocomposite with enhanced photocatalytic activity. RSC Adv 2024; 14:31193-31204. [PMID: 39351418 PMCID: PMC11441422 DOI: 10.1039/d4ra05539j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Semiconductor photocatalytic technology is increasingly being utilized in wastewater treatment due to its high efficiency, low energy consumption and environmental friendliness. However, single photocatalysts often exhibit low catalytic performance. In this study, a ZnFe2O4/AgI composite photocatalyst was initially prepared using a high-energy ball-milling method. For the first time, it was applied to the photocatalytic dehydrogenation of diethyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate (1,4-DHP), as well as photocatalytic degradation of harmful substances such as amaranth (AM), methyl orange (MO) and indole present in wastewater. The composite photocatalyst exhibited superior catalytic performance compared to ZnFe2O4 and AgI under visible light irradiation (λ ≥ 400 nm). With optimized composition, the pseudo-first-order rate constants of ZnFe2O4/AgI-50% were approximately 6, 20, 64 and 38 times higher than that of AgI for the photooxidation of 1,4-DHP, AM, MO and indole, respectively. The enhanced catalytic activity of the composite was attributed to the formation of heterojunction between ZnFe2O4 and AgI, which facilitated the separation and transfer of photogenerated charge carriers. Mechanism studies revealed that photogenerated holes (h+) and superoxide radical anions (˙O2 -) played pivotal roles in the photocatalytic reaction process.
Collapse
Affiliation(s)
- Meiling Liu
- Chemical Synthesis and Pollution Control Key Laboratory, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China
| | - Yan Quan
- Chemical Synthesis and Pollution Control Key Laboratory, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China
| | - Mengjie Feng
- Chemical Synthesis and Pollution Control Key Laboratory, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China
| | - Chunguang Ren
- School of Pharmacy, Yantai University Yantai 264005 Shandong China (+86) 817-2445233 (+86) 817-2568081
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China
| |
Collapse
|
2
|
Fu S, Chu Z, Huang Z, Dong X, Bie J, Yang Z, Zhu H, Pu W, Wu W, Liu B. Construction of Z-scheme AgCl/BiOCl heterojunction with oxygen vacancies for improved pollutant degradation and bacterial inactivation. RSC Adv 2024; 14:3888-3899. [PMID: 38283591 PMCID: PMC10811567 DOI: 10.1039/d3ra08514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
A facile Z-scheme AgCl/BiOCl heterojunction photocatalyst with oxygen vacancies was fabricated by a water-bath method. The structural, morphological, optical and electronic properties of as-synthesized samples were systematically characterized. The oxygen vacancies were confirmed by EPR, which could optimize the band-gap of the AgCl/BiOCl heterojunction and improve the photo-induced electron transfer. The optimized AgCl/BiOCl heterojunction showed excellent photocatalytic degradation efficiency (82%) for tetracycline (TC). Simultaneously, E. coli was completely inactivated within 60 min due to the AgCl/BiOCl heterojunction. The elevated catalytic activity of the optimal AgCl/BiOCl heterojunction was ascribed to the synergistic effect of the enhanced light absorption and effective photoinduced charge carrier separation and transfer. Moreover, the degradation efficiency of the AgCl/BiOCl heterojunction towards ofloxacin, norfloxacin and Lanasol Red 5B was 73%, 74% and 96%, respectively. The experimental factors for the degradation efficiency of TC were also studied. Furthermore, active species trapping experiments indicated that superoxide radicals (˙O2-) were the main reactive species, and the Z-scheme charge transfer mechanism helped to improve the photocatalytic activity.
Collapse
Affiliation(s)
- Shuai Fu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Zhiliang Chu
- The 989th Hospital, Department of Central Laboratory Luoyang 471031 Henan PR China
| | - Zhiquan Huang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Xiaomei Dong
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
| | - Junhong Bie
- Henan Communications Planning & Design Institute Co., Ltd Zhengzhou 450046 Henan PR China
| | - Zhe Yang
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Huijie Zhu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
- Henan Engineering Research Center of Water Quality Safety in the Middle-lower Yellow River, Henan Green Technology Innovation Demonstration Base Luoyang 471023 Henan PR China
| | - Wanyu Pu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
| | - Wanzhe Wu
- Henan International Joint Laboratory of New Civil Engineering Structure, College of Civil Engineering, Luoyang Institute of Science and Technology Luoyang 471023 Henan PR China
| | - Bo Liu
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 Shandong PR China
| |
Collapse
|
3
|
Xing J, Huang J, Wang X, Yang F, Bai Y, Li S, Zhang X. Removal of low-concentration tetracycline from water by a two-step process of adsorption enrichment and photocatalytic regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118210. [PMID: 37229865 DOI: 10.1016/j.jenvman.2023.118210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Developing a high-performance method that can effectively control pollution caused by low concentrations of antibiotics is urgently needed. Herein, a novel three-dimensional PPy/Zn3In2S6 nanoflower composites were prepared for the comprehensive treatment of low-concentration tetracycline (Tc) hydrochloride in wastewater based on the adsorption/photocatalysis of Zn3In2S6 and the conductivity of PPy. In this preparation method, adsorption enrichment and photocatalytic regeneration were conducted in two steps, eliminating the dilution and dispersion effects of aqueous solvents on photocatalytic species and antibiotics. Results showed that Zn3In2S6 could effectively adsorb 87.85% of Tc at pH of 4.5 and photocatalytically degrade Tc at pH of 10.5. Although the adsorption capacity of Zn3In2S6 was slightly reduced after being combined with PPy, its photocatalytic efficiency was substantially enhanced. Specifically, 0.5%PPy/Zn3In2S6 could degrade 99.92% of the surface-enriched Tc in 1 h and induce the regeneration of the adsorption sites. Furthermore, the adsorption capacity remained above 85% even after recycling PPy/Zn3In2S6 ten times. The photocatalytic degradation mechanism analysis revealed that the enrichment of Tc on 0.5%PPy/Zn3In2S6 negatively impacts the photocatalytic efficiency, while •O2- and •OH radicals were the main oxidative species that played an important role in the photoregeneration process.
Collapse
Affiliation(s)
- Jianyu Xing
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China.
| | - Jumei Huang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Xi Wang
- SINO Shaanxi Nuclear Industry Comprehensive Analysis Testing CO., LTD., Xi'an, Shaanxi, 710024, PR China
| | - Feiying Yang
- SINO Shaanxi Nuclear Industry Comprehensive Analysis Testing CO., LTD., Xi'an, Shaanxi, 710024, PR China
| | - Yuehao Bai
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Sha Li
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Xinhao Zhang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| |
Collapse
|