1
|
Wren GH, Flanagan J, Underwood JFG, Thompson AR, Humby T, Davies W. Memory, mood and associated neuroanatomy in individuals with steroid sulphatase deficiency (X-linked ichthyosis). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12893. [PMID: 38704684 PMCID: PMC11070068 DOI: 10.1111/gbb.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024]
Abstract
Steroid sulphatase (STS) cleaves sulphate groups from steroid hormones, and steroid (sulphate) levels correlate with mood and age-related cognitive decline. In animals, STS inhibition or deletion of the associated gene, enhances memory/neuroprotection and alters hippocampal neurochemistry. Little is known about the consequences of constitutive STS deficiency on memory-related processes in humans. We investigated self-reported memory performance (Multifactorial Memory Questionnaire), word-picture recall and recent mood (Kessler Psychological Distress Scale, K10) in adult males with STS deficiency diagnosed with the dermatological condition X-linked ichthyosis (XLI; n = 41) and in adult female carriers of XLI-associated genetic variants (n = 79); we compared results to those obtained from matched control subjects [diagnosed with ichthyosis vulgaris (IV, n = 98) or recruited from the general population (n = 250)]. Using the UK Biobank, we compared mood/memory-related neuroanatomy in carriers of genetic deletions encompassing STS (n = 28) and non-carriers (n = 34,522). We found poorer word-picture recall and lower perceived memory abilities in males with XLI and female carriers compared with control groups. XLI-associated variant carriers and individuals with IV reported more adverse mood symptoms, reduced memory contentment and greater use of memory aids, compared with general population controls. Mood and memory findings appeared largely independent. Neuroanatomical analysis only indicated a nominally-significantly larger molecular layer in the right hippocampal body of deletion carriers relative to non-carriers. In humans, constitutive STS deficiency appears associated with mood-independent impairments in memory but not with large effects on underlying brain structure; the mediating psychobiological mechanisms might be explored further in individuals with XLI and in new mammalian models lacking STS developmentally.
Collapse
Affiliation(s)
| | - Jessica Flanagan
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
| | - Jack F. G. Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| | - Andrew R. Thompson
- School of PsychologyCardiff UniversityCardiffUK
- South Wales Clinical Psychology Doctoral ProgrammeCardiff and Vale University Health BoardCardiffUK
| | | | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
2
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
3
|
Ardestani SK, Jamali T, Taravati A, Behboudi H, Vaez-Mahdavi MR, Faghihzadeh E, Ghazanfari T. Changes in hormones, Leukocyte Telomere Length (LTL), and p16 INK4a expression in SM-exposed individuals in favor of the cellular senescence. Drug Chem Toxicol 2023; 46:1235-1241. [PMID: 36573392 DOI: 10.1080/01480545.2022.2150205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent with well-known severe toxic effects and may cause long-term debilitating injuries. We aimed to evaluate aging and longevity in Iranian SM-exposed survivors using some endocrine and molecular biomarkers for the first time. Dehydroepiandrosterone (DHEA), prolactin (PRL), cortisol, testosterone, and luteinizing hormone (LH) were measured in 289 male SM-veterans and 66 age-matched males using the ELISA method. Leukocyte Telomere Length (LTL) measurement and p16INK4a expression were measured in the peripheral blood leukocytes of 55 males who were exposed to SM. We found a significantly lower serum DHEAS level and higher serum PRL level in SM-exposed groups (without any related to the severity of lung injuries) compared to healthy controls, but no significant difference in serum levels of cortisol, testosterone, and LH. The molar ratio of DHEAS/cortisol was significantly higher in controls compared to the SM-exposed individuals especially those with severe lung damage. Some biological parameters of allostatic load score such as DHEAS and DHEAS/cortisol ratio significantly decreased long-term after the SM exposure. Additionally, we found that LTL was shorter in SM-exposed veterans rather than unexposed controls while p16INK4a gene expression significantly increased in these groups. It seems that DHEAS, DHEAS/cortisol ratio, LTL, and p16INK4a gene expression have changed significantly in favor of cellular senescence in SM-exposed patients. Therefore, it seems that SM exposure increases biological age compared to chronological age in SM-exposed survivors.
Collapse
Affiliation(s)
- Susan K Ardestani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Tahereh Jamali
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, University of Mazandaran, Babolsar, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | | | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Prokai L, Nguyen V, Urbanski HF. Effect of estradiol replacement on hippocampal concentrations of estrogens in aged rhesus macaques maintained on an obesogenic diet. Biochem Biophys Rep 2023; 35:101548. [PMID: 37745986 PMCID: PMC10511332 DOI: 10.1016/j.bbrep.2023.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Replacement involving estrogens has proven efficacy at treating a wide range of disorders that develop with menopause or after surgical removal of the ovaries. Here, we tested whether an estradiol (E2) replacement paradigm that recapitulates physiological E2 levels in the circulation also recapitulates physiological E2 levels within the hippocampus. E2 was delivered continuously to old ovariectomized (OVX) rhesus macaques, maintained on a high-fat, high-sugar Western-style diet (WSD) for ∼30 months, via subcutaneous implants; this resulted in physiological concentrations of both estrone (E1) and E2 in the circulation (determined by LC-MS/MS). Surprisingly, however, hippocampal concentrations of E2 were markedly (P < 0.01) higher than in ovary-intact animals maintained on a regular chow diet. The data suggest that E2 replacement paradigms that appear to recapitulate physiological E2 concentrations in the circulation may produce hyper-physiological E2 levels within some brain areas, especially when individuals are maintained on a WSD.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center at Fort Worth, TX, 76063, USA
| | - Vien Nguyen
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center at Fort Worth, TX, 76063, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
5
|
Takeshita RS, Edler MK, Meindl RS, Sherwood CC, Hopkins WD, Raghanti MA. Age, adrenal steroids, and cognitive functioning in captive chimpanzees ( Pan troglodytes). PeerJ 2022; 10:e14323. [PMID: 36389417 PMCID: PMC9653054 DOI: 10.7717/peerj.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Dehydroepiandrosterone-sulfate is the most abundant circulating androgen in humans and other catarrhines. It is involved in several biological functions, such as testosterone production, glucocorticoid antagonist actions, neurogenesis and neuroplasticty. Although the role of dehydroepiandrosterone-sulfate (DHEAS) in cognition remains elusive, the DHEAS/cortisol ratio has been positively associated with a slower cognitive age-decline and improved mood in humans. Whether this relationship is found in nonhuman primates remains unknown. Methods We measured DHEAS and cortisol levels in serum of 107 adult chimpanzees to investigate the relationship between DHEAS levels and age. A subset of 21 chimpanzees was used to test the potential associations between DHEAS, cortisol, and DHEAS/cortisol ratio in cognitive function, taking into account age, sex, and their interactions. We tested for cognitive function using the primate cognitive test battery (PCTB) and principal component analyses to categorize cognition into three components: spatial relationship tasks, tool use and social communication tasks, and auditory-visual sensory perception tasks. Results DHEAS levels, but not the DHEAS/cortisol ratio, declined with age in chimpanzees. Our analyses for spatial relationships tasks revealed a significant, positive correlation with the DHEAS/cortisol ratio. Tool use and social communication had a negative relationship with age. Our data show that the DHEAS/cortisol ratio, but not DHEAS individually, is a promising predictor of spatial cognition in chimpanzees.
Collapse
Affiliation(s)
- Rafaela S.C. Takeshita
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Melissa K. Edler
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Richard S. Meindl
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - William D. Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Mary Ann Raghanti
- Department of Anthropology, Kent State University, Kent, OH, USA,School of Biomedical Sciences, Kent State University, Kent, OH, USA,Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
6
|
Luine V, Mohan G, Attalla S, Jacome L, Frankfurt M. Androgens Enhance Recognition Memory and Dendritic Spine Density in the Hippocampus and Prefrontal Cortex of Ovariectomized Female Rats. Neuroscience 2022:S0306-4522(22)00287-1. [PMID: 35671881 PMCID: PMC9719572 DOI: 10.1016/j.neuroscience.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Estrogen replacement has been repeatedly shown to enhance memory and increase dendritic spine density in the hippocampus and prefrontal cortex of ovariectomized (OVX) female rats. Given the potential deleterious effects of chronic estrogen administration, the present study assessed cognitive function using recognition memory tasks and measured dendritic spine density in the CA1 region of the hippocampus and medial prefrontal cortex after subchronic androgen replacement to adult OVX female rats. All androgens enhanced recognition memory in OVX rats, but object placement (OP) and object recognition (OR) results differed. Only testosterone enhanced OR. Testosterone had no effect on OP while dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and androstenedione (AD) enhanced OP. Dendritic spine density was increased by both TP and DHEA in both brain areas (DHT and AD were not tested). Lastly, we used the aromatase inhibitor, letrozole, to discriminate between potential androgenic and estrogenic effects of androgens on behavior. Letrozole alone did not alter recognition memory in OVX rats and did not block the effects of either TP or DHEA on recognition memory suggesting that effects were mediated via androgenic mechanisms. The present results expand previous information on gonadal hormone actions and show that, in addition to estrogens, androgens also improve memory and increase spine density in brains of OVX female rats. While requiring further investigation, these observations provide a basis for therapeutic interventions in the treatment of menopausal, age or disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States.
| | - Govini Mohan
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Sara Attalla
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Luis Jacome
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, 160 Hofstra University, 400A Shapiro Family Hall, Hempstead, NY 11549, United States
| |
Collapse
|
7
|
Chen G, Guo L, Zhao X, Ren Y, Chen H, Liu J, Jiang J, Liu P, Liu X, Hu B, Wang N, Peng H, Xu G, Tao H. Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans. Front Mol Biosci 2022; 8:784288. [PMID: 35242810 PMCID: PMC8887861 DOI: 10.3389/fmolb.2021.784288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Studies of key metabolite variations and their biological mechanisms in cerebral infarction (CI) have increased our understanding of the pathophysiology of the disease. However, how metabolite variations in different periods of CI influence these biological processes and whether key metabolites from different periods may better predict disease progression are still unknown. We performed a systematic investigation using the metabonomics method. Various metabolites in different pathways were investigated by serum metabolic profiling of 143 patients diagnosed with CI and 59 healthy controls. Phe-Phe, carnitine C18:1, palmitic acid, cis-8,11,14-eicosatrienoic acid, palmitoleic acid, 1-linoleoyl-rac-glycerol, MAG 18:1, MAG 20:3, phosphoric acid, 5α-dihydrotestosterone, Ca, K, and GGT were the major components in the early period of CI. GCDCA, glycocholate, PC 36:5, LPC 18:2, and PA showed obvious changes in the intermediate time. In contrast, trans-vaccenic acid, linolenic acid, linoleic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, arachidonic acid, DHA, FFA 18:1, FFA 18:2, FFA 18:3, FFA 20:4, FFA 22:6, PC 34:1, PC 36:3, PC 38:4, ALP, and Crea displayed changes in the later time. More importantly, we found that phenylalanine metabolism, medium-chain acylcarnitines, long-chain acylcarnitines, choline, DHEA, LPC 18:0, LPC 18:1, FFA 18:0, FFA 22:4, TG, ALB, IDBIL, and DBIL played vital roles in the development of different periods of CI. Increased phenylacetyl-L-glutamine was detected and may be a biomarker for CI. It was of great significance that we identified key metabolic pathways and risk metabolites in different periods of CI different from those previously reported. Specific data are detailed in the Conclusion section. In addition, we also explored metabolite differences of CI patients complicated with high blood glucose compared with healthy controls. Further work in this area may inform personalized treatment approaches in clinical practice for CI by experimentally elucidating the pathophysiological mechanisms.
Collapse
Affiliation(s)
- Guoyou Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Li Guo
- Department of Anesthesia, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yachao Ren
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Hongyang Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Jincheng Liu
- Academic Affairs Office, Harbin Medical University-Daqing, Daqing, China
| | - Jiaqi Jiang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Peijia Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Liu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Bo Hu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Na Wang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Haisheng Peng
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haiquan Tao
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cerebrovascular Diseases Department, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
8
|
Jang S, Choi SW, Son SJ, Oh J, Ha J, Kim WJ, Roh HW, Kim KY, Lee S, Jung E, Cha W, Chae H, Kang S, Kwon JH, Kim IY, Lee JY, Shin HK, Ryu JS, Ahn R, Hong CH, Seok JH. Virtual reality-based monitoring test for MCI: A multicenter feasibility study. Front Psychiatry 2022; 13:1057513. [PMID: 36741575 PMCID: PMC9891464 DOI: 10.3389/fpsyt.2022.1057513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES As the significance of the early diagnosis of mild cognitive impairment (MCI) has emerged, it is necessary to develop corresponding screening tools with high ecological validity and feasible biomarkers. Virtual reality (VR)-based cognitive assessment program, which is close to the daily life of the older adults, can be suitable screening tools for MCI with ecological validity and accessibility. Meanwhile, dehydroepiandrosterone (DHEA) has been observed at a low concentration in the older adults with dementia or cognitive decline, indicating its potential as a biomarker of MCI. This study aimed to determine the efficacy and usability of a VR cognitive assessment program and salivary DHEA for screening MCI. METHODS The VR cognitive assessment program and the traditional Montreal Cognitive Assessment (MOCA) test were performed on 12 patients with MCI and 108 healthy older adults. The VR program operates in a situation of caring for a grandchild, and evaluates the memory, attention, visuospatial, and executive functions. An analysis of covariance (ANCOVA), a partial correlation analysis, and receiving operating characteristic (ROC) curve analysis were conducted for statistical analysis. RESULTS According to the ANCOVA, no significant difference in MOCA scores was found between the normal and MCI groups (F = 2.36, p = 0.127). However, the VR total score of the MCI group was significantly lower than that of the normal group (F = 8.674, p = 0.004). There was a significant correlation between the MOCA and VR scores in the total and matched subdomain scores. The ROC curve analysis also showed a larger area under the curve (AUC) for the VR test (0.765) than for the MOCA test (0.598), and the sensitivity and specificity of the VR program were 0.833 and 0.722, respectively. Salivary DHEA was correlated with VR total (R 2 = 0.082, p = 0.01) and attention scores (R 2 = 0.086, p = 0.009). CONCLUSION The VR cognitive test was as effective as the traditional MOCA test in the MCI classification and safe enough for older adults to perform, indicating its potential as a diagnostic tool. It has also been shown that salivary DHEA can be used as a biomarker for MCI.
Collapse
Affiliation(s)
- Sooah Jang
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea
| | - Sun-Woo Choi
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jooyoung Oh
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junghee Ha
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jung Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Hyun Woong Roh
- Department of Psychiatry, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Keun You Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - San Lee
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Eunjin Jung
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woojin Cha
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heonjoo Chae
- FNIKorea Co., Ltd., Gwacheon, Gyeonggi-do, Republic of Korea
| | - Suzi Kang
- FNIKorea Co., Ltd., Gwacheon, Gyeonggi-do, Republic of Korea
| | - Ji Hye Kwon
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea
| | - In-Young Kim
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea
| | - Ju-Yeal Lee
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea
| | - Hyun Kyung Shin
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Ryu
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea.,Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ryunsup Ahn
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jeong-Ho Seok
- Research Institute of Minds.AI, Co., Ltd., Seoul, Republic of Korea.,Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Verbruggen L, Ates G, Lara O, De Munck J, Villers A, De Pauw L, Ottestad-Hansen S, Kobayashi S, Beckers P, Janssen P, Sato H, Zhou Y, Hermans E, Njemini R, Arckens L, Danbolt NC, De Bundel D, Aerts JL, Barbé K, Guillaume B, Ris L, Bentea E, Massie A. Lifespan extension with preservation of hippocampal function in aged system x c--deficient male mice. Mol Psychiatry 2022; 27:2355-2368. [PMID: 35181756 PMCID: PMC9126817 DOI: 10.1038/s41380-022-01470-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.
Collapse
Affiliation(s)
- Lise Verbruggen
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gamze Ates
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Olaya Lara
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jolien De Munck
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Agnès Villers
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Université de Mons (UMONS), Mons, Belgium
| | - Laura De Pauw
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sigrid Ottestad-Hansen
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sho Kobayashi
- grid.268394.20000 0001 0674 7277Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Pauline Beckers
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Janssen
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hideyo Sato
- grid.260975.f0000 0001 0671 5144Department of Medical Technology, Niigata University, Niigata, Japan
| | - Yun Zhou
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emmanuel Hermans
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Rose Njemini
- grid.8767.e0000 0001 2290 8069Frailty in Ageing research Department, VUB, Brussels, Belgium
| | - Lutgarde Arckens
- grid.5596.f0000 0001 0668 7884Laboratory of Neuroplasticity and Neuroproteomics, and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
| | - Niels C. Danbolt
- grid.5510.10000 0004 1936 8921Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dimitri De Bundel
- grid.8767.e0000 0001 2290 8069Pharmaceutical Chemistry, Drug Analysis and Drug Information, C4N, VUB, Brussels, Belgium
| | - Joeri L. Aerts
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kurt Barbé
- grid.8767.e0000 0001 2290 8069The Biostatistics and Medical Informatics Department, VUB, Brussels, Belgium
| | | | - Laurence Ris
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Université de Mons (UMONS), Mons, Belgium
| | - Eduard Bentea
- grid.8767.e0000 0001 2290 8069Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
10
|
Lennartsson AK, Arvidson E, Börjesson M, Jonsdottir IH. DHEA-S production capacity in relation to perceived prolonged stress. Stress 2022; 25:105-112. [PMID: 35037820 DOI: 10.1080/10253890.2021.2024803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We and other research groups have previously described that levels of the anabolic hormone dehydroepiandrosterone sulfate (DHEA-S) are lowered in individuals who report prolonged stress. We have also shown that the DHEA-S production capacity during acute stress is attenuated in individuals reporting high prolonged stress. This study aimed to further investigate the DHEA and DHEA-S production capacity in relation to prolonged stress. Eighty-one healthy participants in the age 20-50 years old were included in the study and divided into a low stress (n = 45) and a high stress group (n = 36) according their response to a single question regarding perceived stress during the preceding month. They underwent the Trier Social Stress Test while blood samples were drawn before, during and after the stress test. The concentration of DHEA, DHEA-S, cortisol and ACTH was measured. The results showed that the high stress group exhibited a significantly lower response of DHEA-S (40% lower) than the low stress group, while DHEA, cortisol and ACTH responses did not differ between the groups. Reduced DHEA-S production may constitute one of the links between stress and poor health.
Collapse
Affiliation(s)
| | - Elin Arvidson
- The Institute of Stress Medicine, Region of Västra Götaland, Gothenburg, Sweden
- The Department of Food and Nutrition, and Sport Science, Faculty of Education, University of Gothenburg, Gothenburg, Sweden
| | - Mats Börjesson
- The Department of Food and Nutrition, and Sport Science, Faculty of Education, University of Gothenburg, Gothenburg, Sweden
- The Department of Neuroscience and Physiology, Gothenburg University and Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Ingibjörg H Jonsdottir
- The Institute of Stress Medicine, Region of Västra Götaland, Gothenburg, Sweden
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Chu L, Liu W, Deng J, Wu Y, Yang H, Wang W, Hussain A, Li N, Zhou D, Deng H. Age-related changes in endogenous glucocorticoids, gonadal steroids, endocannabinoids and their ratios in plasma and hair from the male C57BL/6 mice. Gen Comp Endocrinol 2021; 301:113651. [PMID: 33122035 DOI: 10.1016/j.ygcen.2020.113651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
Age-related level changes of hormones, endocannabinoids and their ratios are of pathophysiological significance for understanding functions, activities and interactions of the endocrine systems, including the hypothalamic-pituitaryadrenal (HPA), hypothalamic-pituitary-gonadal (HPG) axes and endogenous cannabinoid system (ECS). The present study aimed to investigate the age-dependent fluctuations of glucocorticoids, gonadal steroids, endocannabinoids and their ratios from 21 days to 10 months in both plasma and hair from the male C57BL/6 mice. A novel framework based on the liquid chromatography-tandem mass spectrometry was developed to simultaneously determine ten hormones and two endocannabinoids in plasma and hair. Results showed that glucocorticoids, corticosterone (CORT), aldosterone (ALD), 11-dehydrocorticosterone (11-DHC), gonadal steroids, progesterone (P), dehydroepiandrosterone (DHEA), testosterone (T) and dihydrotestosterone (DHT) in plasma were unimodally fluctuated (ps < 0.001) along age with the maximum value at 2.7-month-old. In contrast, the other two gonadal steroids, estrone (E1) and estradiol (E2) were declined with age (ps < 0.001). Differently, endocannabinoids, N-arachidonoyl-ethanolamine (AEA) and 1-arachydonoyl glycerol (1-AG) showed nadir and zenith values at 2.7-month-old and 3.4-month-old, respectively (ps < 0.001). Additionally, the ratios of CORT to 11-DHC and ALD in plasma were dropped similarly with age (ps < 0.001). The ratios of 1-AG to AEA, and of T to A4 and DHT, and of DHEA to A4 were unimodally changed (ps < 0.001) along age with maximum value at 2.7- or 3.4-month-old. In contrast, the ratios of E2 to T and E1 to A4 were decreased with age (ps < 0.05). The rest six ratios that reflected the interactions among the three endocrine systems, were similar age-dependent and showed nadir and zenith values at 2.7-month-old and 3.4-month-old, respectively (ps < 0.05). Most importantly, these findings in light of age-related changing patterns in plasma were repeated in hair, suggesting that the fi41-ndings in the two matrices were mutually validated. However, it was worth noting that their magnitude of levels in the two bio-matrices were markedly different. The current findings could provide reliable hormone and endocannabinoid signatures with age on neuroendocrine profiles as well as their ratios for the male C57BL/6 mice.
Collapse
Affiliation(s)
- Liuxi Chu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, PR China
| | - Wenhua Liu
- Institute of Life Sciences, Southeast University, Nanjing 210096, PR China
| | - Jia Deng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, PR China
| | - Haoran Yang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, PR China
| | - Wei Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, PR China
| | - Ahad Hussain
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; School of Public Health, Southeast University, Nanjing 210096, PR China
| | - Na Li
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, PR China
| | - Dongrui Zhou
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, PR China
| | - Huihua Deng
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, PR China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
12
|
Luna SL, Brown DI, Kohama SG, Urbanski HF. Lack of effect of short-term DHEA supplementation on the perimenopausal ovary†. Biol Reprod 2020; 103:1209-1216. [PMID: 32901819 PMCID: PMC7711893 DOI: 10.1093/biolre/ioaa160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Indexed: 11/12/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) hormonal supplementation can improve oocyte quality in women with diminished ovarian function. However, it is unclear whether DHEA supplementation can also enhance ovarian function during the perimenopause (i.e., when the number of follicles in the ovary has undergone a marked reduction). To address this question, we examined the impact of 2.5-months of daily 5-mg oral DHEA supplementation on the number of ovarian follicles and the concentration of anti-Müllerian hormone (AMH) in perimenopausal rhesus macaques. Like women, these long-lived nonhuman primates have ~ 28-day menstrual cycles and eventually undergo menopause. They also show similar age-related neuroendocrine changes, including a marked decrease in circulating concentrations of DHEA and DHEA sulfate (DHEAS). Our experimental design involved the following three groups of animals (N = 6 per group): Young adult (mean age = 11.6 years), Old control (mean age = 23.1 years), and Old DHEA-treated (mean age = 23.5 years). Histological examination of the ovaries revealed a significant age-related decrease in the mean number of primordial follicles despite DHEA supplementation. Moreover, AMH concentrations within the ovaries and circulation, assessed by Western analysis and ELISA, respectively, showed significant age-related decreases that were not attenuated by DHEA supplementation. Taken together, these results fail to show a clear effect of short-term physiological DHEA supplementation on the perimenopausal ovary. However, they do not exclude the possibility that alternative DHEA supplementation paradigms (e.g., involving an earlier start date, longer duration and using pharmacological doses) may extend reproductive potential during aging.
Collapse
Affiliation(s)
- Selva L Luna
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Donald I Brown
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
13
|
Strac DS, Konjevod M, Perkovic MN, Tudor L, Erjavec GN, Pivac N. Dehydroepiandrosterone (DHEA) and its Sulphate (DHEAS) in Alzheimer's Disease. Curr Alzheimer Res 2020; 17:141-157. [PMID: 32183671 DOI: 10.2174/1567205017666200317092310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease. OBJECTIVE The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer's disease. METHODS PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. RESULTS We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer's disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. CONCLUSION Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer's disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.
Collapse
Affiliation(s)
- Dubravka S Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea N Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana N Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
14
|
Toh YL, Shariq Mujtaba J, Bansal S, Yeo A, Shwe M, Lau AJ, Chan A. Prechemotherapy Levels of Plasma Dehydroepiandrosterone and Its Sulfated Form as Predictors of Cancer-Related Cognitive Impairment in Patients with Breast Cancer Receiving Chemotherapy. Pharmacotherapy 2019; 39:553-563. [PMID: 30892712 PMCID: PMC6635742 DOI: 10.1002/phar.2259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Study Objective Dehydroepiandrosterone (DHEA) and its sulfated form (DHEAS)—jointly referred to as DHEA(S)—are neurosteroids known to regulate brain development and function that have been found to be positively correlated with cognitive function. It is unknown whether prechemotherapy plasma DHEA(S) levels are associated with the onset of cancer‐related cognitive impairment (CRCI). The objective of this study was to evaluate whether an association exists between prechemotherapy plasma DHEA(S) levels and onset of CRCI in patients with breast cancer receiving chemotherapy. Design Multicenter, prospective cohort study. Setting Two specialized cancer centers in Singapore. Patients Eighty‐one patients with early‐stage breast cancer (stages I–III) who had no prior exposure to chemotherapy and/or radiotherapy and were scheduled to receive anthracycline‐based or taxane‐based chemotherapy treatment with curative intent. Measurements and Main Results Patients completed assessments for self‐perceived and objective cognitive function at three time points: prechemotherapy (T1), during chemotherapy (T2), and after chemotherapy (T3). Plasma samples were collected prior to chemotherapy, and DHEA(S) levels were quantified by using ultra–high‐performance liquid chromatography–tandem mass spectrometry. Multivariable logistic regression was used to adjust for clinically important factors and to evaluate the association between prechemotherapy plasma DHEA(S) levels and CRCI. Mean ± SD age was 48.9 ± 9.3 years, with 27.8% of patients experiencing clinically significant cognitive impairment based on global Functional Assessment of Cancer Therapy–Cognitive Function scores. The mean ± SD prechemotherapy plasma DHEAS and DHEA levels were 1.61 ± 0.91 μmol/L and 19.21 ± 13.13 nmol/L, respectively. Prechemotherapy DHEAS levels were found to be associated with impairment in the self‐perceived cognitive domains of verbal fluency (adjusted odds ratio [OR] 0.27, 95% confidence interval [CI] 0.08–0.96) and mental acuity (adjusted OR 0.25, 95% CI 0.08–0.74). Conversely, DHEA levels were not associated with impairment in any cognitive subdomains. Conclusion Our findings suggest that patients with higher prechemotherapy DHEAS levels had lower odds of developing self‐perceived cognitive impairment. Future studies are required to further investigate the effect of DHEA(S) on specific cognitive domains and to validate our findings in independent cohorts.
Collapse
Affiliation(s)
- Yi Long Toh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | - Sumit Bansal
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Angie Yeo
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Maung Shwe
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.,Department of Pharmacy, National Cancer Centre Singapore, Singapore
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alexandre Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.,Department of Pharmacy, National Cancer Centre Singapore, Singapore.,Oncology Academic Clinical Program, Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
15
|
Development and Validation of an Enzyme Immunoassay for Fecal Dehydroepiandrosterone Sulfate in Japanese Macaques (Macaca fuscata). INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0026-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Bojar I, Pinkas J, Gujski M, Owoc A, Raczkiewicz D, Gustaw-Rothenberg K. Postmenopausal cognitive changes and androgen levels in the context of apolipoprotein E polymorphism. Arch Med Sci 2017; 13:1148-1159. [PMID: 28883857 PMCID: PMC5575214 DOI: 10.5114/aoms.2016.62869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The focus of this study was to assess cognitive functions in relation to androgens and specifically testosterone and dehydroepiandrosterone in postmenopausal women as well as the correlation between cognitive functions and these two androgens according to polymorphism of the apolipoprotein E gene (APOE). MATERIAL AND METHODS A group of 402 women was recruited to the study (minimum 2 years after the last menstruation, follicle-stimulating hormone (FSH) more than 30 U/ml and no dementia signs on Montreal Cognitive Assessment). The computerized battery of the Central Nervous System Vital Signs test was used to diagnose cognitive functions. APOE genotyping was performed by multiplex polymerase chain reaction (PCR). Testosterone (TTE) and dehydroepiandrosterone (DHEA) in the blood serum were assessed for further statistical correlations analysis. RESULTS In the group of postmenopausal women, higher testosterone concentration was associated with lower scores for Neurocognition Index (NCI) (p = 0.028), memory (p = 0.008) and psychomotor speed (p < 0.001). Presence of at least one APOE ε4 allele potentiated testosterone's negative influence on cognitive functions (p < 0.05). Woman with a high normal level of DHEA scored significantly better in verbal (p = 0.027) and visual memory (p < 0.001) than other participants. APOE polymorphism did not modify the relationship between DHEA concentration and scores for cognitive functions. CONCLUSIONS Hormonal balance variations after menopause may influence brain processes concerned with cognition, especially memory and psychomotor speed. The observed effects may be related to androgens' influence on higher cortical functions in the changed hormonal dynamics of the postmenopausal period.
Collapse
Affiliation(s)
- Iwona Bojar
- Department for Women Health, Institute of Rural Health, Lublin, Poland
| | - Jarosław Pinkas
- School of Public Health, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mariusz Gujski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Alfred Owoc
- Center for Public Health and Health Promotion, Institute of Rural Health, Lublin, Poland
| | - Dorota Raczkiewicz
- Institute of Statistics and Demography, Warsaw School of Economics, Warsaw, Poland
| | - Kasia Gustaw-Rothenberg
- Lou Ruvo Brain Wellness Center, Neurological Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurodegenerative Diseases, Institute of Rural Health, Lublin, Poland
| |
Collapse
|
17
|
Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology 2017; 18:367-382. [DOI: 10.1007/s10522-017-9696-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
|
18
|
Sorwell KG, Renner L, Weiss AR, Neuringer M, Kohama SG, Urbanski HF. Cognition in aged rhesus monkeys: effect of DHEA and correlation with steroidogenic gene expression. GENES BRAIN AND BEHAVIOR 2016; 16:361-368. [PMID: 27736018 DOI: 10.1111/gbb.12351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/15/2016] [Accepted: 10/09/2016] [Indexed: 11/29/2022]
Abstract
Estradiol supplementation has been shown to enhance cognitive performance in old ovariectomized rhesus macaques (Macaca mulatta). To determine if similar benefits could be achieved in perimenopausal animals using alternative hormonal supplements, we administered dehydroepiandrosterone (DHEA) to old ovary-intact female rhesus macaques for ∼2.5 months. Using computerized touch screen memory tasks, including delayed response (DR) and delayed matching-to-sample (DMS), we observed improved performance with time in all of the animals but failed to detect a significant effect of DHEA. On the other hand, gene expression profiling disclosed a significant correlation between cognitive performance and the expression of several steroidogenic and steroid-responsive genes. The DR performance was positively correlated with hippocampal expression of AKR1C3 and STAR and negatively correlated with the expression of SDRD5A1. A positive correlation was also found between DMS performance and prefrontal cortical expression of AKR1C3 and a negative correlation with STAR, as well as a negative correlation with the hippocampal expression of HSD11B1 and NR3C1. Taken together, the results suggest that steroidogenic gene regulation within the brain may help to maintain cognitive function during the perimenopausal transition period, despite a decline in sex-steroid levels in the circulation.
Collapse
Affiliation(s)
- K G Sorwell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland
| | - L Renner
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton
| | - A R Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton.,Present address: Department of Psychology, Emory University, Atlanta, GA, USA
| | - M Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton
| | - S G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton
| | - H F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
19
|
de Menezes KJ, Peixoto C, Nardi AE, Carta MG, Machado S, Veras AB. Dehydroepiandrosterone, Its Sulfate and Cognitive Functions. Clin Pract Epidemiol Ment Health 2016; 12:24-37. [PMID: 27346998 PMCID: PMC4894834 DOI: 10.2174/1745017901612010024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/27/2015] [Accepted: 12/02/2015] [Indexed: 12/21/2022]
Abstract
To present a review of cross-sectional and longitudinal studies that investigate the relationship between the hormones Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone sulfate (DHEA-S) and cognition. Methods: The cognition items included in this review were global cognitive function, memory, attention, executive function, intelligence, perception and visuospatial ability. A systematic review was proceeded using three databases: PubMed, ISI Web of Science, and PsycINFO. Results: Two thousand fifty five references about cognition and hormones were found; 772 duplicated references were excluded, resulting in 1.283 references to be evaluated. According to exclusion and inclusion criteria, 25 references were selected. A positive correlation between DHEA-S blood levels and global cognition was found in women and men. Other positive correlations between DHEA-S and working memory, attention and verbal fluency were found only in women. The DHEA effect on cognition is limited to one study conducted among young men with high-doses.
Collapse
Affiliation(s)
- Karina Junqueira de Menezes
- Laboratory of Panic and Respiration, Institute of Psychiatry, UFRJ (Federal University of Rio de Janeiro), Brazil
| | - Clayton Peixoto
- Laboratory of Panic and Respiration, Institute of Psychiatry, UFRJ (Federal University of Rio de Janeiro), Brazil
| | - Antonio Egidio Nardi
- Laboratory of Panic and Respiration, Institute of Psychiatry, UFRJ (Federal University of Rio de Janeiro), Brazil
| | - Mauro Giovanni Carta
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Sérgio Machado
- Laboratory of Panic and Respiration, Institute of Psychiatry, UFRJ (Federal University of Rio de Janeiro), Brazil
| | - André Barciela Veras
- Dom Bosco Catholic University (UCDB), Laboratory of Panic and Respiration, Institute of Psychiatry, UFRJ, Brazil
| |
Collapse
|
20
|
Eghlidi DH, Urbanski HF. Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. Neuroendocrinology 2015; 101:236-45. [PMID: 25765287 PMCID: PMC4475460 DOI: 10.1159/000381063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The hypothalamus plays a key role in mediating the effects of estrogen on many physiological functions, including reproduction, metabolism, and thermoregulation. We have previously observed marked estrogen-dependent gene expression changes within the hypothalamus of rhesus macaques during aging, especially in the KNDy neurons of the arcuate-median eminence (ARC-ME) that produce kisspeptin, neurokinin B, and dynorphin A. Little is known, however, about the mechanisms involved in mediating the feedback from estrogen onto these neurons. METHODS We used quantitative real-time PCR to profile age- and estrogen-dependent gene expression changes in the rhesus macaque hypothalamus. Our focus was on genes that encode steroid receptors (ESR1, ESR2, PGR, and AR) and on enzymes that contribute to the local synthesis of 17β-estradiol (E2; STS, HSD3B1/2, HSD17B5, and CYP19A). In addition, we used RT(2) Profiler™ PCR Arrays to profile a larger set of genes that are integral to hypothalamic function. RESULTS KISS1, KISS1R, TAC3, and NPY2R mRNA levels increased in surgically menopausal (ovariectomized) old females relative to age-matched ovariectomized animals that received E2 hormone therapy. In contrast, PGR, HSD17B, GNRH2, SLC6A3, KISS1, TAC3, and NPY2R mRNA levels increased after E2 supplementation. CONCLUSION The rhesus macaque ARC-ME expresses many genes that are responsive to changes in circulating estrogen levels, even during old age, and these may contribute to causing the normal and pathophysiological changes that occur during menopause.
Collapse
Affiliation(s)
- Dominique H. Eghlidi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oreg., USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oreg., USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oreg., USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oreg., USA
- Deptartment of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oreg., USA
| |
Collapse
|
21
|
Maggio M, De Vita F, Fisichella A, Colizzi E, Provenzano S, Lauretani F, Luci M, Ceresini G, Dall'Aglio E, Caffarra P, Valenti G, Ceda GP. DHEA and cognitive function in the elderly. J Steroid Biochem Mol Biol 2015; 145:281-92. [PMID: 24794824 DOI: 10.1016/j.jsbmb.2014.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 11/28/2022]
Abstract
The adrenal prohormone dehydroepiandrosterone (DHEA) and its sulphate conjugate (DHEAS) steadily decrease with age by 10% per decade reaching a nadir after the age of 80. Both DHEA and DHEAS (DHEA/S) exert many biological activities in different tissues and organs. In particular, DHEA and DHEAS are produced de novo in the brain, hence their classification as neurosteroids. In humans, the brain-to-plasma ratios for DHEA and DHEAS are 4-6.5 and 8.5, respectively, indicating a specific neuroendocrine role for these hormones. DHEA/S stimulates neurite growth, neurogenesis and neuronal survival, apoptosis, catecholamine synthesis and secretion. Together with antioxidant, anti-inflammatory and anti-glucocorticoid properties, it has been hypothesized a neuroprotective effect for DHEA/S. We conducted an accurate research of the literature using PubMed. In the period of time between 1994 and 2013, we selected the observational human studies testing the relationship between DHEA/S and cognitive function in both sexes. The studies are presented according to the cross-sectional and longitudinal design and to the positive or neutral effects on different domains of cognitive function. We also analysed the Clinical Trials, available in the literature, having cognitive domains as the main or secondary outcome. Although the cross-sectional evidence of a positive association between DHEA/S and cognitive function, longitudinal studies and RCTs using DHEA oral treatment (50mg/day) in normal or demented adult-older subjects, have produced conflicting and inconsistent results. In summary, the current data do not provide clear evidence for the usefulness of DHEA treatment to improve cognitive function in adult-older subjects. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Marcello Maggio
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy; Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy.
| | - Francesca De Vita
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Alberto Fisichella
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Elena Colizzi
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Sandra Provenzano
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Fulvio Lauretani
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Michele Luci
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Graziano Ceresini
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy; Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Elisabetta Dall'Aglio
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Paolo Caffarra
- Department of Neuroscience, University of Parma, Parma (PR), Italy; Outpatient Clinic for the Diagnosis and Therapy of Cognitive Disorders, AUSL, Parma (PR), Italy
| | - Giorgio Valenti
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Gian Paolo Ceda
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy; Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| |
Collapse
|
22
|
do Vale S, Selinger L, Martins JM, Gomes AC, Bicho M, do Carmo I, Escera C. The relationship between dehydroepiandrosterone (DHEA), working memory and distraction--a behavioral and electrophysiological approach. PLoS One 2014; 9:e104869. [PMID: 25105970 PMCID: PMC4126777 DOI: 10.1371/journal.pone.0104869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 07/17/2014] [Indexed: 01/14/2023] Open
Abstract
Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulphate (DHEAS) have been reported to have memory enhancement effects in humans. A neuro-stimulatory action and an anti-cortisol mechanism of action may contribute to that relation. In order to study DHEA, DHEAS and cortisol relations to working memory and distraction, we recorded the electroencephalogram of 23 young women performing a discrimination (no working memory load) or 1-back (working memory load) task in an audio-visual oddball paradigm. We measured salivary DHEA, DHEAS and cortisol both before each task and at 30 and 60 min. Under working memory load, a higher baseline cortisol/DHEA ratio was related to higher distraction as indexed by an enhanced novelty P3. This suggests that cortisol may lead to increased distraction whereas DHEA may hinder distraction by leading to less processing of the distractor. An increased DHEA production with consecutive cognitive tasks was found and higher DHEA responses attributed to working memory load were related to enhanced working memory processing as indexed by an enhanced visual P300. Overall, the results suggest that in women DHEA may oppose cortisol effects reducing distraction and that a higher DHEA response may enhance working memory at the electrophysiological level.
Collapse
Affiliation(s)
- Sónia do Vale
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Barcelona, Catalonia, Spain
- Cognitive Neuroscience Research Group, Psychiatry and Clinical Psychobiology Department, University of Barcelona, Barcelona, Catalonia, Spain
- Endocrinology University Clinic, Lisbon Medical School, University of Lisbon, Lisbon, Portugal
- Endocrinology, Diabetes and Metabolism Department, Santa Maria University Hospital, Lisbon, Portugal
- Metabolism and Endocrinology Center, Genetics Laboratory, Lisbon Medical School, University of Lisbon, Lisbon, Portugal
- * E-mail:
| | - Lenka Selinger
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Barcelona, Catalonia, Spain
- Cognitive Neuroscience Research Group, Psychiatry and Clinical Psychobiology Department, University of Barcelona, Barcelona, Catalonia, Spain
| | - João Martin Martins
- Endocrinology University Clinic, Lisbon Medical School, University of Lisbon, Lisbon, Portugal
- Endocrinology, Diabetes and Metabolism Department, Santa Maria University Hospital, Lisbon, Portugal
- Metabolism and Endocrinology Center, Genetics Laboratory, Lisbon Medical School, University of Lisbon, Lisbon, Portugal
| | - Ana Coelho Gomes
- Endocrinology, Diabetes and Metabolism Department, Santa Maria University Hospital, Lisbon, Portugal
| | - Manuel Bicho
- Metabolism and Endocrinology Center, Genetics Laboratory, Lisbon Medical School, University of Lisbon, Lisbon, Portugal
| | - Isabel do Carmo
- Endocrinology, Diabetes and Metabolism Department, Santa Maria University Hospital, Lisbon, Portugal
| | - Carles Escera
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Barcelona, Catalonia, Spain
- Cognitive Neuroscience Research Group, Psychiatry and Clinical Psychobiology Department, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Holubova K, Nekovarova T, Pistovcakova J, Sulcova A, Stuchlík A, Vales K. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models. Front Behav Neurosci 2014; 8:130. [PMID: 24795582 PMCID: PMC3997017 DOI: 10.3389/fnbeh.2014.00130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/29/2014] [Indexed: 01/28/2023] Open
Abstract
A number of studies demonstrated a rapid onset of an antidepressant effect of non-competitive N-methyl-d-aspartic acid receptor (NMDAR) antagonists. Nonetheless, its therapeutic potential is rather limited, due to a high coincidence of negative side-effects. Therefore, the challenge seems to be in the development of NMDAR antagonists displaying antidepressant properties, and at the same time maintaining regular physiological function of the NMDAR. Previous results demonstrated that naturally occurring neurosteroid 3α5β-pregnanolone sulfate shows pronounced inhibitory action by a use-dependent mechanism on the tonically active NMDAR. The aim of the present experiments is to find out whether the treatment with pregnanolone 3αC derivatives affects behavioral response to chronic and acute stress in an animal model of depression. Adult male mice were used throughout the study. Repeated social defeat and forced swimming tests were used as animal models of depression. The effect of the drugs on the locomotor/exploratory activity in the open-field test was also tested together with an effect on anxiety in the elevated plus maze. Results showed that pregnanolone glutamate (PG) did not induce hyperlocomotion, whereas both dizocilpine and ketamine significantly increased spontaneous locomotor activity in the open field. In the elevated plus maze, PG displayed anxiolytic-like properties. In forced swimming, PG prolonged time to the first floating. Acute treatment of PG disinhibited suppressed locomotor activity in the repeatedly defeated group-housed mice. Aggressive behavior of isolated mice was reduced after the chronic 30-day administration of PG. PG showed antidepressant-like and anxiolytic-like properties in the used tests, with minimal side-effects. Since PG combines GABAA receptor potentiation and use-dependent NMDAR inhibition, synthetic derivatives of neuroactive steroids present a promising strategy for the treatment of mood disorders. Highlights:
3α5β-pregnanolone glutamate (PG) is a use-dependent antagonist of NMDA receptors. We demonstrated that PG did not induce significant hyperlocomotion. We showed that PG displayed anxiolytic-like and antidepressant-like properties.
Collapse
Affiliation(s)
- Kristina Holubova
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Tereza Nekovarova
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Jana Pistovcakova
- Faculty of Medicine, Department of Pharmacology, Masaryk University , Brno , Czech Republic
| | - Alexandra Sulcova
- Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Ales Stuchlík
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| |
Collapse
|
24
|
Sorwell KG, Urbanski HF. Causes and consequences of age-related steroid hormone changes: insights gained from nonhuman primates. J Neuroendocrinol 2013; 25:1062-9. [PMID: 23796387 PMCID: PMC3883982 DOI: 10.1111/jne.12064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 01/23/2023]
Abstract
Similar to humans, rhesus macaques (Macaca mulatta) are large, long-lived diurnal primates, and show similar age-related changes in the secretion of many steroid hormones, including oestradiol, testosterone, cortisol and dehydroepiandrosterone (DHEA). Consequently, they represent a pragmatic animal model in which to examine the mechanisms by which these steroidal changes contribute to perturbed sleep-wake cycles and cognitive decline in the elderly. Using remote serial blood sampling, we have found the circulating levels of DHEA sulphate, as well as oestradiol and testosterone, decline markedly in old monkeys. Furthermore, using the real-time polymerase chain reaction, we have shown that the genes for the enzymes associated with the conversion of DHEA to oestradiol and testosterone (3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, and aromatase) are highly expressed in brain areas associated with cognition and behaviour, including the hippocampus, prefrontal cortex and amygdala. Taken together, these findings suggest that the administration of supplementary DHEA in the elderly may have therapeutic potential for cognitive and behavioural disorders, although with fewer negative side effects outside of the central nervous system. To test this, we have developed a novel steroid supplementation paradigm for use in old animals; this involves the oral administration of DHEA and testosterone at physiologically relevant times of the day to mimic the circadian hormone patterns observed in young adults. We are currently evaluating the efficacy of this steroid supplementation paradigm with respect to reversing age-associated disorders, including perturbed sleep-wake cycles and cognitive decline, as well as an impaired immune response.
Collapse
Affiliation(s)
- K G Sorwell
- Departments of Neuroscience and Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
25
|
Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress. Psychoneuroendocrinology 2013; 38:1650-7. [PMID: 23428256 DOI: 10.1016/j.psyneuen.2013.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. METHOD Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. RESULTS Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. CONCLUSIONS This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse effects on psychological and physiological health, particularly if stress exposure continues.
Collapse
|
26
|
Maggio M, Colizzi E, Fisichella A, Valenti G, Ceresini G, Dall’Aglio E, Ruffini L, Lauretani F, Parrino L, Ceda GP. Stress hormones, sleep deprivation and cognition in older adults. Maturitas 2013; 76:22-44. [DOI: 10.1016/j.maturitas.2013.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 12/20/2022]
|
27
|
Chan CC, Liou CJ, Xu PY, Shen JJ, Kuo ML, Len WB, Chang LE, Huang WC. Effect of dehydroepiandrosterone on atopic dermatitis-like skin lesions induced by 1-chloro-2,4-dinitrobenzene in mouse. J Dermatol Sci 2013; 72:149-57. [PMID: 23891346 DOI: 10.1016/j.jdermsci.2013.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/26/2013] [Accepted: 06/21/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Th2 cells are overexpressed in the skin and serum of atopic dermatitis (AD) patients. Previously, we found that dehydroepiandrosterone (DHEA) decreased eosinophil infiltration in asthmatic mice through the suppression of Th2-associated cytokines. Therefore, we hypothesized that DHEA might improve the symptoms of AD syndrome. OBJECTIVE In this study, we evaluated the symptom improvement and anti-inflammatory response that result from the modulation of immunity by DHEA modulated in AD-like mice. METHODS Female BALB/c mice were sensitized and challenged with 1-chloro-2,4-dinitrobenzene. On days 14-29 after sensitization, mice were treated with cutaneous (skin smear) or oral administration of DHEA. In addition, human keratinocyte (HaCat) cells were used to evaluate the effect of DHEA on the in vitro production of proinflammatory cytokines and chemokines. RESULTS Both cutaneous and oral DHEA were able to decrease ear swelling and skin inflammation in AD-like mice. DHEA also attenuated eosinophil and mast cell infiltration into ear and skin tissue. Additionally, Th2-associated cytokines were inhibited in splenocyte culture, and suppressed the levels of IgE and interleukin 4 in serum. Oral and cutaneous administration of DHEA reduced the inflammatory response, as evidenced by AD-like skin lesions, in a similar manner. DHEA significantly reduced inflammatory cytokines and chemokines through the nuclear factor-κB and mitogen-activated protein kinases pathways in tumor necrosis factor-α activated HaCat cells. CONCLUSION DHEA ameliorates AD-like mouse skin inflammation and reduces eosinophil and mast cell infiltration by reducing the production of Th2-associated cytokines and chemokines.
Collapse
Affiliation(s)
- Cheng-Chi Chan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
28
|
The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats. Aging (Albany NY) 2013; 4:686-94. [PMID: 23104863 PMCID: PMC3517939 DOI: 10.18632/aging.100493] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although antioxidants have been repeatedly tested in animal models and clinical studies, there is no evidence that antioxidants reduce already developed age-related decline. Recently we demonstrated that mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) delayed some manifestations of aging. Here we compared effects of SkQ1 and N-acetyl-L-cysteine (NAC) on age-dependent decline in blood levels of leukocytes, growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone, dehydroepiandrosterone (DHEA) in Wistar and senescence-accelerated OXYS rats. When started late in life, supplementation with SkQ1 not only prevented age-related decline but also significantly reversed it. With NAC, all the observed effects were of the lower magnitude compared with SkQ1 (in spite of that dose of NAC was 16000 times higher). We suggest that supplementation with low doses of SkQ1 is a promising intervention to achieve a healthy ageing.
Collapse
|
29
|
Chen AH, Li HY, Wu VC, Lin YH, Huang TS. Serum dehydroepiandrosterone sulfate concentration is lower in women with primary aldosteronism. J Renin Angiotensin Aldosterone Syst 2013; 16:137-44. [PMID: 23571826 DOI: 10.1177/1470320313483843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/09/2014] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this article is to measure serum dehydroepiandrosterone sulfate (DHEA-S) concentration in both genders with primary aldosteronism (PA). MATERIALS AND METHODS The study enrolled 78 subjects with normal controls, 46 subjects with essential hypertension and 85 subjects with PA from October 2007 to June 2011. Subjects with PA were divided into three subtype groups: aldosterone-producing adenoma (APA), bilateral idiopathic hyperplasia (IHA) and PA with negative imaging findings. RESULTS Women with PA (n = 49) had lower serum DHEA-S levels compared with normal controls and subjects with essential hypertension (p < 0.01). In subtype analysis, only female APAs had lower serum DHEA-S levels (p < 0.01 compared with normal controls, p < 0.01 compared with subjects with essential hypertension). In APA, a significant correlation between tumor size and serum DHEA-S was found in women (p < 0.01). CONCLUSION Our data suggested that serum DHEA-S levels are lower in women with PA. In subtype groups, only women with APA had lower serum DHEA-S. There was no significant difference between subjects with bilateral essential hyperplasia, PA with negative imaging findings, normal controls and subjects with essential hypertension in both genders. The serum DHEA-S level is negatively correlated with the size of APA.
Collapse
Affiliation(s)
- Ai-Hua Chen
- Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan Department of Internal Medicine, National Taiwan University Hospital, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taiwan
| | - Vin-cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taiwan
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taiwan
| | - Tien-Shang Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taiwan
| | | |
Collapse
|
30
|
Urbanski HF, Mattison JA, Roth GS, Ingram DK. Dehydroepiandrosterone sulfate (DHEAS) as an endocrine marker of aging in calorie restriction studies. Exp Gerontol 2013; 48:1136-9. [PMID: 23318475 DOI: 10.1016/j.exger.2013.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/26/2022]
Abstract
The adrenal steroid, dehydroepiandrosterone sulfate (DHEAS), is generally regarded as being a reliable endocrine marker of aging, because in humans and nonhuman primates its circulating concentrations are very high during young adulthood, and the concentrations then decline markedly during aging. Despite promising results from early studies, we were recently surprised to find that caloric restriction (CR) did little to prevent or delay the decline of DHEAS concentrations in old rhesus macaques. Here we summarize the use of circulating DHEAS concentrations as a biomarker of aging in CR studies and suggest reasons for its limited value. Although DHEAS can reliably predict aging in animals maintained on a standard diet, dietary manipulations may affect liver enzymes involved in the metabolism of steroid hormones. Consequently, in CR studies the reliability of using DHEAS as a biomarker of aging may be compromised.
Collapse
Affiliation(s)
- Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
31
|
Urbanski HF, Sorwell KG. Age-related changes in neuroendocrine rhythmic function in the rhesus macaque. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1111-1121. [PMID: 22198672 PMCID: PMC3448984 DOI: 10.1007/s11357-011-9352-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
Many environmental conditions show rhythmic changes across the 24-h day; these include changes in light intensity, ambient temperature, food availability, and presence or absence of predators. Consequently, many organisms have developed corresponding adaptations, which ensure that specific physiological and behavioral events occur at an appropriate time of the day. In mammals, the underlying mechanism responsible for synchronizing internal biochemical processes with circadian environmental cues has been well studied and is thought to comprise three major components: (1) photoreception by the retina and transmission of neural signals along the retinohypothalamic tract, (2) integration of photoperiodic information with an internal reference circadian pacemaker located in the suprachiasmatic nucleus, and (3) dissemination of circadian information to target organs, via the autonomic nervous system and through humoral pathways. Given the importance that neuroendocrine rhythms play in coordinating normal circadian physiology and behavior, it is plausible that their perturbation during aging contributes to the etiology of age-related pathologies. This mini-review highlights some of the most dramatic rhythmic neuroendocrine changes that occur in primates during aging, focusing primarily on data from the male rhesus macaques (Macaca mulatta). In addition to the age-associated attenuation of hormone levels and reduction of humoral circadian signaling, there are also significant age-related changes in intracrine processing enzymes and hormone receptors which may further affect the functional efficacy of these hormones. Rhesus macaques, like humans, are large diurnal primates and show many of the same physiological and behavioral circadian changes during aging. Consequently, they represent an ideal translational animal model in which to study the causes and consequences of age-associated internal circadian disruption and in which to evaluate novel therapies.
Collapse
Affiliation(s)
- Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
32
|
Sorwell KG, Garten J, Renner L, Weiss A, Garyfallou VT, Kohama SG, Neuringer M, Urbanski HF. Hormone supplementation during aging: how much and when? Rejuvenation Res 2012; 15:128-31. [PMID: 22533414 DOI: 10.1089/rej.2011.1251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circulating levels of dehydroepiandrosterone, a major adrenal steroid, show a marked age-related decrease in both humans and nonhuman primates. Because this decrease has been implicated in age-related cognitive decline, we administered supplementary dehydroepiandrosterone to perimenopausal rhesus macaques (Macaca mulatta) to test for cognitive benefits. Although recognition memory improved, there was no benefit to spatial working memory. To address the limitations of this study we developed a hormone supplementation regimen in aged male macaques that more accurately replicates the 24-hr androgen profiles of young animals. We hypothesize that this more comprehensive physiological hormone replacement paradigm will enhance cognitive function in the elderly.
Collapse
Affiliation(s)
- K G Sorwell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Influence of acute and subchronic oral administration of dehydroepiandrosterone (DHEA) on nociceptive threshold in rats. Pharmacol Rep 2012; 64:965-9. [DOI: 10.1016/s1734-1140(12)70892-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/27/2012] [Indexed: 02/08/2023]
|
34
|
Abstract
OBJECTIVE Positive psychological well-being is associated with reduced risk of chronic illnesses. Biological risk factors may contribute to these effects, although sex differences may be present. Two aspects of well-being can be distinguished: affective well-being (happiness and pleasure) and eudaemonia (sense of autonomy and purposeful engagement with life). We evaluated relationships between both affective and eudaemonic well-being and biological measures in a large sample of older people. METHODS This cross-sectional study analyzed the English Longitudinal Study of Ageing, a nationally representative cohort aged 50 years or older. In this study, 7795 participants completed positive well-being and depressive symptom measures. Waist circumference, dehydroepiandosterone sulfate, C-reactive protein, fibrinogen, high-density lipoprotein cholesterol, plasma triglycerides, and peak expiratory flow were assessed. RESULTS In men, affective well-being was associated with smaller waist circumference (B = -0.206, p < .001) and greater levels of dehydroepiandosterone sulfate (B = 0.072, p = .003). Affective well-being in women was related to lower concentrations of inflammatory markers (C-reactive protein and fibrinogen, B = -0.242 and -0.024, respectively, p < .001) and greater high-density lipoprotein cholesterol (B = 0.011, p = .017). Both men and women showed associations between well-being and lower levels of plasma triglycerides (B = -0.032, p < .001) and better lung function (B = 3.594, p < .001). Associations were independent of age, marital status, socioeconomic circumstances, body mass, smoking, limiting long-standing illnesses, health indicators, and depressive symptoms. Similar results were obtained for eudaemonic well-being. CONCLUSIONS Positive psychological well-being has biological correlates that may be health protective, with distinctive patterns for men and women.
Collapse
|
35
|
Roberts D, Killiany R, Rosene D. Neuron numbers in the hypothalamus of the normal aging rhesus monkey: stability across the adult lifespan and between the sexes. J Comp Neurol 2012; 520:1181-97. [PMID: 21935936 PMCID: PMC4278435 DOI: 10.1002/cne.22761] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Normal aging is accompanied by changes in hypothalamic functions including autonomic and endocrine functions and circadian rhythms. The rhesus monkey provides an excellent model of normal aging without the potential confounds of incipient Alzheimer's disease inherent in human populations. This study examined the hypothalamus of 51 rhesus monkeys (23 male, 18 female, 6.5-31 years old) using design-based stereology to obtain unbiased estimates of neuron and glia numbers and the Cavalieri method to estimate volumes for eight reference spaces: total unilateral hypothalamus, suprachiasmatic nucleus (SCN), supraoptic nucleus (SON), paraventricular nucleus (PVN), dorsomedial nucleus (DM), ventromedial nucleus (VM), medial mammillary nucleus (MMN), and lateral hypothalamic area (LHA). The results demonstrated no age-related difference in neuron number, glia number, or volume in any area in either sex except the PVN of male monkeys, which showed a significant increase in both neuron and glia numbers with age. Comparison of males and females for sexual dimorphisms revealed no significant differences in neuron number. However, males had more glia overall as well as in the SCN, DM, and LHA and had a larger hypothalamic volume overall and in the SCN, SON, VM, DM, and MMN. These results demonstrate that hypothalamic neuron loss cannot account for age-related deficits in hypothalamic function and provides further evidence of the absence of neurodegeneration and cell death in the normal aging rhesus monkey.
Collapse
Affiliation(s)
- D.E. Roberts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02127
| | - R.J. Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02127
| | - D.L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02127
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
36
|
Ritsner M. The clinical and therapeutic potentials of dehydroepiandrosterone and pregnenolone in schizophrenia. Neuroscience 2011; 191:91-100. [DOI: 10.1016/j.neuroscience.2011.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 01/08/2023]
|
37
|
Sorwell KG, Kohama SG, Urbanski HF. Perimenopausal regulation of steroidogenesis in the nonhuman primate. Neurobiol Aging 2011; 33:1487.e1-13. [PMID: 21683476 DOI: 10.1016/j.neurobiolaging.2011.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/03/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
Abstract
Human aging is characterized by a marked decrease in circulating levels of dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS), hormonal changes associated with cognitive decline. Despite beneficial effects of DHEA supplementation in rodents, studies in elderly humans have generally failed to show cognitive improvement after treatment. In the present study we evaluate the effects of age and estradiol supplementation on expression of genes involved in the de novo synthesis of DHEA and its conversion to estradiol in the rhesus macaque hippocampus. Using reverse transcription polymerase chain reaction (RT-PCR) we demonstrate the expression of genes associated with this synthesis in several areas of the rhesus brain. Furthermore, real-time PCR reveals an age-related attenuation of hippocampal expression level of the genes CYP17A1, STS, and 3BHSD1/2. Additionally, short-term administration of estradiol is associated with decreased expression of CYP17A1, STS, SULT2B1, and AROMATASE, consistent with a downregulation not only of estrogen synthesis from circulating DHEA, but also of de novo DHEA synthesis within the hippocampus. These findings suggest a decline in neurosteroidogenesis may account for the inefficacy of DHEA supplementation in elderly humans, and that central steroidogenesis may be a function of circulating hormones and menopausal status.
Collapse
Affiliation(s)
- Krystina G Sorwell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | | |
Collapse
|
38
|
Urbanski HF. Role of circadian neuroendocrine rhythms in the control of behavior and physiology. Neuroendocrinology 2011; 93:211-22. [PMID: 21508622 PMCID: PMC3128131 DOI: 10.1159/000327399] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/13/2011] [Indexed: 12/27/2022]
Abstract
Hormones play a major role in regulating behavior and physiology, and their efficacy is often dependent on the temporal pattern in which they are secreted. Significant insights into the mechanisms underlying rhythmic hormone secretion have been gained from transgenic rodent models, suggesting that many of the body's rhythmic functions are regulated by a coordinated network of central and peripheral circadian pacemakers. Some neuroendocrine rhythms are driven by transcriptional-posttranslational feedback circuits comprising 'core clock genes', while others represent a cyclic cascade of neuroendocrine events. This review focuses on recent data from the rhesus macaque, a non-human primate model with high clinical translation potential. With primary emphasis on adrenal and gonadal steroids, it illustrates the rhythmic nature of hormone secretion, and discusses the impact that fluctuating hormone levels have on the accuracy of clinical diagnoses and on the design of effective hormone replacement therapies in the elderly. In addition, this minireview raises awareness of the rhythmic expression patterns shown by many genes, and discusses how this could impact interpretation of data obtained from gene profiling studies, especially from nocturnal rodents.
Collapse
Affiliation(s)
- Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oreg., USA.
| |
Collapse
|
39
|
Ritsner MS. Pregnenolone, dehydroepiandrosterone, and schizophrenia: alterations and clinical trials. CNS Neurosci Ther 2010; 16:32-44. [PMID: 20070787 DOI: 10.1111/j.1755-5949.2009.00118.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Neurosteroids, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), and their sulfates (PREGS and DHEAS) are reported to have a modulatory effect on neuronal excitability and synaptic plasticity. They also have many other functions associated with neuroprotection, response to stress, mood regulation, and cognitive performance. Furthermore, these neurosteroids have been linked to, and their levels are altered in, neuropsychiatric disorders. This review highlights what is currently known about the metabolism and mode of action of PREG and DHEA, as well as about alterations of these neurosteroids in schizophrenia. This review also provides substantial information about clinical trials with DHEA and PREG augmentation with of antipsychotic agents in schizophrenia.
Collapse
Affiliation(s)
- Michael S Ritsner
- Psychiatry Department, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, and Sha'ar Menashe Mental Health Center, Israel.
| |
Collapse
|