1
|
Sahu Y, Jamadade P, Ch Maharana K, Singh S. Role of mitochondrial homeostasis in D-galactose-induced cardiovascular ageing from bench to bedside. Mitochondrion 2024; 78:101923. [PMID: 38925493 DOI: 10.1016/j.mito.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India.
| |
Collapse
|
2
|
Pan M, Wu Y, Sun C, Ma H, Ye X, Li X. Polygonati Rhizoma: A review on the extraction, purification, structural characterization, biosynthesis of the main secondary metabolites and anti-aging effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118002. [PMID: 38437890 DOI: 10.1016/j.jep.2024.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizome (PR) is a plant that is extensively widespread in the temperate zones of the Northern Hemisphere. It is a member of the Polygonatum family of Asparagaceae. PR exhibits diverse pharmacological effects and finds applications in ethnopharmacology, serving as a potent tonic for more than two millennia. PR's compounds endow it with various pharmacological properties, including anti-aging, antioxidant, anti-fatigue, anti-inflammatory, and sleep-enhancing effects, as well as therapeutic potential for osteoporosis and age-related diseases. AIM OF THE STUDY This review seeks to offer a thorough overview of the processing, purification, extraction, structural characterization, and biosynthesis pathways of PR. Furthermore, it delves into the anti-aging mechanism of PR, using organ protection as an entry point. MATERIALS AND METHODS Information on PR was obtained from scientific databases (Google Scholar, Web of Science, ScienceDirect, SciFinder, PubMed, CNKI) and books, doctoral theses, and master's dissertations. RESULTS In this investigation, 49 polysaccharides were extracted from PR, and the impact of various processing, extraction, and purification techniques on the structure and activity of these polysaccharides was evaluated. Additionally, 163 saponins and 46 flavonoids were identified, and three key biosynthesis pathways of secondary metabolites were outlined. Notably, PR and Polygonat Rhizomai polysaccharides (PRP) exhibit remarkable protective effects against age-induced injuries to the brain, liver, kidney, intestine, heart, and vessels, thereby promoting longevity and ameliorating the aging process. CONCLUSIONS PR, a culinary and therapeutic herb, is rich in active components and pharmacological activities. Based on this review, PR plays a meaningful role in lifespan extension and anti-aging, which can be attributed to PRP. Future research should delve deeper into the structural aspects of PRP that underlie its anti-aging effects and explore potential synergistic interactions with other compounds. Moreover, exploring the potential applications of PR in functional foods and pharmaceutical formulations is recommended to advance the development of industries and resources focused on healthy aging.
Collapse
Affiliation(s)
- Miao Pan
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Yajing Wu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Chunyong Sun
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Singh A, Yadawa AK, Rizvi SI. Curcumin protects against aging-related stress and dysfunction through autophagy activation in rat brain. Mol Biol Rep 2024; 51:694. [PMID: 38796662 DOI: 10.1007/s11033-024-09639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Curcumin (Curcuma longa) is a well-known medicinal plant that induces autophagy in various model species, helping maintain cellular homeostasis. Its role as a caloric restriction mimetic (CRM) is being investigated. This study explores the potential of curcumin (CUR), as a CRM, to provide neuroprotection in D galactose induced accelerated senescence model of rats through modulation of autophagy. For six weeks, male rats received simultaneous supplementation of D-gal (300 mg/kg b.w., subcutaneously) and CUR (200 mg/kg b.w., oral). METHOD AND RESULTS The oxidative stress indices, antioxidants, and electron transport chain complexes in brain tissues were measured using standard methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) gene expression analysis was used to evaluate the expression of autophagy, neuroprotection, and aging marker genes. Our results show that curcumin significantly (p ≤ 0.05) enhanced the level of antioxidants and considerably lowered the level of oxidative stress markers. Supplementing with CUR also increased the activity of electron transport chain complexes in the mitochondria of aged brain tissue, demonstrating the antioxidant potential of CUR at the mitochondrial level. CUR was found to upregulate the expression of the aging marker gene (SIRT-1) and the genes associated with autophagy (Beclin-1 and ULK-1), as well as neuroprotection (NSE) in the brain. The expression of IL-6 and TNF-α was downregulated. CONCLUSION Our findings demonstrate that CUR suppresses oxidative damage brought on by aging by modulating autophagy. These findings imply that curcumin might be beneficial for neuroprotection in aging and age-related disorders.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Arun Kumar Yadawa
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
| |
Collapse
|
4
|
Mirshafa A, Shokati Sayyad M, Mohammadi E, Talebpour Amiri F, Shaki F. 5-HT3 antagonist, tropisetron, ameliorates age-related renal injury induced by D-galactose in male mice: Up-regulation of sirtuin 1. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:577-587. [PMID: 38629089 PMCID: PMC11017841 DOI: 10.22038/ijbms.2024.74025.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024]
Abstract
Objectives The kidney ages faster than other organs due to changes in energy metabolism, mitochondrial dysfunction, and oxidative stress. This study looked into the anti-aging effect of tropisetron. Materials and Methods D-galactose was administrated subcutaneously in a mouse model for eight weeks in order to induce renal aging. Three separate intraperitoneal doses of tropisetron (1, 3, and 5 mg/kg body weight) were given at the same time. We assessed markers of mitochondrial dysfunction, oxidative stress, and inflammation. Via Real-Time PCR, the expressions of genes linked to aging (SIRT1) and apoptosis (Bax and Bcl-2) were ascertained. In addition, an assessment of histopathological changes, blood urea nitrogen, and creatinine concentrations was done. Results In kidney tissue, tropisetron reduces mitochondrial dysfunction and oxidative stress, which are caused by D-galactose-induced overproduction of inflammatory mediators. Additionally, tropisetron demonstrated antiapoptotic activity in renal tissue and augmented the decrease in SIRT1 gene expression associated with D-galactose administration. Besides, tropisetron significantly improved the histological alterations in the renal tissues of aged mice and effectively decreased the elevated levels of creatinine and also blood urea nitrogen. Conclusion The results provided additional insight into the effect of tropisetron on renal aging and the underlying mechanisms, particularly through its ability to modulate SIRT1 signaling.
Collapse
Affiliation(s)
- Atefeh Mirshafa
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | | | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Pantiya P, Thonusin C, Ongnok B, Chunchai T, Kongkaew A, Nawara W, Arunsak B, Chattipakorn N, Chattipakorn SC. Chronic D-Galactose Administration Induces Natural Aging Characteristics, in Rat's Brain and Heart. Toxicology 2023; 492:153553. [PMID: 37225035 DOI: 10.1016/j.tox.2023.153553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
We aimed to investigate the effect of chronic D-galactose exposure on the mimicking of natural aging processes based upon the hallmarks of aging. Seven-week-old male Wistar rats (n = 12) were randomly assigned to receive either normal saline solution as a vehicle (n = 6) or 150mg/kg/day of D-galactose subcutaneously for 28 weeks. Seventeen-month-old rats (n = 6) were also included as the chronologically aged controls. At the end of week 28 of the experiment (when the rats reach 35 weeks old and 24 months old), all rats were sacrificed for brain and heart collection. Our results showed that chronic D-galactose exposure mimicked natural aging characteristics of the brain and the heart in terms of deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, and functional impairment. All of which highlight the potential of D-galactose as a substance for inducing brain and cardiac aging in animal experiments. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Alejandro SP. ER stress in cardiac aging, a current view on the D-galactose model. Exp Gerontol 2022; 169:111953. [PMID: 36116694 DOI: 10.1016/j.exger.2022.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Longitudinal studies are mandatory to study aging, however, they have certain drawbacks, for example, they require strict maintenance that is expensive given the breeding time (approximately 2 years) and with a low survival rate, having some animals to study very limitedly. In vitro studies provide useful and invaluable information on the cellular and molecular mechanisms that help understand the aging process to overcome these aspects. In particular, the model of premature aging induced by chronic exposure to D-galactose (D-Gal) offers a very similar picture to that which occurs in natural aging. This model mimics most of the old animals' cellular processes, such as oxidative stress, mitochondrial dysfunction, increased advanced glycation end products (AGEs), inflammation, and senescence-associated secretory phenotype (SASP). However, the information related to the endoplasmic reticulum (ER) stress and, subsequently, the unfolded protein response (UPR) is not fully elucidated. Therefore, this review brings together the most current information on this response in the D-Gal-induced aging model and its effect on cardiac structure and function.
Collapse
Affiliation(s)
- Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico.
| |
Collapse
|
7
|
Hu WS, Liao WY, Chang CH, Chen TS. Paracrine IGF-1 Activates SOD2 Expression and Regulates ROS/p53 Axis in the Treatment of Cardiac Damage in D-Galactose-Induced Aging Rats after Receiving Mesenchymal Stem Cells. J Clin Med 2022; 11:4419. [PMID: 35956039 PMCID: PMC9369306 DOI: 10.3390/jcm11154419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022] Open
Abstract
Aging is one of the causative agents associated with heart failure. Cell-based therapies show potential in the treatment of cardiac aging due to the characteristics of stem cells, including differentiation and the paracrine effect. This study aimed to investigate in detail the mechanism related to biomolecules released from mesenchymal stem cells in the treatment of cardiac aging. In vitro and in vivo models were designed to explore the above hypothesis. Experimental results from the in vitro model indicated that the elevation of oxidative stress, the expression of aging marker p53, and the suppression of antioxidant marker SOD2 could be found in D-galactose-stressed H9c2 cardiomyoblasts. The co-culture of D-galactose-stressed H9c2 with mesenchymal stem cells significantly improved the above pathological signaling. An animal model revealed that the change in cardiac structure, the accumulation of fibrotic collagen, and the activation of the above pathological signaling could be observed in heart tissues of D-galactose-stressed rats. After the rats had received mesenchymal stem cells, all the pathological conditions were significantly improved in D-galactose-stressed hearts. Further evidence indicated that the release of the survival marker IGF-1 was detected in a stem-cell-conditioned medium. Significant increases in cell viability and the expression of SOD2, as well as a reduction in oxidative stress and the suppression of p53, were found in D-galactose-stressed H9c2 cells cultured with a stem-cell-conditioned medium, whereas the depletion of IGF-1 in stem-cell-conditioned medium diminished the antiaging effect on H9c2 cells. In conclusion, the paracrine release of IGF-1 from mesenchymal stem cells increases the expression of antioxidant marker SOD2, and the expression of SOD2 reduces oxidative stress as well as suppresses p53, leading to a reduction in cardiac senescence in D-galactose-stressed rats.
Collapse
Affiliation(s)
- Wei-Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung City 40042, Taiwan;
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Wei-Yu Liao
- Traditional Chinese Medicine Department, En Chu Kong Hospital, New Taipei City 40237, Taiwan;
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Chin-Hsien Chang
- Traditional Chinese Medicine Department, En Chu Kong Hospital, New Taipei City 40237, Taiwan;
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- College of Chinese Medicine, China Medical University, Taichung City 40402, Taiwan
| | - Tung-Sheng Chen
- Graduate Program of Biotechnology and Pharmaceutical Industries, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
8
|
Ağaşcıoğlu E, Çolak R, Çakatay U. Redox status biomarkers in the fast-twitch extensor digitorum longus resulting from the hypoxic exercise. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:433-447. [PMID: 35967949 PMCID: PMC9350571 DOI: 10.18999/nagjms.84.2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
The fast-twitch muscle may be affected from over-produced reactive oxygen species (ROS) during hypoxia/hypoxic exercise. The study aims to investigate redox status biomarkers in the fast-twitch extensor digitorum longus (EDL) muscle after hypoxic exercise. Male Sprague Dawley rats (eight-week-old) were randomly divided into six groups of the experimental "live high train high (LHTH), live high train low (LHTL) and live low train low (LLTL)" and their respective controls. Before the EDLs' extraction, the animals exercised for a 4-week familiarization period, then they exercised for four-weeks at different altitudes. The LHTH group had higher ratios of lipid hydroperoxides (LHPs) than the experimental groups of LHTL (p=0.004) and LLTL (p=0.002), while having no difference than its control 'LH'. Similarly, a higher percentage of advanced oxidation protein products (AOPP) was determined in the LHTH than the LHTL (p=0.041) and LLTL (p=0.048). Furthermore, oxidation of thiol fractions was the lowest in the LHTH and LH. However, redox biomarkers and thiol fractions illustrated no significant change in the LHTL and LLTL that might ensure redox homeostasis due to higher oxygen consumption. The study shows that not hypoxic exercise/exercise, but hypoxia might itself lead to a redox imbalance in the fast-twitch EDL muscle.
Collapse
Affiliation(s)
- Eda Ağaşcıoğlu
- Department of Recreation, Faculty of Sports Sciences, Lokman Hekim University, Ankara, Turkey
| | - Rıdvan Çolak
- Department of Physical Education and Sports, Ardahan University, Ardahan, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
9
|
Remigante A, Spinelli S, Pusch M, Sarikas A, Morabito R, Marino A, Dossena S. Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiol (Oxf) 2022; 235:e13796. [PMID: 35143116 PMCID: PMC9542443 DOI: 10.1111/apha.13796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl−/HCO3−) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl−/HCO3− exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress‐related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.
Collapse
Affiliation(s)
- Alessia Remigante
- Biophysics Institute National Research Council Genova Italy
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Michael Pusch
- Biophysics Institute National Research Council Genova Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| |
Collapse
|
10
|
Feng Y, Huang Q. Protective effects of cordycepin against d-galactose-induced aging in rats: A view from the heart. Geriatr Gerontol Int 2022; 22:433-440. [PMID: 35352454 DOI: 10.1111/ggi.14376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
AIMS Aging is a critical contributing factor for cardiovascular diseases. The d-galactose-induced accelerated aging model is comparable to physiological aging from the cellular to the physiological level. The d-galactose treatment induces mitochondrial dysfunction, increased reactive oxygen species (ROS) production, and upregulation of senescence-related genes. Cordycepin, a functional element in Chinese traditional medicine, has multiple beneficial effects as an antioxidant and ROS scavenger, and has been reported to be effective in a number of ischemia models. This paper aims to investigate the cardioprotective effects of cordycepin in the d-galactose accelerated aging model. METHODS In the current study, we employed the d-galactose accelerated aging model to study the cardioprotective effect of cordycepin. Eight-week-old Sprague-Dawley rats, randomly divided into five groups, were given vehicle, d-galactose (150 mg/kg/day), and cordycepin at 5, 10, and 20 mg/kg per day. At the end of the 8-week treatment, rat cardiac structure and function were assessed with echocardiographic imaging and hemodynamic parameter analysis. RESULTS Cordycepin upregulated the expression of Klotho in serum and heart tissues. The expressions of senescence markers β-galactosidase, p21, and oxidative stress marker malondialdehyde (MDA) were downregulated by cordycepin treatment. Reduction of levels and activity of the antioxidant factors superoxide dismutase (SOD) and catalase (CAT) induced by by d-galactose treatment was ameliorated by cordycepin. Furthermore, cordycepin activated AMPK signaling in d-galactose-treated rats. After 8 weeks of treatment, we found that cordycepin improved myocardia contractility and hypertension caused by d-galactose treatment. Mechanistically, reduced expression of the Klotho protein SOD1 caused by d-galactose was recovered in rats co-treated with cordycepin. CONCLUSION Cordycepin could protect against cardiac dysfunction in a d-galactose-induced aging rat model, suggesting the therapeutic cardioprotective potential of cordycepin in aging. Geriatr Gerontol Int 2022; 22: 433-440.
Collapse
Affiliation(s)
- Yuanxi Feng
- Cardiovascular Department, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiang Huang
- Cardiovascular Department, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
11
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
12
|
Yasom S, Watcharanurak P, Bhummaphan N, Thongsroy J, Puttipanyalears C, Settayanon S, Chalertpet K, Khumsri W, Kongkaew A, Patchsung M, Siriwattanakankul C, Pongpanich M, Pin‐on P, Jindatip D, Wanotayan R, Odton M, Supasai S, Oo TT, Arunsak B, Pratchayasakul W, Chattipakorn N, Chattipakorn S, Mutirangura A. The roles of HMGB1-produced DNA gaps in DNA protection and aging biomarker reversal. FASEB Bioadv 2022; 4:408-434. [PMID: 35664831 PMCID: PMC9164245 DOI: 10.1096/fba.2021-00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
The endogenous DNA damage triggering an aging progression in the elderly is prevented in the youth, probably by naturally occurring DNA gaps. Decreased DNA gaps are found during chronological aging in yeast. So we named the gaps "Youth-DNA-GAPs." The gaps are hidden by histone deacetylation to prevent DNA break response and were also reduced in cells lacking either the high-mobility group box (HMGB) or the NAD-dependent histone deacetylase, SIR2. A reduction in DNA gaps results in shearing DNA strands and decreasing cell viability. Here, we show the roles of DNA gaps in genomic stability and aging prevention in mammals. The number of Youth-DNA-GAPs were low in senescent cells, two aging rat models, and the elderly. Box A domain of HMGB1 acts as molecular scissors in producing DNA gaps. Increased gaps consolidated DNA durability, leading to DNA protection and improved aging features in senescent cells and two aging rat models similar to those of young organisms. Like the naturally occurring Youth-DNA-GAPs, Box A-produced DNA gaps avoided DNA double-strand break response by histone deacetylation and SIRT1, a Sir2 homolog. In conclusion, Youth-DNA-GAPs are a biomarker determining the DNA aging stage (young/old). Box A-produced DNA gaps ultimately reverse aging features. Therefore, DNA gap formation is a potential strategy to monitor and treat aging-associated diseases.
Collapse
Affiliation(s)
- Sakawdaurn Yasom
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Papitchaya Watcharanurak
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Narumol Bhummaphan
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | | | - Charoenchai Puttipanyalears
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Sirapat Settayanon
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Kanwalat Chalertpet
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Wilunplus Khumsri
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Maturada Patchsung
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Chutha Siriwattanakankul
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of ScienceChulalongkorn UniversityBangkokThailand,Omics Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Piyapat Pin‐on
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Depicha Jindatip
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Rujira Wanotayan
- Department of Radiological Technology, Faculty of Medical TechnologyMahidol UniversityNakhon PathomThailand
| | - Mingkwan Odton
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
13
|
Singh S, Garg G, Singh AK, Tripathi SS, Rizvi SI. Fisetin, a potential caloric restriction mimetic, modulates ionic homeostasis in senescence induced and naturally aged rats. Arch Physiol Biochem 2022; 128:51-58. [PMID: 31496286 DOI: 10.1080/13813455.2019.1662452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Fisetin as a caloric restriction mimetic (CRM) exerts numerous beneficial effects on different aging model systems. The effect of fisetin on erythrocyte membrane functions against induced aging is not very clear. OBJECTIVES The potential role of fisetin in the modulation of erythrocytes membrane-bound transporters during natural and induced aging in rats was assessed. MATERIALS AND METHODS Male Wistar rats were used for natural and D-galactose (D-gal) induced aging model. After supplementation with fisetin, the activities of different membrane transporters and biomarkers of oxidative stress were evaluated. RESULTS Fisetin modulated membrane transporters such as calcium-ATPase, sodium potassium-ATPase and sodium hydrogen exchanger during senescence-induced as well as in natural aging. Fisetin also protected oxidative modifications in rat aging. DISCUSSION AND CONCLUSION Fisetin supplementation improves the ionic homeostasis, a factor that is involved in the aetiology of several age-associated diseases, in naturally old as well as D-gal induced aged rats.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | | | | |
Collapse
|
14
|
Kumar R, Kumar M, Rizvi SI. Chitosan Displays a Potent Caloric Restriction Mimetic Effect in Senescent Rats. Rejuvenation Res 2021; 24:390-396. [PMID: 34486386 DOI: 10.1089/rej.2021.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chitosan is a polysaccharide made up of β1,4-linked d-glucosamine (GlcN) and N-acetyl-GlcN. In this study, we evaluated the possible caloric restriction mimetic (CRM) effect of dietary chitosan on systemic redox status, inflammatory biomarkers, and lipid profile in plasma and erythrocyte samples of d-galactose-induced mimetically aged rats. We found a significant increase (p < 0.05) in the reactive oxygen species, protein carbonyl, fasting glucose, body weight, cholesterol, triglyceride, inflammatory markers-interleukin-6 and tumor necrosis factor-alpha in an accelerated senescent rat model. There was also a significant decrease (p < 0.05) in glutathione, advanced glycation end product in senescent rats. Chitosan treatment increased ferric-reducing antioxidant potential, glutathione, plasma membrane-reduced system in accelerated senescent model of rats. Our finding suggests that chitosan has properties similar to a CRM and can effectively maintain the redox homeostasis during the aging process in rat erythrocytes.
Collapse
Affiliation(s)
- Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
15
|
Feng W, Liu J, Wang S, Hu Y, Pan H, Hu T, Guan H, Zhang D, Mao Y. Alginate oligosaccharide alleviates D-galactose-induced cardiac ageing via regulating myocardial mitochondria function and integrity in mice. J Cell Mol Med 2021; 25:7157-7168. [PMID: 34227740 PMCID: PMC8335675 DOI: 10.1111/jcmm.16746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a crucial risk factor for the development of age‐related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti‐ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti‐ageing drug to alleviate cardiac ageing. D‐galactose (D‐gal)‐induced C57BL/6J ageing mice were established by subcutaneous injection of D‐gal (200 mg·kg‐1·d‐1) for 8 weeks. AOS (50, 100 and 150 mg·kg‐1·d‐1) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D‐gal‐induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D‐gal‐induced up‐regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose‐dependent manner. To further explore the potential mechanisms contributing to the anti‐ageing protective effect of AOS, the age‐related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D‐gal‐induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.
Collapse
Affiliation(s)
- Wenjing Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Jianya Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Hu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Pan
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Ye L, Huang J, Xiang X, Song S, Huang G, Ruan Y, Wu S. 17β-Estradiol alleviates cardiac aging induced by d-galactose by downregulating the methylation of autophagy-related genes. Steroids 2021; 170:108829. [PMID: 33811924 DOI: 10.1016/j.steroids.2021.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Intrinsic cardiac aging increases cardiovascular mortality and morbidity in the elderly. Estrogen helps reduce the risk of cardiovascular disease in women, with 17β-estradiol (17β-E2) activating the autophagy pathway and inhibiting vascular aging, mainly through estrogen receptor alpha (ER α) to prevent atherosclerosis. Abnormal methylation of autophagy-related genes can impact autophagic regulation. We hypothesized that 17β-E2, specifically 17β-E2 α, downregulates the methylation of autophagy factors and delays cardiac aging. Here, we used d-galactose, 17β-E2, and ER α receptor antagonist methyl-piperidino-pyrazole (MPP) to establish different aging models in mice divided into four groups, namely negative control, D.gal, D.gal + 17β-E2, and D.gal + 17β-E2 + MPP groups. Echocardiography showed that compared with the D.gal group group, the D.gal + 17β-E2 showed substantially increased cardiac function. The level of cardiac aging markers in mice in the D.gal + 17β-E2 group was lower than that in mice in the D.gal group. Beclin1, LC3, and Atg5 mRNA and protein expression levels in mice in the D.gal + 17β-E2 group were significantly increased compared with those in the D.gal group. Additionally, Beclin1, LC3, and Atg5 methylation levels were significantly decreased in the D.gal + 17β-E2 group. All the above values of the D.gal + 17β-E2 + MPP group were between those of the D.gal and D.gal + 17β-E2 groups. The expression of Dnmt1, Dnmt2, and Dnmt3A genes was the highest in the D.gal group. In summary, our results suggest that 17β-E2, specifically 17β-E2 α, promotes autophagy by downregulating the methylation of autophagy factors, thereby inhibiting galactose-induced cardiac aging in mice. 17β-E2 may be a potential therapeutic target to mitigate the effects of cardiac aging.
Collapse
Affiliation(s)
- Lili Ye
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Cardiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Guangzhou, Guangdong 510700, China
| | - Jianming Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shicong Song
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Saizhu Wu
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
17
|
Melnik BC, Schmitz G. Pasteurized non-fermented cow's milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality. Ageing Res Rev 2021; 67:101270. [PMID: 33571703 DOI: 10.1016/j.arr.2021.101270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Recent epidemiological studies in Sweden, a country with traditionally high milk consumption, revealed that the intake of non-fermented pasteurized milk increased all-cause mortality in a dose-dependent manner. In contrast, the majority of epidemiological and clinical studies report beneficial health effects of fermented milk products, especially of yogurt. It is the intention of this review to delineate potential molecular aging mechanisms related to the intake of non-fermented milk versus yogurt on the basis of mechanistic target of rapamycin complex 1 (mTORC1) signaling. Non-fermented pasteurized milk via its high bioavailability of insulinotropic branched-chain amino acids (BCAAs), abundance of lactose (glucosyl-galactose) and bioactive exosomal microRNAs (miRs) enhances mTORC1 signaling, which shortens lifespan and increases all-cause mortality. In contrast, fermentation-associated lactic acid bacteria metabolize BCAAs and degrade galactose and milk exosomes including their mTORC1-activating microRNAs. The Industrial Revolution, with the introduction of pasteurization and refrigeration of milk, restricted the action of beneficial milk-fermenting bacteria, which degrade milk's BCAAs, galactose and bioactive miRs that synergistically activate mTORC1. This unrecognized behavior change in humans after the Neolithic revolution increased aging-related over-activation of mTORC1 signaling in humans, who persistently consume large quantities of non-fermented pasteurized cow's milk, a potential risk factor for aging and all-cause mortality.
Collapse
|
18
|
Bo-Htay C, Shwe T, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Pattarasakulchai T, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Hyperbaric oxygen therapy effectively alleviates D-galactose-induced-age-related cardiac dysfunction via attenuating mitochondrial dysfunction in pre-diabetic rats. Aging (Albany NY) 2021; 13:10955-10972. [PMID: 33861726 PMCID: PMC8109141 DOI: 10.18632/aging.202970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
Currently, the prevalence of obesity in aging populations is fast growing worldwide. Aging induced by D-galactose (D-gal) is proven to cause the worsening of cardiac dysfunction in pre-diabetic rats via deteriorating cardiac mitochondrial function. Hyperbaric oxygen therapy (HBOT) has been shown to attenuate D-gal-induced cognitive deterioration through decreased inflammation and apoptosis. We tested the hypothesis that HBOT alleviates D-gal induced cardiac dysfunction via improving mitochondrial function in pre-diabetic rats. Wistar rats (n=56) were fed normal diet or high-fat diet for 12 weeks. For subsequent 8 weeks, they were subcutaneously injected either vehicle (0.9% normal saline) or D-gal (150mg/kg/day). Rats were randomly subdivided into 7 groups at week 21: sham-treated (normal diet fed rats with vehicle (NDV), high-fat diet fed rats with vehicle (HFV), normal diet fed rats with D-gal (NDDg), high-fat diet fed rats with D-gal (HFDg)) and HBOT-treated (HFV, NDDg, HFDg). Sham rats received ambient pressure of oxygen while HBOT-treated ones received 100% oxygen given once daily for 60 minutes at 2 atmosphere absolute. HBOT reduced metabolic impairments, mitochondrial dysfunction and increased autophagy, resulting in an improvement of cardiac function in aged pre-diabetic rats.
Collapse
Affiliation(s)
- Cherry Bo-Htay
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thazin Shwe
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thienchai Pattarasakulchai
- Hyperbaric Oxygen Therapy Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Antioxidant Effect of Polygonatum sibiricum Polysaccharides in D-Galactose-Induced Heart Aging Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6688855. [PMID: 33860051 PMCID: PMC8024086 DOI: 10.1155/2021/6688855] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Polygonatum sibiricum polysaccharides (PSP), the extract of Polygonatum sibiricum, are demonstrated to exhibit a wide range of pharmacological activities. A recent study reported that PSP alleviated the aging of the kidney and meninges. However, the effect of PSP on heart aging remains unclear. The present study is aimed at investigating the protection of PSP on D-galactose- (D-gal-) induced heart aging. Results showed that irregularly arranged cardiac muscle fibers were observed in heart tissues of D-gal-treated mice, and the levels of cardiac troponin T (cTnT), creatine kinase (CK), p21, and p53 were increased after D-gal treatment. D-gal-induced heart aging and injury can be attenuated by oral administration of PSP. Moreover, PSP also decreased reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the level of superoxide dismutase (SOD) in the hearts of D-gal-treated mice. DNA damages and lipid peroxidation induced by oxidative stress were also inhibited by PSP as indicated by reduced levels of 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE). Collectively, PSP attenuated D-gal-induced heart aging via inhibiting oxidative stress, suggesting that PSP might serve as a potential effective Chinese herbal active constituent for antiaging therapy.
Collapse
|
20
|
Shwe T, Bo-Htay C, Ongnok B, Chunchai T, Jaiwongkam T, Kerdphoo S, Kumfu S, Pratchayasakul W, Pattarasakulchai T, Chattipakorn N, Chattipakorn SC. Hyperbaric oxygen therapy restores cognitive function and hippocampal pathologies in both aging and aging-obese rats. Mech Ageing Dev 2021; 195:111465. [PMID: 33662435 DOI: 10.1016/j.mad.2021.111465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
The population of obese-elderly has increased prominently around the world. Both aging and obesity are major factors of neurodegeneration. The present study hypothesizes that HBOT attenuates metabolic disturbance, cognitive decline, hippocampal pathologies in aging and aging-obese model. Sixty Wistar rats were separated into 2 groups to receive normal-diet (ND) or high-fat diet (HFD) for 22 weeks. At week 13, ND rats were divided into two subgroups to receive vehicle (0.9 % NSS, s.c) or d-gal (150 mg/kg/d, s.c) for total 10 weeks. HFD rats were injected only d-gal (150 mg/kg/d, s.c; HFDD) for total 10 weeks. At week 20, rats in each subgroup were given sham-treatment (1ATA, 80 L/min, 80 min/day), or HBOT (2ATA, pure O2, 250 L/min, 80 min/day) for 14 days. Novel object location test, metabolic parameters, and hippocampal pathologies were determined after HBOT. d-gal induced insulin resistance, increased oxidative stress, autophagy impairment, microglial hyperactivation, apoptosis, synaptic dysplasticity which resulted in cognitive impairment. d-gal-treated HFD-fed rats had the highest levels of oxidative stress, apoptosis, dendritic spine loss. HBOT attenuated insulin resistance, cognitive impairment, hippocampal aging and pathologies in both models. These findings suggest that HBOT restored insulin sensitivity, hippocampal functions, cognition in aging and aging-obese models.
Collapse
Affiliation(s)
- Thazin Shwe
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Cherry Bo-Htay
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thidarat Jaiwongkam
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirinart Kumfu
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thienchai Pattarasakulchai
- Hyperbaric Oxygen Therapy Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
21
|
Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and D-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging. Biogerontology 2020; 22:35-47. [PMID: 32979155 DOI: 10.1007/s10522-020-09900-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Spermidine (SPD) is a natural polyamine present in all living organisms and is involved in the maintenance of cellular homeostasis by inducing autophagy in different model organisms. Its role as a caloric restriction mimetic (CRM) is still being investigated. We have undertaken this study to investigate whether SPD, acting as a CRM, can confer neuroprotection in D-galactose induced accelerated senescence model rat and naturally aged rats through modulation of autophagy and inflammation. Young male rats (4 months), D-gal induced (500 mg/kg b.w., subcutaneously) aging and naturally aged (22 months) male rats were supplemented with SPD (10 mg/kg b.w., orally) for 6 weeks. Standard protocols were employed to measure prooxidants, antioxidants, apoptotic cell death and electron transport chain complexes in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy and inflammatory marker genes. Our data demonstrate that SPD significantly (p ≤ 0.05) decreased the level of pro-oxidants and increased the level of antioxidants. SPD supplementation also augmented the activities of electron transport chain complexes in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. RT-PCR data revealed that SPD up-regulated the expression of autophagy genes (ATG-3, Beclin-1, ULK-1 and LC3B) and down-regulated the expression of the inflammatory gene (IL-6) in aging brain. Our results provide first line of evidence that SPD provides neuroprotection against aging-induced oxidative stress by regulating autophagy, antioxidants level and also reduces neuroinflammation. These results suggest that SPD may be beneficial for neuroprotection during aging and age-related disorders.
Collapse
|
22
|
Çolak R, Ağaşcıoğlu E, Çakatay U. "Live High Train Low" Hypoxic Training Enhances Exercise Performance with Efficient Redox Homeostasis in Rats' Soleus Muscle. High Alt Med Biol 2020; 22:77-86. [PMID: 32960081 DOI: 10.1089/ham.2020.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Çolak, Rıdvan, Eda Ağaşcıoğlu, and Ufuk Çakatay. "Live high train low" hypoxic training enhances exercise performance with efficient redox homeostasis in rats' soleus muscle. High Alt Med Biol. 22:77-86, 2021. Background: Different types of hypoxic training have been performed to improve exercise performance. Although both "live high train high" and "live high train low" techniques are commonly performed, it is still obscure as to which one is more beneficial. Materials and Methods: Eight-week-old male Sprague-Dawley rats were randomly divided into aforementioned experimental groups. After a familiarization exercise (4-week, ∼15-30 minutes/day) at normoxia, all rats exercised (4-week, ∼35 minutes/day) at hypoxia with their pre-evaluated maximal aerobic velocity test. The soleus was extracted after the test following 2 days of resting. Results: The live high trained low group displayed better performance than the live high trained high (p = 0.031) and the live low trained low (p = 0.017) groups. Redox status biomarkers were higher in the live high trained high group except for thiols, which were illustrated with no difference among the groups. Further, contrary to total and protein thiols (r = 0.57, p = 0.037; r = 0.55, p = 0.042 respectively), other redox status biomarkers were observed to be negatively correlated to exercise performance. Conclusions: The live high trained low group could consume more oxygen during exercise, which might lead to having a better chance to ensure cellular redox homeostasis. Therefore, this group could ensure an optimum exercise performance and anabolic metabolism.
Collapse
Affiliation(s)
- Rıdvan Çolak
- Department of Physical Education and Sports, Ardahan University, Ardahan, Turkey
| | - Eda Ağaşcıoğlu
- Department of Recreation, Faculty of Sports Sciences, Lokman Hekim University, Ankara, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
23
|
Dağ AD, Yanar K, Atayik MC, Simsek B, Belce A, Çakatay U. Early-adulthood caloric restriction is beneficial to improve renal redox status as future anti-aging strategy in rats. Arch Gerontol Geriatr 2020; 90:104116. [DOI: 10.1016/j.archger.2020.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
|
24
|
Shwe T, Bo-Htay C, Leech T, Ongnok B, Jaiwongkum T, Kerdphoo S, Palee S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition. Exp Gerontol 2020; 138:111001. [DOI: 10.1016/j.exger.2020.111001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
|
25
|
Remigante A, Morabito R, Spinelli S, Trichilo V, Loddo S, Sarikas A, Dossena S, Marino A. d-Galactose Decreases Anion Exchange Capability through Band 3 Protein in Human Erythrocytes. Antioxidants (Basel) 2020; 9:antiox9080689. [PMID: 32748857 PMCID: PMC7465100 DOI: 10.3390/antiox9080689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
d-Galactose (d-Gal), when abnormally accumulated in the plasma, results in oxidative stress production, and may alter the homeostasis of erythrocytes, which are particularly exposed to oxidants driven by the blood stream. In the present investigation, the effect of d-Gal (0.1 and 10 mM, for 3 and 24 h incubation), known to induce oxidative stress, has been assayed on human erythrocytes by determining the rate constant of SO42− uptake through the anion exchanger Band 3 protein (B3p), essential to erythrocytes homeostasis. Moreover, lipid peroxidation, membrane sulfhydryl groups oxidation, glycated hemoglobin (% A1c), methemoglobin levels (% MetHb), and expression levels of B3p have been verified. Our results show that d-Gal reduces anion exchange capability of B3p, involving neither lipid peroxidation, nor oxidation of sulfhydryl membrane groups, nor MetHb formation, nor altered expression levels of B3p. d-Gal-induced %A1c, known to crosslink with B3p, could be responsible for rate of anion exchange alteration. The present findings confirm that erythrocytes are a suitable model to study the impact of high sugar concentrations on cell homeostasis; show the first in vitro effect of d-Gal on B3p, contributing to the understanding of mechanisms underlying an in vitro model of aging; demonstrate that the first impact of d-Gal on B3p is mediated by early Hb glycation, rather than by oxidative stress, which may be involved on a later stage, possibly adding more knowledge about the consequences of d-Gal accumulation.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.R.); (R.M.); (S.S.)
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.R.); (R.M.); (S.S.)
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.R.); (R.M.); (S.S.)
| | - Vincenzo Trichilo
- Department of Clinical and Experimental Medicine, AOU Policlinico Universitario “G. Martino”, Via Consolare Valeria, 98125 Messina, Italy; (V.T.); (S.L.)
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, AOU Policlinico Universitario “G. Martino”, Via Consolare Valeria, 98125 Messina, Italy; (V.T.); (S.L.)
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medizinische Privatuniversität, Strubergasse 21, Haus C, 5020 Salzburg, Austria; (A.S.); (S.D.)
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medizinische Privatuniversität, Strubergasse 21, Haus C, 5020 Salzburg, Austria; (A.S.); (S.D.)
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (A.R.); (R.M.); (S.S.)
- Correspondence: ; Tel.: +39-(0)90-6765214
| |
Collapse
|
26
|
Kumar R, Saraswat K, Rizvi SI. 2 -Deoxy - d-glucose at chronic low dose acts as a caloric restriction mimetic through a mitohormetic induction of ROS in the brain of accelerated senescence model of rat. Arch Gerontol Geriatr 2020; 90:104133. [PMID: 32559563 DOI: 10.1016/j.archger.2020.104133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Aging induces significant molecular alteration in brain morphology. Glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) is considered to act as a caloric restriction mimetic (CRM) but it is correlated with elevated mortality risk in rats at persistent high dosage. MATERIALS AND METHODS In young and d-galactose induced accelerated senescent rat aging models, we tested a persistent low-dose dietary 2-DG administration and evaluated various aging biomarkers in brain tissue. RESULTS A significant increase in reactive oxygen species (ROS) was observed in 2-DG treated (both young and accelerated senescent rat model). Increased Ferric reducing antioxidant potential (FRAP) value, Superoxide Dismutase (SOD), Catalase (CAT), and activity of mitochondrial complexes I and IV was observed. There was also significant improvements in the autophagy expression of genes (Beclin-1 and Atg-3) after 2- DG treatment. CONCLUSION We propose that 2-DG induces a mitohormetic effect through elevation of ROS which reinforces defensive mechanism(s) through increased FRAP, SOD, CAT and autophagy gene expression. Our observations indicate that a consistently low dose 2-DG could be a valuable CRM.
Collapse
Affiliation(s)
- Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Komal Saraswat
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
27
|
Bo-Htay C, Shwe T, Higgins L, Palee S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Aging induced by D-galactose aggravates cardiac dysfunction via exacerbating mitochondrial dysfunction in obese insulin-resistant rats. GeroScience 2019; 42:233-249. [PMID: 31768765 DOI: 10.1007/s11357-019-00132-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The prevalence of obesity and an aging population are increasing worldwide. Both obesity and aging are independently known to be associated with cardiac dysfunction. However, in obese insulin-resistant subjects, the effects of aging on metabolic status and cardiac and mitochondrial functions are not completely understood. We hypothesized that in the obese insulin-resistant condition, aging induced by D-galactose increases cardiac senescence markers and aggravates the impairment of metabolic parameters, cardiac and mitochondrial function, and increases oxidative stress, inflammation, apoptosis, and autophagy. Sixty-four male Wistar rats were fed with either normal diet (ND) or high-fat diet (HFD) for 12 weeks. Then, rats were divided into vehicle groups (0.9% NSS, subcutaneous injection (SC)) or D-galactose groups (150 mg/kg/day, SC). After 0.9%NSS or D-galactose treatment for 4 weeks and 8 weeks, metabolic and cardiac functions were determined. The heart was then removed to determine mitochondrial functions and enable biochemical studies. After 4 weeks of D-galactose injection, ND rats treated with D-galactose (NDD4), HFD rats treated with vehicle (HFV4), and HFD rats treated with D-galactose (HFD4) had reduced cardiac function, impaired cardiac mitochondrial function and autophagy, and increased oxidative stress, inflammation, and apoptosis. Interestingly, after 8 weeks, HFD rats treated with D-galactose (HFD8) had the worst impairment of cardiac and mitochondrial function, autophagy, and apoptosis in comparison to the other groups. Aging induced by D-galactose aggravated cardiac dysfunction in obese insulin-resistant rats through the worsening of cardiac mitochondrial function, autophagy, and increased apoptosis in a time-dependent manner.
Collapse
Affiliation(s)
- Cherry Bo-Htay
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thazin Shwe
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Louis Higgins
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
28
|
Kaplán P, Tatarková Z, Lichardusová L, Kmeťová Sivoňová M, Tomašcová A, Račay P, Lehotský J. Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiol Res 2019; 68:883-892. [PMID: 31647296 DOI: 10.33549/physiolres.934170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and decline in cellular redox regulation have been hypothesized to play a key role in cardiovascular aging; however, data on antioxidant and redox regulating systems in the aging heart are controversial. The aim of the present study was to examine the effect of aging on critical antioxidant enzymes and two major redox-regulatory systems glutathione (GSH) and thioredoxin (Trx) system in hearts from adult (6-month-old), old (15-month-old), and senescent (26-month-old) rats. Aging was associated with a non-uniform array of changes, including decline in contents of reduced GSH and total mercaptans in the senescent heart. The activities of Mn-superoxide dismutase (SOD2), glutathione peroxidase (GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR) exhibited an age-related decline, whereas catalase was unchanged and Cu,Zn-superoxide dismutase (SOD1) displayed only slight decrease in old heart and was unchanged in the senescent heart. GR, Trx, and peroxiredoxin levels were significantly reduced in old and/or senescent hearts, indicating a diminished expression of these proteins. In contrast, SOD2 level was unchanged in the old heart and was slightly elevated in the senescent heart. Decline in GPx activity was accompanied by a loss of GPx level only in old rats, the level in senescent heart was unchanged. These results indicate age-related posttranslational protein modification of SOD2 and GPx. In summary, our data suggest that changes are more pronounced in senescent than in old rat hearts and support the view that aging is associated with disturbed redox balance that could alter cellular signaling and regulation.
Collapse
Affiliation(s)
- P Kaplán
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
29
|
Dehghani A, Hafizibarjin Z, Najjari R, Kaseb F, Safari F. Resveratrol and 1,25-dihydroxyvitamin D co-administration protects the heart against D-galactose-induced aging in rats: evaluation of serum and cardiac levels of klotho. Aging Clin Exp Res 2019; 31:1195-1205. [PMID: 30484255 DOI: 10.1007/s40520-018-1075-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023]
Abstract
The current study investigates the cooperative cardioprotective effect of calcitriol (active form of vitamin D) combined with resveratrol in a rat model of D-galactose (D.gal)-induced aging. Male Wistar rats received resveratrol (D.gal + Res), calcitriol (D.gal + Cal), or a combination of them (D.gal + Res + Cal). Intact animals served as control (Ctl). Blood pressure (BP) was recorded by cannulation of the left carotid artery. Fibrosis and cell size were assessed by Masson's trichrome and hematoxylin-eosin staining, respectively. Cardiac and serum level of antiaging protein, klotho, was measured by ELISA assay method. Gene expression was evaluated by real-time RT-PCR. Biochemical tests were performed according to the standardized method. In D.gal + Res + Cal group, BP, heart weight-to-body weight ratio, and cardiomyocytes size decreased significantly compared with D-gal group. The cardiac transcription levels of catalase and superoxide dismutase 1 and 2 were upregulated in D.gal + Res + Cal compared to the D.gal group (P < 0.001, P < 0.05, P < 0.05, respectively). Increased level of malondialdehyde was observed in D.gal group (P < 0.01 vs. Ctl) which was normalized partially in D.gal + Res + Cal group (P < 0.05). Catalase and superoxide dismutase activity also increased in D.gal + Res + Cal group (P < 0.01 vs. D.gal). Cardiac Klotho, as the antiaging protein, remained unchanged at mRNA and protein levels among the experimental groups. The serum level of Klotho did not change significantly in D.gal group; however, in D.gal + Res + Cal group, serum klotho concentration was increased (P < 0.05 vs. D.gal). It could be concluded that co-administration of resveratrol and vitamin D protects the heart against aging-induced damage by the modulation of hemodynamic parameters and antioxidant status of the heart. Furthermore, increased serum level of klotho could be a novel mechanism for antiaging effects of resveratrol and vitamin D.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Elderly Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Hafizibarjin
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Najjari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kaseb
- Faculty of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
30
|
Impaired redox homeostasis in the heart left ventricles of aged rats experiencing fast-developing severe hypobaric hypoxia. Biogerontology 2019; 20:711-722. [DOI: 10.1007/s10522-019-09826-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/25/2019] [Indexed: 01/17/2023]
|
31
|
Yanar K, Simsek B, Atukeren P, Aydin S, Cakatay U. Is D-Galactose a Useful Agent for Accelerated Aging Model of Gastrocnemius and Soleus Muscle of Sprague-Dawley Rats? Rejuvenation Res 2019; 22:521-528. [PMID: 31131732 DOI: 10.1089/rej.2019.2185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elderly population and age-related diseases are on the rise. On the contrary, aging studies are technically hard to conduct, because they require elderly animals, the maintenance of which requires ample effort and is expensive. To tackle this problem, D-galactose is used to hasten the aging process in various tissues in rodent models and it has been shown to successfully mimic the oxidative alterations that take place in the natural aging process in various tissues both by our group and others. In the present study, the validity of D-galactose aging model in skeletal muscles was tested both on predominantly slow-twitch (soleus) and rather fast-twitch (gastrocnemius) muscle in male Sprague-Dawley rats and the results are compared with young littermate controls and naturally aged rats. Redox-related modifications in soleus and gastrocnemius were assessed by measurement of protein carbonyl groups, advanced oxidation protein products, lipid hydroperoxides, total thiol, and Cu, Zn-superoxide dismutase activities. In the present study, we provide biochemical evidence demonstrating that D-galactose-induced mimetic aging does result in oxidative stress-related redox alterations that are comparable with the alterations that occur in natural aging in soleus. On the contrary, in the D-galactose-induced mimetic aging of gastrocnemius, even though the oxidative stress markers were significantly increased, the endpoint redox homeostasis markers were not statistically comparable with the redox status of naturally aged group.
Collapse
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Atukeren
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seval Aydin
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Cakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
32
|
Du HM, Wang YJ, Liu X, Wang SL, Wu SM, Yuan Z, Zhu XK. Defective Central Immune Tolerance Induced by High-Dose D-Galactose Resembles Aging. BIOCHEMISTRY (MOSCOW) 2019; 84:617-626. [DOI: 10.1134/s000629791906004x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Abstract
Erythropoietin (EPO) has been linked to cardioprotective effects. However, its effects during the aging process are little known. We investigated the effect of EPO administration on hemodynamic parameters, cardiac function, oxidative damage, and erythropoietin receptor (EPOR) expression pattern in the hypovolemic state. EPO was administered (1000 IU/kg/3 days) and then acute hemorrhage (20% blood loss) was induced in young and adult rats. There was no difference in plasmatic EPO in either age group. The hemodynamic basal condition was similar, without alterations in renal function and hematocrit, in both age groups. After bleeding, both EPO-treated age groups had increased blood pressure at the end of the experimental protocol, being greater in adult animals. EPO attenuated the tachycardic effect. Ejection fraction and fractional shortening were higher in adult EPO-treated rats subjected to hemorrhage. In the left ventricle, young and adult EPO-treated rats subjected to bleeding showed an increased EPOR expression. A different EPOR expression pattern was observed in the adult right atrial tissue, compared with young animals. EPO treatment decreased oxidative damage to lipids in both age groups. EPO treatment before acute hemorrhage improves cardiovascular function during the aging process, which is mediated by different EPOR pattern expression in the heart tissue.
Collapse
|
34
|
Fracasso BDM, Rangel JO, Machado AG, Curuja FS, Lopes A, Olsen V, Clausell N, Biolo A, Rohde LE, Andrades M. Characterization of advanced glycation end products and their receptor (RAGE) in an animal model of myocardial infarction. PLoS One 2019; 14:e0209964. [PMID: 30633750 PMCID: PMC6329515 DOI: 10.1371/journal.pone.0209964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Circulating advanced glycation end products (AGE) and their receptor, RAGE, are increased after a myocardial infarction (MI) episode and seem to be associated with worse prognosis in patients. Despite the increasing importance of these molecules in the course of cardiac diseases, they have never been characterized in an animal model of MI. Thus, the aim of this study was to characterize AGE formation and RAGE expression in plasma and cardiac tissue during cardiac remodeling after MI in rats. Adult male Wistar rats were randomized to receive sham surgery (n = 15) or MI induction (n = 14) by left anterior descending coronary artery ligation. The MI group was stratified into two subgroups based on postoperative left ventricular ejection fraction: low (MIlowEF) and intermediate (MIintermEF). Echocardiography findings and plasma levels of AGEs, protein carbonyl, and free amines were assessed at baseline and 2, 30, and 120 days postoperatively. At the end of follow-up, the heart was harvested for AGE and RAGE evaluation. No differences were observed in AGE formation in plasma, except for a decrease in absorbance in MIlowEF at the end of follow-up. A decrease in yellowish-brown AGEs in heart homogenate was found, which was confirmed by immunodetection of N-ε-carboxymethyl-lysine. No differences could be seen in plasma RAGE levels among the groups, despite an increase in MI groups over the time. However, MI animals presented an increase of 50% in heart RAGE at the end of the follow-up. Despite the inflammatory and oxidative profile of experimental MI in rats, there was no increase in plasma AGE or RAGE levels. However, AGE levels in cardiac tissue declined. Thus, we suggest that the rat MI model should be employed with caution when studying the AGE-RAGE signaling axis or anti-AGE drugs for not reflecting previous clinical findings.
Collapse
Affiliation(s)
- Bianca de Moraes Fracasso
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Oliveira Rangel
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandra Gonçalves Machado
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Severo Curuja
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Lopes
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Virgílio Olsen
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nadine Clausell
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreia Biolo
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Eduardo Rohde
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael Andrades
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Simsek B, Yanar K, Kansu AD, Belce A, Aydin S, Çakatay U. Caloric restriction improves the redox homeostasis in the aging male rat heart even when started in middle-adulthood and when the body weight is stable. Biogerontology 2018; 20:127-140. [PMID: 30374677 DOI: 10.1007/s10522-018-9781-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
Evidence indicates that maintenance of redox homeostasis is fundamental for cellular longevity. Caloric-restriction (CR) is said to decrease the formation of oxidatively modified cellular macromolecules and improve health. On the other hand, some studies indicate that many CR studies are flawed, because ad libitum fed rats are not well-controlled. Thus, it is claimed that purported beneficial effects of CR could be not due to real CR effect, but due to control animals going obese. Also, it remains to be elucidated whether effects of CR could be observed even when CR is started in mid-adulthood. Male Sprague-Dawley rats were grouped as: non-CR 6-month-old rats (n = 7), 24-month-old rats subjected to 40% CR for 6 months between 18th and 24th months (n = 8), and non-CR 24-month-old animals (n = 8). We investigated 16 previously validated biomarkers of macromolecular redox homeostasis, ranging from protein and lipid oxidation to glycation and antioxidative capacity. In the present study, the protein, lipid and antioxidant capacity redox homeostasis biomarkers overwhelmingly indicate that, CR, even though not started very early in adulthood, could still offer potential therapeutic effects and it could significantly improve various redox homeostasis biomarkers associated with disease reliably in the heart tissue of aging male Sprague-Dawley rats. Therefore, the effects of CR likely operate through similar mechanisms throughout adulthood and CR seems to have real ameliorative effects on organisms that are not due to confounding factors that come from ad libitum fed rats.
Collapse
Affiliation(s)
- B Simsek
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - K Yanar
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - A D Kansu
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - A Belce
- Faculty of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - S Aydin
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - U Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
36
|
Dai J, Liu R, Zhao J, Zhang A. Sulfur dioxide improves endothelial dysfunction by downregulating the angiotensin II/AT 1R pathway in D-galactose-induced aging rats. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318778898. [PMID: 29848151 PMCID: PMC5985551 DOI: 10.1177/1470320318778898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the protective effects of sulfur dioxide (SO2) on the endothelial function of the aorta in D-galactose (D-gal)-induced aging rats. Sprague Dawley rats were randomized into a D-gal group, a D-gal + SO2 group and a control group, then injected with D-gal, D-gal + SO2 donor or equivalent volumes of saline, respectively, for 8 consecutive weeks. After 8 weeks, the mean arterial pressure was significantly increased in the D-gal group, but was lowered by SO2. SO2 significantly ameliorated the endothelial dysfunction induced by D-gal treatment. The vasorelaxant effect of SO2 was associated with the elevated nitric oxide levels and upregulated phosphorylation of endothelial nitric oxide synthase. In the D-gal group, the concentration of angiotensin II in the plasma was significantly increased, but was decreased by SO2. Moreover, levels of vascular tissue hydrogen peroxide (H2O2) and malondialdehyde were significantly lower in SO2-treated groups than those in the D-gal group. Western blot analysis showed that the expressions of oxidative stress-related proteins (the angiotensin II type 1 receptor (AT1R), and nicotinamide adenine dinucleotide phosphate oxidase subunits) were increased in the D-gal group, while they were decreased after treatment with SO2. In conclusion, SO2 attenuated endothelial dysfunction in association with the inhibition of oxidative stress injury and the downregulation of the angiotensin II/AT1R pathway in D-gal-induced aging rats.
Collapse
Affiliation(s)
- Jing Dai
- 1 Department of Clinical Diagnostics, Hebei Medical University, China
| | - Rui Liu
- 2 Department of Thoracic Surgery, Suining Central Hospital, China
| | - Jinjie Zhao
- 3 Department of Cardiovascular Surgery, Suining Central Hospital, China
| | - Aijie Zhang
- 4 Basic Laboratory, Suining Central Hospital, China
| |
Collapse
|
37
|
Bo-Htay C, Palee S, Apaijai N, Chattipakorn SC, Chattipakorn N. Effects of d-galactose-induced ageing on the heart and its potential interventions. J Cell Mol Med 2018; 22:1392-1410. [PMID: 29363871 PMCID: PMC5824366 DOI: 10.1111/jcmm.13472] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
Ageing is a strong independent risk factor for disability, morbidity and mortality. Post-mitotic cells including those in the heart are a particular risk to age-related deterioration. As the occurrence of heart disease is increasing rapidly with an ageing population, knowledge regarding the mechanisms of age-related cardiac susceptibility and possible therapeutic interventions needs to be acquired to prevent advancing levels of heart disease. To understand more about the ageing heart, numerous aged animal models are being used to explore the underlying mechanisms. Due to time-consuming for investigations involving naturally aged animals, mimetic ageing models are being utilized to assess the related effects of ageing on disease occurrence. d-galactose is one of the substances used to instigate ageing in various models, and techniques involving this have been widely used since 1991. However, the mechanism through which d-galactose induces ageing in the heart remains unclear. The aim of this review was to comprehensively summarize the current findings from in vitro and in vivo studies on the effects of d-galactose-induced ageing on the heart, and possible therapeutic interventions against ageing heart models. From this review, we hope to provide invaluable information for future studies and based on the findings from experiments involving animals, we can inform possible therapeutic strategies for the prevention of age-related heart diseases in clinical settings.
Collapse
Affiliation(s)
- Cherry Bo-Htay
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Faculty of Medicine, Cardiac Electrophysiology Unit, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
38
|
Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol 2017; 101:13-36. [PMID: 29129736 DOI: 10.1016/j.exger.2017.10.029] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging.
Collapse
|
39
|
Mo ZZ, Liu YH, Li CL, Xu LQ, Wen LL, Xian YF, Lin ZX, Zhan JYX, Chen JN, Xu FF, Su ZR. Protective Effect of SFE-CO2 of Ligusticum chuanxiong Hort Against d-Galactose-Induced Injury in the Mouse Liver and Kidney. Rejuvenation Res 2017; 20:231-243. [DOI: 10.1089/rej.2016.1870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zhi-Zhun Mo
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yu-Hong Liu
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Cai-Lan Li
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Lie-Qiang Xu
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ling-Ling Wen
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Janis Ya-Xian Zhan
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jian-Nan Chen
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Fang-Fang Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, P.R. China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, P.R. China
| |
Collapse
|
40
|
Garg G, Singh S, Singh AK, Rizvi SI. Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats. Rejuvenation Res 2016; 20:15-24. [PMID: 27185159 DOI: 10.1089/rej.2016.1826] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metformin, a biguanide drug commonly used to treat type 2 diabetes, has been noted to function as a caloric restriction mimetic. Its antidiabetic effect notwithstanding, metformin is currently being considered an antiaging drug candidate, although the molecular mechanisms have not yet been unequivocally established. This study aims to examine whether short-term metformin treatment can provide protective effects against oxidative stress in young and old-age rats. Young (age 4 months) and old (age 24 months) male Wistar rats were treated with metformin (300 mg/kg b.w.) for 4 weeks. At the end of the treatment period, an array of biomarkers of oxidative stress were evaluated, including plasma antioxidant capacity measured in terms of ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (MDA), reduced glutathione (GSH), total plasma thiol (SH), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), and advanced glycation end products (AGEs) in control and experimental groups. Metformin treatment resulted in an increase in FRAP, GSH, SH, and PMRS activities in both age groups compared to respective controls. On the other hand, treated groups exhibited significant reductions in ROS, MDA, PCO, AOPP, and AGE level. Save for FRAP and protein carbonyl, the effect of metformin on all other parameters was more pronounced in old-aged rats. Metformin caused a significant increase in the PMRS activity in young rats, however, the effect was less pronounced in old rats. These findings provide evidence with respect to restoration of antioxidant status in aged rats after short-term metformin treatment. The findings substantiate the putative antiaging role of metformin.
Collapse
Affiliation(s)
- Geetika Garg
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| | - Sandeep Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| | - Abhishek Kumar Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| |
Collapse
|
41
|
Doan VM, Chen C, Lin X, Nguyen VP, Nong Z, Li W, Chen Q, Ming J, Xie Q, Huang R. Yulangsan polysaccharide improves redox homeostasis and immune impairment in d-galactose-induced mimetic aging. Food Funct 2015; 6:1712-8. [DOI: 10.1039/c5fo00238a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yulangsan polysaccharide (YLSP) is a traditional Chinese medicine used in long-term treatment as a modulator of brain dysfunction and immunity.
Collapse
Affiliation(s)
- Van Minh Doan
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Chunxia Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
- Department of Hyperbaric Oxygen
| | - Xing Lin
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Van Phuc Nguyen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Zhihuan Nong
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Weisi Li
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qingquan Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Jianjun Ming
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qiuqiao Xie
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Renbin Huang
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| |
Collapse
|