1
|
Gouveia M, Schmidt C, Basilio PG, Aveiro SS, Domingues P, Xia K, Colón W, Vitorino R, Ferreira R, Santos M, Vieira SI, Ribeiro F. Exercise training decreases the load and changes the content of circulating SDS-resistant protein aggregates in patients with heart failure with reduced ejection fraction. Mol Cell Biochem 2024; 479:2711-2722. [PMID: 37902886 PMCID: PMC11455743 DOI: 10.1007/s11010-023-04884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Heart failure (HF) often disrupts the protein quality control (PQC) system leading to protein aggregate accumulation. Evidence from tissue biopsies showed that exercise restores PQC system in HF; however, little is known about its effects on plasma proteostasis. AIM To determine the effects of exercise training on the load and composition of plasma SDS-resistant protein aggregates (SRA) in patients with HF with reduced ejection fraction (HFrEF). METHODS Eighteen patients with HFrEF (age: 63.4 ± 6.5 years; LVEF: 33.4 ± 11.6%) participated in a 12-week combined (aerobic plus resistance) exercise program (60 min/session, twice per week). The load and content of circulating SRA were assessed using D2D SDS-PAGE and mass spectrometry. Cardiorespiratory fitness, quality of life, and circulating levels of high-sensitive C-reactive protein, N-terminal pro-B-type natriuretic peptide (NT-proBNP), haptoglobin and ficolin-3, were also evaluated at baseline and after the exercise program. RESULTS The exercise program decreased the plasma SRA load (% SRA/total protein: 38.0 ± 8.9 to 36.1 ± 9.7%, p = 0.018; % SRA/soluble fraction: 64.3 ± 27.1 to 59.8 ± 27.7%, p = 0.003). Plasma SRA of HFrEF patients comprised 31 proteins, with α-2-macroglobulin and haptoglobin as the most abundant ones. The exercise training significantly increased haptoglobin plasma levels (1.03 ± 0.40 to 1.11 ± 0.46, p = 0.031), while decreasing its abundance in SRA (1.83 ± 0.54 × 1011 to 1.51 ± 0.59 × 1011, p = 0.049). Cardiorespiratory fitness [16.4(5.9) to 19.0(5.2) ml/kg/min, p = 0.002], quality of life, and circulating NT-proBNP [720.0(850.0) to 587.0(847.3) pg/mL, p = 0.048] levels, also improved after the exercise program. CONCLUSION Exercise training reduced the plasma SRA load and enhanced PQC, potentially via haptoglobin-mediated action, while improving cardiorespiratory fitness and quality of life of patients with HFrEF.
Collapse
Affiliation(s)
- Marisol Gouveia
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Cristine Schmidt
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Priscilla Gois Basilio
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Susana S Aveiro
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
- GreenCoLab - Green Ocean Association, University of Algarve, Faro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA & LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Serviço de Cardiologia, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, UMIB, University of Porto, Porto, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Fernando Ribeiro
- School of Health Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Schneider TR, Stöckli L, Felbecker A, Nirmalraj PN. Protein fibril aggregation on red blood cells: a potential biomarker to distinguish neurodegenerative diseases from healthy aging. Brain Commun 2024; 6:fcae180. [PMID: 38873003 PMCID: PMC11170662 DOI: 10.1093/braincomms/fcae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Neurodegenerative diseases like Alzheimer's disease are characterized by the accumulation of misfolded proteins into fibrils in the brain. Atomic force microscopy is a nanoscale imaging technique that can be used to resolve and quantify protein aggregates from oligomers to fibrils. Recently, we characterized protein fibrillar aggregates adsorbed on the surface of red blood cells with atomic force microscopy from patients with neurocognitive disorders, suggesting a novel Alzheimer's disease biomarker. However, the age association of fibril deposits on red blood cells has not yet been studied in detail in healthy adults. Here, we used atomic force microscopy to visualize and quantify fibril coverage on red blood cells in 50 healthy adults and 37 memory clinic patients. Fibrillar protein deposits sporadically appeared in healthy individuals but were much more prevalent in patients with neurodegenerative disease, especially those with Alzheimer's disease as confirmed by positive CSF amyloid beta 1-42/1-40 ratios. The prevalence of fibrils on the red blood cell surface did not significantly correlate with age in either healthy individuals or Alzheimer's disease patients. The overlap in fibril prevalence on red blood cells between Alzheimer's disease and amyloid-negative patients suggests that fibril deposition on red blood cells could occur in various neurodegenerative diseases. Quantifying red blood cell protein fibril morphology and prevalence on red blood cells could serve as a sensitive biomarker for neurodegeneration, distinguishing between healthy individuals and those with neurodegenerative diseases. Future studies that combine atomic force microscopy with immunofluorescence techniques in larger-scale studies could further identify the chemical nature of these fibrils, paving the way for a comprehensive, non-invasive biomarker platform for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Luisa Stöckli
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Ansgar Felbecker
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Peter Niraj Nirmalraj
- Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| |
Collapse
|
3
|
An evaluation of aging measures: from biomarkers to clocks. Biogerontology 2022; 24:303-328. [PMID: 36418661 DOI: 10.1007/s10522-022-09997-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
With the increasing number of aged population and growing burden of healthy aging demands, a rational standard for evaluation aging is in urgent need. The advancement of medical testing technology and the prospering of artificial intelligence make it possible to evaluate the biological status of aging from a more comprehensive view. In this review, we introduced common aging biomarkers and concluded several famous aging clocks. Aging biomarkers reflect changes in the organism at a molecular or cellular level over time while aging clocks tend to be more of a generalization of the overall state of the organism. We expect to construct a framework for aging evaluation measurement from both micro and macro perspectives. Especially, population-specific aging clocks and multi-omics aging clocks may better fit the demands to evaluate aging in a comprehensive and multidimensional manner and make a detailed classification to represent different aging rates at tissue/organ levels. This framework will promisingly provide a crucial basis for disease diagnosis and intervention assessment in geroscience.
Collapse
|
4
|
Humoral immunoresponse elicited against an adenoviral-based SARS-CoV-2 coronavirus vaccine in elderly patients. Aging (Albany NY) 2022; 14:7193-7205. [PMID: 36152043 PMCID: PMC9550251 DOI: 10.18632/aging.204299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
The early sequencing of the SARS-CoV-2 viral genome allowed for a speedy development of effective vaccines against the virus. Nevertheless, age-related immunosenescence, the inability to mount strong immune responses, still represents a major obstacle. Here, in a group of 149 elderly volunteers (70-96 years old), evolution of the humoral immune response over time to Gam-COVID-Vac (Sputnik V), a vaccine based on heterologous recombinant adenovirus-26 (Ad26) and adenovirus-5 (Ad5) carrying the Spike genome, was analyzed by an anti-RBD ELISA. At 28 days post vaccination (dpv), a seroconversion rate of 91% was achieved, showing the importance of administering at least two doses of Gam-COVID-Vac to elicit a robust immune response, especially in elderly individuals without previous SARS-CoV-2 infection. Interestingly, IgG specific antibodies that reached their highest titers around 28 dpv (median = 740), persisted without significant decrease after 60 dpv (median = 650). After 90 dpv, IgG titers began to drop, and at 180 dpv only 44.7% of the elderly individuals remained with detectable anti-RBD IgG antibodies. No significant differences were observed in specific humoral immune responses between genders at early times point. However, at 60 dpv anti-RBD titers were more persistent in elderly females, and only dropped at 90 dpv (p < 0.0001). As expected, the highest antibodies titers were elicited in the youngest subgroup (70-74 years). Our results show that Gam-COVID-Vac was able to deal with the ageing of the immune system, eliciting a robust immune response in an elderly cohort, which lasted approximately 90 dpv at high levels, and protected against COVID-19.
Collapse
|
5
|
Proteostasis Response to Protein Misfolding in Controlled Hypertension. Cells 2022; 11:cells11101686. [PMID: 35626723 PMCID: PMC9139827 DOI: 10.3390/cells11101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is the most determinant risk factor for cardiovascular diseases. Early intervention and future therapies targeting hypertension mechanisms may improve the quality of life and clinical outcomes. Hypertension has a complex multifactorial aetiology and was recently associated with protein homeostasis (proteostasis). This work aimed to characterize proteostasis in easy-to-access plasma samples from 40 individuals, 20 with controlled hypertension and 20 age- and gender-matched normotensive individuals. Proteostasis was evaluated by quantifying the levels of protein aggregates through different techniques, including fluorescent probes, slot blot immunoassays and Fourier-transform infrared spectroscopy (FTIR). No significant between-group differences were observed in the absolute levels of various protein aggregates (Proteostat or Thioflavin T-stained aggregates; prefibrillar oligomers and fibrils) or total levels of proteostasis-related proteins (Ubiquitin and Clusterin). However, significant positive associations between Endothelin 1 and protein aggregation or proteostasis biomarkers (such as fibrils and ubiquitin) were only observed in the hypertension group. The same is true for the association between the proteins involved in quality control and protein aggregates. These results suggest that proteostasis mechanisms are actively engaged in hypertension as a coping mechanism to counteract its pathological effects in proteome stability, even when individuals are chronically medicated and presenting controlled blood pressure levels.
Collapse
|
6
|
Verma K, Verma M, Chaphalkar A, Chakraborty K. Recent advances in understanding the role of proteostasis. Fac Rev 2021; 10:72. [PMID: 34632458 PMCID: PMC8483240 DOI: 10.12703/r/10-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintenance of a functional proteome is achieved through the mechanism of proteostasis that involves precise coordination between molecular machineries assisting a protein from its conception to demise. Although each organelle within a cell has its own set of proteostasis machinery, inter-organellar communication and cell non-autonomous signaling bring forth the multidimensional nature of the proteostasis network. Exposure to extrinsic and intrinsic stressors can challenge the proteostasis network, leading to the accumulation of aberrant proteins or a decline in the proteostasis components, as seen during aging and in several diseases. Here, we summarize recent advances in understanding the role of proteostasis and its regulation in aging and disease, including monogenetic and infectious diseases. We highlight some of the emerging as well as unresolved questions in proteostasis that need to be addressed to overcome pathologies associated with damaged proteins and to promote healthy aging.
Collapse
Affiliation(s)
- Kanika Verma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Monika Verma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Aseem Chaphalkar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Kausik Chakraborty
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Adiutori R, Puentes F, Bremang M, Lombardi V, Zubiri I, Leoni E, Aarum J, Sheer D, McArthur S, Pike I, Malaspina A. Analysis of circulating protein aggregates as a route of investigation into neurodegenerative disorders. Brain Commun 2021; 3:fcab148. [PMID: 34396108 PMCID: PMC8361415 DOI: 10.1093/braincomms/fcab148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Plasma proteome composition reflects the inflammatory and metabolic state of the organism and can be predictive of system-level and organ-specific pathologies. Circulating protein aggregates are enriched with neurofilament heavy chain-axonal proteins involved in brain aggregate formation and recently identified as biomarkers of the fatal neuromuscular disorder amyotrophic lateral sclerosis. Using unbiased proteomic methods, we have fully characterized the content in neuronal proteins of circulating protein aggregates from amyotrophic lateral sclerosis patients and healthy controls, with reference to brain protein aggregate composition. We also investigated circulating protein aggregate protein aggregation propensity, stability to proteolytic digestion and toxicity for neuronal and endothelial cell lines. Circulating protein aggregates separated by ultracentrifugation are visible as electron-dense macromolecular particles appearing as either large globular or as small filamentous formations. Analysis by mass spectrometry revealed that circulating protein aggregates obtained from patients are enriched with proteins involved in the proteasome system, possibly reflecting the underlying basis of dysregulated proteostasis seen in the disease, while those from healthy controls show enrichment of proteins involved in metabolism. Compared to the whole human proteome, proteins within circulating protein aggregates and brain aggregates show distinct chemical features of aggregation propensity, which appear dependent on the tissue or fluid of origin and not on the health status. Neurofilaments' two high-mass isoforms (460 and 268 kDa) showed a strong differential expression in amyotrophic lateral sclerosis compared to healthy control circulating protein aggregates, while aggregated neurofilament heavy chain was also partially resistant to enterokinase proteolysis in patients, demonstrated by immunoreactive bands at 171 and 31 kDa fragments not seen in digested healthy controls samples. Unbiased proteomics revealed that a total of 4973 proteins were commonly detected in circulating protein aggregates and brain, including 24 expressed from genes associated with amyotrophic lateral sclerosis. Interestingly, 285 circulating protein aggregate proteins (5.7%) were regulated (P < 0.05) and are present in biochemical pathways linked to disease pathogenesis and protein aggregation. Biologically, circulating protein aggregates from both patients and healthy controls had a more pronounced effect on the viability of hCMEC/D3 endothelial and PC12 neuronal cells compared to immunoglobulins extracted from the same plasma samples. Furthermore, circulating protein aggregates from patients exerted a more toxic effect than healthy control circulating protein aggregates on both cell lines at lower concentrations (P: 0.03, in both cases). This study demonstrates that circulating protein aggregates are significantly enriched with brain proteins which are representative of amyotrophic lateral sclerosis pathology and a potential source of biomarkers and therapeutic targets for this incurable disorder.
Collapse
Affiliation(s)
- Rocco Adiutori
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Fabiola Puentes
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Michael Bremang
- Proteome Sciences R&D GmbH & Co. KG, Frankfurt am Main 60438, Germany
| | - Vittoria Lombardi
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Emanuela Leoni
- Proteome Sciences R&D GmbH & Co. KG, Frankfurt am Main 60438, Germany
| | - Johan Aarum
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Denise Sheer
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Simon McArthur
- Institute of Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, Mabledon Place, London WC1H 9BB, UK
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
8
|
Magalhães S, Trindade D, Martins T, Martins Rosa I, Delgadillo I, Goodfellow BJ, da Cruz E Silva OAB, Henriques AG, Nunes A. Monitoring plasma protein aggregation during aging using conformation-specific antibodies and FTIR spectroscopy. Clin Chim Acta 2019; 502:25-33. [PMID: 31790700 DOI: 10.1016/j.cca.2019.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Abstract
The loss of proteostasis during aging has been well described using different models, however little is known with respect to protein aggregation levels in biofluids with aging. Therefore, the aim of this study was to assess the pattern of age-related protein aggregation in human plasma using two distinct approaches: analysis with conformation-specific antibodies and FTIR spectroscopy. The latter has been widely used in biomedical research to study protein conformational changes in health and disease. Samples from a primary care based-cohort from the Aveiro region, Portugal, were used for slot-blot analyses followed by immunodetection with conformation-specific antibodies and for the acquisition of FTIR spectra. Immunoblot analyses revealed an age-dependent evolution of the protein conformational profile in human plasma, towards a decrease in prefibrillar oligomers and an increase in fibrillar structures. This finding was also supported by PLS-R multivariate analysis of FTIR data, where a positive correlation between the age of the donors and secondary structure of plasma proteins could be observed. Samples from younger donors are characterized by antiparallel β-sheet-containing structures while intermolecular β-sheets characterized older samples. Exclusion of age-associated co-morbidities improved the correlation between protein conformational profiles and aging. The results reveal structural changes in human plasma proteins from middle to old age, confirming the age-associated changes in protein aggregation, and support the applicability of FTIR as a reliable approach to study proteostasis during aging.
Collapse
Affiliation(s)
- Sandra Magalhães
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Dário Trindade
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Tânia Martins
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Ilka Martins Rosa
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | | | - Brian J Goodfellow
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; The Discovery CTR, University of Aveiro Campus, 3810-193 Aveiro, Portugal.
| | - Ana Gabriela Henriques
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Alexandra Nunes
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
9
|
Reichert T, Bagatini NC, Simmer NM, Meinerz AP, Barroso BM, Prado AKG, Delevatti RS, Costa RR, Kanitz AC, Kruel LFM. Effects of Different Models of Water-Based Resistance Training on Muscular Function of Older Women. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2019; 90:46-53. [PMID: 30717634 DOI: 10.1080/02701367.2018.1563273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
PURPOSE To compare the effects of three water-based resistance trainings on neuromuscular parameters of older women. METHOD Thirty-six women were randomized to groups: simple set of 30 seconds (1 × 30 s, 66.41 ± 4.71 years, n = 12), multiple sets of 10 seconds (3 × 10 s, 66.50 ± 4.74 years, n = 11), and simple set of 10 seconds (1 × 10 s, 65.23 ± 3.93 years, n = 13). Maximal isometric strength concomitantly with neuromuscular activity during extension and flexion knee was evaluated. In the same exercises, rate of force development at different time intervals was measured. Finally, functional capacity was assessed. RESULTS All trainings promoted similar improvements in the rate of force develpment of extension (effect size RFD 50 ms: 1 × 30 s .49, 3 × 10 s .67, 1 × 10 s .65; ES RFD 100 ms: 1 × 30 s .76, 3 × 10 s .80, 1 × 10 s .63; ES RFD 250 ms: 1 × 30 s .31, 3 × 10 s .49, 1 × 10 s .37) and flexion knee (ES RFD 50 ms: 1 × 30 s .59, 3 × 10 s .31, 1 × 10 s .48; ES RFD 100 ms: 1 × 30 s .41, 3 × 10 s .44, 1 × 10 s .42; ES RFD 250 ms: 1 × 30 s .57, 3 × 10 s .36, 1 × 10 s .43; ES RFD maximal: 1 × 30 s .63, 3 × 10 s .23, 1 × 10 s .26), however only the 3 × 10 s group improved the performance in the 8-foot up-and-go test (ES 3 × 10 s: .93, 1 × 30: .39, 1 × 10 s: .23). There was a maintenance of the isometric force and neuromuscular activity, except for the activity of the rectus femoris that showed an increase after training in all groups (ES 3 × 10 s: .04, 1 × 30: .36, 1 × 10 s: .50). CONCLUSION Water-based resistance training using simple or multiple sets promotes the same gains in rapid strength, however only multiple sets induced improvement on functional capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Carolina Kanitz
- a Federal University of the Rio Grande of Sul
- d Federal University of Uberlândia
| | | |
Collapse
|
10
|
Adiutori R, Aarum J, Zubiri I, Bremang M, Jung S, Sheer D, Pike I, Malaspina A. The proteome of neurofilament-containing protein aggregates in blood. Biochem Biophys Rep 2018; 14:168-177. [PMID: 29872749 PMCID: PMC5986704 DOI: 10.1016/j.bbrep.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf), the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH) may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC) and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP), for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS). Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH) was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.
Collapse
Affiliation(s)
- Rocco Adiutori
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Johan Aarum
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Michael Bremang
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Stephan Jung
- ProteomeSciencesR&DGmbH&Co.KG, Frankfurt, Germany
| | - Denise Sheer
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ian Pike
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
11
|
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev 2017; 40:1-10. [PMID: 28757291 DOI: 10.1016/j.arr.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.
Collapse
|