1
|
Mei Y, Chen Y, Wang X, Xu R, Xu R, Feng X. The inverse relationship between the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and testosterone in adult males in the United States: a cross-sectional study based on the NHANES database. Front Endocrinol (Lausanne) 2025; 16:1478124. [PMID: 40162320 PMCID: PMC11949807 DOI: 10.3389/fendo.2025.1478124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Background Testosterone is a crucial hormone for male health, influencing metabolism, cardiovascular function, bone density, and cognitive abilities. Elevated non-HDL cholesterol to HDL cholesterol ratio (NHHR) has been implicated in lipid metabolism disorders, which may adversely affect testosterone levels. This study investigates the association between NHHR and testosterone levels in adult males, utilizing data from the National Health and Nutrition Examination Survey (NHANES). Methods This cross-sectional study analyzed data from 2,859 adult males from the NHANES cycles 2011-2016. Total testosterone levels were measured using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). NHHR was calculated and analyzed as both a continuous variable and in quartiles. Multivariable linear and logistic regression models, adjusted for demographic, biochemical, lifestyle factors, and medical comorbidities, were used to assess the relationship between NHHR and total testosterone levels and the risk of testosterone deficiency (TD). Results Higher NHHR was significantly associated with lower total testosterone levels and increased risk of TD. In fully adjusted models, each unit increase in NHHR was associated with a decrease in total testosterone levels (β = -16.31, 95% CI: -26.58 to -6.04, P = 0.003) and an increased risk of TD (OR = 1.24, 95% CI: 1.07 to 1.44, P = 0.01). When NHHR was analyzed in quartiles, participants in the highest quartile (Q4) had significantly lower testosterone levels (β = -54.98, 95% CI: -86.21 to -23.74, P = 0.001) and a higher risk of TD (OR = 2.04, 95% CI: 1.20 to 3.49, P = 0.01) compared to those in the lowest quartile (Q1). Subgroup analyses confirmed these findings across different age groups, BMI categories, smoking status, and presence of comorbidities. Smooth curve fitting demonstrated a linear relationship among them. Conclusion Our study is the first to identify a significant association between elevated NHHR and both reduced total testosterone levels and increased risk of TD in a large, representative sample of adult American males. These findings suggest that NHHR could serve as a valuable marker for early identification of individuals at risk for testosterone decline and TD, enabling timely and targeted clinical interventions.
Collapse
Affiliation(s)
- Yangyang Mei
- Department of Urology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, China
| | - Yiming Chen
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaogang Wang
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Renfang Xu
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Rui Xu
- Department of Rehabilitation Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Xingliang Feng
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Nasuhidehnavi A, Zarzycka W, Górecki I, Chiao YA, Lee CF. Emerging interactions between mitochondria and NAD + metabolism in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:176-190. [PMID: 39198117 PMCID: PMC11794032 DOI: 10.1016/j.tem.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for redox reactions and regulates cellular catabolic pathways. An intertwined relationship exists between NAD+ and mitochondria, with consequences for mitochondrial function. Dysregulation in NAD+ homeostasis can lead to impaired energetics and increased oxidative stress, contributing to the pathogenesis of cardiometabolic diseases. In this review, we explore how disruptions in NAD+ homeostasis impact mitochondrial function in various cardiometabolic diseases. We discuss emerging studies demonstrating that enhancing NAD+ synthesis or inhibiting its consumption can ameliorate complications of this family of pathological conditions. Additionally, we highlight the potential role and therapeutic promise of mitochondrial NAD+ transporters in regulating cellular and mitochondrial NAD+ homeostasis.
Collapse
Affiliation(s)
- Azadeh Nasuhidehnavi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13790, USA
| | - Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ignacy Górecki
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Wang H, Wang W, Xue Z, Gong H. SIRT3 MEDIATES THE CARDIOPROTECTIVE EFFECT OF THERAPEUTIC HYPOTHERMIA AFTER CARDIAC ARREST AND RESUSCITATION BY RESTORING AUTOPHAGIC FLUX VIA THE PI3K/AKT/MTOR PATHWAY. Shock 2024; 62:127-138. [PMID: 38526135 DOI: 10.1097/shk.0000000000002366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT Background : Postresuscitation cardiac dysfunction is a significant contributor to early death following cardiopulmonary resuscitation (CPR). Therapeutic hypothermia (TH) mitigates myocardial dysfunction due to cardiac arrest (CA); however, the underlying mechanism remains unclear. Sirtuin 3 (Sirt3) was found to affect autophagic activity in recent research, motivating us to investigate its role in the cardioprotective effects of TH in the treatment of CA. Methods : Sprague-Dawley rats were used to establish an in vivo CA/CPR model and treated with a selective Sirt3 inhibitor or vehicle. Survival rate, myocardial function, autophagic flux, and Sirt3 expression and activity were evaluated. H9C2 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro . The cells were transfected with Sirt3-siRNA and treated with the autophagy inhibitor chloroquine or the PI3K inhibitor LY294002, and cell viability and autophagic flux were assessed. Results : Rats exhibited decreased survival and impaired cardiac function after CA/CPR, which were alleviated by TH. Mechanistically, TH restored Sirt3 expression and autophagic flux, which were impaired by CA/CPR. Sirt3 inactivation diminished the capacity of TH to restore autophagic flux and partially abolished the improvements in myocardial function and survival. An in vitro study further showed that TH-induced restoration of disrupted autophagic flux by OGD/R was attenuated by pretreatment with Sirt3-siRNA, and this attenuation was partially rescued by the inhibition of PI3K/Akt/mTOR signaling cascades. Conclusions : Sirt3 mediates the cardioprotective effect of TH by restoring autophagic flux via the PI3K/Akt/mTOR pathway. These findings suggest the potential of Sirt3 as a therapeutic target for CA.
Collapse
Affiliation(s)
- Hui Wang
- Department of Geriatric Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Wang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Huiping Gong
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of Cardiac PFKFB2 Drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. J Am Heart Assoc 2024; 13:e033676. [PMID: 38533937 PMCID: PMC11179765 DOI: 10.1161/jaha.123.033676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.
Collapse
Affiliation(s)
- Kylene M. Harold
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Brooke L. Loveland
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
5
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
6
|
Zhang Q, Siyuan Z, Xing C, Ruxiu L. SIRT3 regulates mitochondrial function: A promising star target for cardiovascular disease therapy. Biomed Pharmacother 2024; 170:116004. [PMID: 38086147 DOI: 10.1016/j.biopha.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Dysregulation of mitochondrial homeostasis is common to all types of cardiovascular diseases. SIRT3 regulates apoptosis and autophagy, material and energy metabolism, mitochondrial oxidative stress, inflammation, and fibrosis. As an important mediator and node in the network of mechanisms, SIRT3 is essential to many activities. This review explains how SIRT3 regulates mitochondrial homeostasis and the tricarboxylic acid cycle to treat common cardiovascular diseases. A novel description of the impact of lifestyle factors on SIRT3 expression from the angles of nutrition, exercise, and temperature is provided.
Collapse
Affiliation(s)
- Qin Zhang
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Zhou Siyuan
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Chang Xing
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Liu Ruxiu
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China.
| |
Collapse
|
7
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of cardiac PFKFB2 drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568379. [PMID: 38045353 PMCID: PMC10690253 DOI: 10.1101/2023.11.22.568379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. Methods To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control (CON) mice, we characterized impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. Results cKO mice have a shortened lifespan of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase (PDH) activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to CON animals. Metabolomic, proteomic, and western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular (LV) dilation, represented by reduced fractional shortening and increased LV internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. Conclusions Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart. Clinical Perspective What is New?: We have generated a novel cardiomyocyte-specific knockout model of PFKFB2, the cardiac isoform of the primary glycolytic regulator Phosphofructokinase-2 (cKO).The cKO model demonstrates that loss of cardiac PFKFB2 drives metabolic reprogramming and shunting of glucose metabolites to ancillary metabolic pathways.The loss of cardiac PFKFB2 promotes electrophysiological and functional remodeling in the cKO heart.What are the Clinical Implications?: PFKFB2 is degraded in the absence of insulin signaling, making its loss particularly relevant to diabetes and the pathophysiology of diabetic cardiomyopathy.Changes which we observe in the cKO model are consistent with those often observed in diabetes and heart failure of other etiologies.Defining PFKFB2 loss as a driver of cardiac pathogenesis identifies it as a target for future investigation and potential therapeutic intervention.
Collapse
|
8
|
Foglio E, D’Avorio E, Vitiello L, Masuelli L, Bei R, Pacifici F, Della-Morte D, Mirabilii S, Ricciardi MR, Tafuri A, Garaci E, Russo MA, Tafani M, Limana F. Doxorubicin-Induced Cardiac Senescence Is Alleviated Following Treatment with Combined Polyphenols and Micronutrients through Enhancement in Mitophagy. Cells 2023; 12:2605. [PMID: 37998340 PMCID: PMC10670650 DOI: 10.3390/cells12222605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-β-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100 Latina, Italy
| | - Erica D’Avorio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | | | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Simone Mirabilii
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Enrico Garaci
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
| | - Matteo Antonio Russo
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (M.T.)
| | - Federica Limana
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy (F.P.); (D.D.-M.); (E.G.); (M.A.R.)
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
9
|
Chang Y, Wang C, Zhu J, Zheng S, Sun S, Wu Y, Jiang X, Li L, Ma R, Li G. SIRT3 ameliorates diabetes-associated cognitive dysfunction via regulating mitochondria-associated ER membranes. J Transl Med 2023; 21:494. [PMID: 37481555 PMCID: PMC10362714 DOI: 10.1186/s12967-023-04246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Diabetes is associated with an increased risk of cognitive decline and dementia. These diseases are linked with mitochondrial dysfunction, most likely as a consequence of excessive formation of mitochondria-associated membranes (MAMs). Sirtuin3 (SIRT3), a key mitochondrial NAD+-dependent deacetylase, is critical responsible for mitochondrial functional homeostasis and is highly associated with neuropathology. However, the role of SIRT3 in regulating MAM coupling remains unknown. METHODS Streptozotocin-injected diabetic mice and high glucose-treated SH-SY5Y cells were established as the animal and cellular models, respectively. SIRT3 expression was up-regulated in vivo using an adeno-associated virus in mouse hippocampus and in vitro using a recombinant lentivirus vector. Cognitive function was evaluated using behavioural tests. Hippocampus injury was assessed using Golgi and Nissl staining. Apoptosis was analysed using western blotting and TUNEL assay. Mitochondrial function was detected using flow cytometry and confocal fluorescence microscopy. The mechanisms were investigated using co-immunoprecipitation of VDAC1-GRP75-IP3R complex, fluorescence imaging of ER and mitochondrial co-localisation and transmission electron microscopy of structural analysis of MAMs. RESULTS Our results demonstrated that SIRT3 expression was significantly reduced in high glucose-treated SH-SY5Y cells and hippocampal tissues from diabetic mice. Further, up-regulating SIRT3 alleviated hippocampus injuries and cognitive impairment in diabetic mice and mitigated mitochondrial Ca2+ overload-induced mitochondrial dysfunction and apoptosis. Mechanistically, MAM formation was enhanced under high glucose conditions, which was reversed by genetic up-regulation of SIRT3 via reduced interaction of the VDAC1-GRP75-IP3R complex in vitro and in vivo. Furthermore, we investigated the therapeutic effects of pharmacological activation of SIRT3 in diabetic mice via honokiol treatment, which exhibited similar effects to our genetic interventions. CONCLUSIONS In summary, our findings suggest that SIRT3 ameliorates cognitive impairment in diabetic mice by limiting aberrant MAM formation. Furthermore, targeting the activation of SIRT3 by honokiol provides a promising therapeutic candidate for diabetes-associated cognitive dysfunction. Overall, our study suggests a novel role of SIRT3 in regulating MAM coupling and indicates that SIRT3-targeted therapies are promising for diabetic dementia patients.
Collapse
Affiliation(s)
- Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|