1
|
Kocsmár É, Kocsmár I, Elamin F, Pápai L, Jakab Á, Várkonyi T, Glasz T, Rácz G, Pesti A, Danics K, Kiss A, Röst G, Belicza É, Schaff Z, Lotz G. Autopsy findings in cancer patients infected with SARS-CoV-2 show a milder presentation of COVID-19 compared to non-cancer patients. GeroScience 2024; 46:6101-6114. [PMID: 38691298 PMCID: PMC11493920 DOI: 10.1007/s11357-024-01163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, manifests with differing severity across distinct patient subgroups, with outcomes influenced by underlying comorbidities such as cancer, which may cause functional and compositional alterations of the immune system during tumor progression. We aimed to investigate the association of SARS-CoV-2 infection and its complications with cancer in a large autopsy series and the role of COVID-19 in the fatal sequence leading to death. A total of 2641 adult autopsies were investigated, 539 of these were positive for SARS-CoV-2. Among the total number of patients analyzed, 829 had active cancer. Overall, the cohort included 100 patients who simultaneously had cancer and SARS-CoV-2 infection. The course of COVID-19 was less severe in cancer patients, including a significantly lower incidence of viral and bacterial pneumonia, occurring more frequently as a contributory disease or coexisting morbidity, or as SARS-CoV-2 positivity without viral disease. SARS-CoV-2 positivity was more frequent among non-metastatic than metastatic cancer cases, and in specific tumor types including hematologic malignancies. COVID-19 was more frequently found to be directly involved in the fatal sequence in patients undergoing active anticancer therapy, but less frequently in perioperative status, suggesting that the underlying malignancy and consequent surgery are more important factors leading to death perioperatively than viral disease. The course of COVID-19 in cancer patients was milder and balanced during the pandemic. This may be due to relative immunosuppressed status, and the fact that even early/mild viral infections can easily upset their condition, leading to death from their underlying cancer or its complications.
Collapse
Affiliation(s)
- Éva Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Ildikó Kocsmár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Flóra Elamin
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Laura Pápai
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Jakab
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Várkonyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Glasz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztina Danics
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Röst
- National Laboratory for Health Security, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Éva Belicza
- Health Services Management Training Centre, Faculty of Health and Public Administration, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Lotz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Russell SJ, Parker K, Lehoczki A, Lieberman D, Partha IS, Scott SJ, Phillips LR, Fain MJ, Nikolich JŽ. Post-acute sequelae of SARS-CoV-2 infection (Long COVID) in older adults. GeroScience 2024; 46:6563-6581. [PMID: 38874693 PMCID: PMC11493926 DOI: 10.1007/s11357-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Long COVID, also known as PASC (post-acute sequelae of SARS-CoV-2), is a complex infection-associated chronic condition affecting tens of millions of people worldwide. Many aspects of this condition are incompletely understood. Among them is how this condition may manifest itself in older adults and how it might impact the older population. Here, we briefly review the current understanding of PASC in the adult population and examine what is known on its features with aging. Finally, we outline the major gaps and areas for research most germane to older adults.
Collapse
Affiliation(s)
- Samantha J Russell
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Karen Parker
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Lieberman
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Indu S Partha
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Serena J Scott
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Linda R Phillips
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- College of Nursing, University of Arizona, Tucson, AZ, USA
| | - Mindy J Fain
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Banner University Medicine-Tucson, Tucson, AZ, USA.
- College of Nursing, University of Arizona, Tucson, AZ, USA.
| | - Janko Ž Nikolich
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
3
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
4
|
Lebbe A, Aboulwafa A, Bayraktar N, Mushannen B, Ayoub S, Sarker S, Abdalla MN, Mohammed I, Mushannen M, Yagan L, Zakaria D. New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review. Biomedicines 2024; 12:2065. [PMID: 39335578 PMCID: PMC11428502 DOI: 10.3390/biomedicines12092065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
The SARS-CoV-2 virus caused a pandemic in the 2020s, which affected almost every aspect of life. As the world is recovering from the effect of the coronavirus, the concept of post-COVID-19 syndrome has emerged. Multiple organ systems have been implicated, including the liver. We aim to identify and analyze the reported cases of severe and long-term parenchymal liver injury post-COVID-19 infection. Several databases were used to conduct a comprehensive literature search to target studies reporting cases of severe and long-term parenchymal liver injury post-COVID-19 infection. Screening, data extraction, and cross checking were performed by two independent reviewers. Only 22 studies met our inclusion criteria. Our results revealed that liver steatosis, non-alcoholic fatty liver disease (NAFLD), and cirrhosis were the most reported liver associated complications post-COVID-19 infection. Moreover, complications like acute liver failure, hepatitis, and liver hemorrhage were also reported. The mechanism of liver injury post-COVID-19 infection is not fully understood. The leading proposed mechanisms include the involvement of the angiotensin-converting enzyme-2 (ACE-2) receptor expressed in the liver and the overall inflammatory state caused by COVID-19 infection. Future studies should incorporate longer follow-up periods, spanning several years, for better insight into the progression and management of such diseases.
Collapse
Affiliation(s)
- Ahamed Lebbe
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Ali Aboulwafa
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Nuran Bayraktar
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Beshr Mushannen
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Sama Ayoub
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Shaunak Sarker
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | | | - Ibrahim Mohammed
- Department of Medicine, Albany Medical College, New York, NY 12208, USA
| | - Malik Mushannen
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, New York, NY 12208, USA
| | - Lina Yagan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dalia Zakaria
- Premedical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| |
Collapse
|
5
|
Rodriguez-Espada A, Salgado-de la Mora M, Rodriguez-Paniagua BM, Limon-de la Rosa N, Martinez-Gutierrez MI, Pastrana-Brandes S, Navarro-Alvarez N. Histopathological impact of SARS-CoV-2 on the liver: Cellular damage and long-term complications. World J Gastroenterol 2024; 30:2866-2880. [PMID: 38947288 PMCID: PMC11212712 DOI: 10.3748/wjg.v30.i22.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome, multiple organ failure, and death. Despite extensive studies on the pathogenicity of SARS-CoV-2, its impact on the hepatobiliary system remains unclear. While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels, the exact source of this damage is not fully understood. Proposed mechanisms for injury include direct cytotoxicity, collateral damage from inflammation, drug-induced liver injury, and ischemia/hypoxia. However, evidence often relies on blood tests with liver enzyme abnormalities. In this comprehensive review, we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients, drawing from liver biopsies, complete autopsies, and in vitro liver analyses. We present evidence of the direct impact of SARS-CoV-2 on the liver, substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes, including mitochondrial swelling, endoplasmic reticulum dilatation, and hepatocyte apoptosis. Additionally, we describe the diverse liver pathology observed during COVID-19 infection, encompassing necrosis, steatosis, cholestasis, and lobular inflammation. We also discuss the emergence of long-term complications, notably COVID-19-related secondary sclerosing cholangitis. Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.
Collapse
Affiliation(s)
- Alfonso Rodriguez-Espada
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Moises Salgado-de la Mora
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| | | | - Nathaly Limon-de la Rosa
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
| | | | - Santiago Pastrana-Brandes
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
| | - Nalu Navarro-Alvarez
- Department of Molecular Biology, Universidad Panamericana School of Medicine, Campus México, Mexico 03920, Mexico
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, United States
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico 14080, Mexico
| |
Collapse
|
6
|
Oprinca GC, Mohor CI, Bereanu AS, Oprinca-Muja LA, Bogdan-Duică I, Fleacă SR, Hașegan A, Diter A, Boeraș I, Cristian AN, Tâlvan ET, Mohor CI. Detection of SARS-CoV-2 Viral Genome and Viral Nucleocapsid in Various Organs and Systems. Int J Mol Sci 2024; 25:5755. [PMID: 38891942 PMCID: PMC11172220 DOI: 10.3390/ijms25115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
While considerable attention has been devoted to respiratory manifestations, such as pneumonia and acute respiratory distress syndrome (ARDS), emerging evidence underlines the significance of extrapulmonary involvement. In this study, we examined 15 hospitalized patients who succumbed to severe complications following SARS-CoV-2 infection. These patients were admitted to the Sibiu County Clinical Emergency Hospital in Sibiu, Romania, between March and October 2021. All patients were ethnic Romanians. Conducted within a COVID-19-restricted environment and adhering to national safety protocols, autopsies provided a comprehensive understanding of the disease's multisystemic impact. Detailed macroscopic evaluations and histopathological analyses of myocardial, renal, hepatic, splenic, and gastrointestinal tissues were performed. Additionally, reverse transcription-quantitative polymerase chain reaction (rt-qPCR) assays and immunohistochemical staining were employed to detect the viral genome and nucleocapsid within the tissues. Myocardial lesions, including ischemic microstructural changes and inflammatory infiltrates, were prevalent, indicative of COVID-19's cardiac implications, while renal pathology revealed the chronic alterations, acute tubular necrosis, and inflammatory infiltrates most evident. Hepatic examination identified hepatocellular necroinflammatory changes and hepatocytic cytopathy, highlighting the hepatic involvement of SARS-CoV-2 infection. Splenic parenchymal disorganization was prominent, indicating systemic immune dysregulation. Furthermore, gastrointestinal examinations unveiled nonspecific changes. Molecular analyses detected viral genes in various organs, with immunohistochemical assays confirming viral presence predominantly in macrophages and fibroblasts. These findings highlighted the systemic nature of SARS-CoV-2 infection, emphasizing the need for comprehensive clinical management strategies and targeted therapeutic approaches beyond respiratory systems.
Collapse
Affiliation(s)
- George Călin Oprinca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Cosmin-Ioan Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Lilioara-Alexandra Oprinca-Muja
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Iancu Bogdan-Duică
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, Nr. 2-4, 550245 Sibiu, Romania
| | - Sorin Radu Fleacă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Adrian Hașegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Atasie Diter
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Ioana Boeraș
- Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania;
| | - Adrian Nicolae Cristian
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Elena-Teodora Tâlvan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| | - Călin Ilie Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (G.C.O.); (L.-A.O.-M.); (S.R.F.); (A.H.); (A.D.); (A.N.C.); (E.-T.T.); (C.I.M.)
| |
Collapse
|
7
|
Gheban-Roșca IA, Gheban BA, Pop B, Mironescu DC, Siserman VC, Jianu EM, Drugan T, Bolboacă SD. Immunohistochemical and Morphometric Analysis of Lung Tissue in Fatal COVID-19. Diagnostics (Basel) 2024; 14:914. [PMID: 38732328 PMCID: PMC11082993 DOI: 10.3390/diagnostics14090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The primary targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the lungs are type I pneumocytes, macrophages, and endothelial cells. We aimed to identify lung cells targeted by SARS-CoV-2 using viral nucleocapsid protein staining and morphometric features on patients with fatal COVID-19. We conducted a retrospective analysis of fifty-one autopsy cases of individuals who tested positive for SARS-CoV-2. Demographic and clinical information were collected from forensic reports, and lung tissue was examined for microscopic lesions and the presence of specific cell types. Half of the evaluated cohort were older than 71 years, and the majority were male (74.5%). In total, 24 patients presented diffuse alveolar damage (DAD), and 50.9% had comorbidities (56.9% obesity, 33.3% hypertension, 15.7% diabetes mellitus). Immunohistochemical analysis showed a similar pattern of infected macrophages, infected type I pneumocytes, and endothelial cells, regardless of the presence of DAD (p > 0.5). The immunohistochemical reactivity score (IRS) was predominantly moderate but without significant differences between patients with and without DAD (p = 0.633 IRS for type I pneumocytes, p = 0.773 IRS for macrophage, and p = 0.737 for IRS endothelium). The nucleus/cytoplasm ratio shows lower values in patients with DAD (median: 0.29 vs. 0.35), but the difference only reaches a tendency for statistical significance (p = 0.083). Our study confirms the presence of infected macrophages, type I pneumocytes, and endothelial cells with a similar pattern in patients with and without diffuse alveolar damage.
Collapse
Affiliation(s)
- Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.-A.G.-R.); (T.D.)
- Clinical Hospital for Infectious Diseases, 400348 Cluj-Napoca, Romania
| | - Bogdan-Alexandru Gheban
- County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania
- Department of Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Bogdan Pop
- The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
- Department of Anatomic Pathology, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Daniela-Cristina Mironescu
- Forensic Institute, 400006 Cluj-Napoca, Romania; (D.-C.M.); (V.C.S.)
- Department of Forensic Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Vasile Costel Siserman
- Forensic Institute, 400006 Cluj-Napoca, Romania; (D.-C.M.); (V.C.S.)
- Department of Forensic Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Elena Mihaela Jianu
- Department of Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.-A.G.-R.); (T.D.)
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.-A.G.-R.); (T.D.)
| |
Collapse
|
8
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
9
|
Tedesco I, Zito Marino F, Ronchi A, Duarte Neto AN, Dolhnikoff M, Municinò M, Campobasso CP, Pannone G, Franco R. COVID-19: detection methods in post-mortem samples. Pathologica 2023; 115:263-274. [PMID: 38054901 DOI: 10.32074/1591-951x-933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 12/07/2023] Open
Abstract
COVID-19 identification is routinely performed on fresh samples, such as nasopharyngeal and oropharyngeal swabs, even if, the detection of the virus in formalin-fixed paraffin-embedded (FFPE) autopsy tissues could help to underlie mechanisms of the pathogenesis that are not well understood. The gold standard for COVID-19 detection in FFPE samples remains the qRT-PCR as in swab samples, contextually other methods have been developed, including immunohistochemistry (IHC), and in situ hybridization (ISH). In this manuscript, we summarize the main data regarding the methods of COVID-19 detection in pulmonary and extra-pulmonary post-mortem samples, and especially the sensitivity and specificity of these assays will be discussed.
Collapse
Affiliation(s)
- Ilaria Tedesco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Amaro Nunes Duarte Neto
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, Brazil
| | - Maurizio Municinò
- Forensic Medicine Unit, "S. Giuliano" Hospital, Giugliano in Campania, Italy
| | - Carlo Pietro Campobasso
- Department of Experimental Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Owens CD, Bonin Pinto C, Mukli P, Szarvas Z, Peterfi A, Detwiler S, Olay L, Olson AL, Li G, Galvan V, Kirkpatrick AC, Balasubramanian P, Tarantini S, Csiszar A, Ungvari Z, Prodan CI, Yabluchanskiy A. Vascular mechanisms leading to progression of mild cognitive impairment to dementia after COVID-19: Protocol and methodology of a prospective longitudinal observational study. PLoS One 2023; 18:e0289508. [PMID: 37535668 PMCID: PMC10399897 DOI: 10.1371/journal.pone.0289508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
INTRODUCTION Mild cognitive impairment (MCI) is a prodromal stage to dementia, affecting up to 20% of the aging population worldwide. Patients with MCI have an annual conversion rate to dementia of 15-20%. Thus, conditions that increase the conversion from MCI to dementia are of the utmost public health concern. The COVID-19 pandemic poses a significant impact on our aging population with cognitive decline as one of the leading complications following recovery from acute infection. Recent findings suggest that COVID-19 increases the conversion rate from MCI to dementia in older adults. Hence, we aim to uncover a mechanism for COVID-19 induced cognitive impairment and progression to dementia to pave the way for future therapeutic targets that may mitigate COVID-19 induced cognitive decline. METHODOLOGY A prospective longitudinal study is conducted at the University of Oklahoma Health Sciences Center. Patients are screened in the Department of Neurology and must have a formal diagnosis of MCI, and MRI imaging prior to study enrollment. Patients who meet the inclusion criteria are enrolled and followed-up at 18-months after their first visit. Visit one and 18-month follow-up will include an integrated and cohesive battery of vascular and cognitive measurements, including peripheral endothelial function (flow-mediated dilation, laser speckle contrast imaging), retinal and cerebrovascular hemodynamics (dynamic vessel retinal analysis, functional near-infrared spectroscopy), and fluid and crystalized intelligence (NIH-Toolbox, n-back). Multiple logistic regression will be used for primary longitudinal data analysis to determine whether COVID-19 related impairment in neurovascular coupling and increases in white matter hyperintensity burden contribute to progression to dementia.
Collapse
Affiliation(s)
- Cameron D. Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Ann L. Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
| | - Angelia C. Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Calin I. Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| |
Collapse
|