1
|
Park SY, Seo D, Jeon EH, Park JY, Jang BC, Kim JI, Im SS, Lee JH, Kim S, Cho CH, Lee YH. RPL27 contributes to colorectal cancer proliferation and stemness via PLK1 signaling. Int J Oncol 2023; 63:93. [PMID: 37387446 PMCID: PMC10552708 DOI: 10.3892/ijo.2023.5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Although expression of ribosomal protein L27 (RPL27) is upregulated in clinical colorectal cancer (CRC) tissue, to the best of our knowledge, the oncogenic role of RPL27 has not yet been defined. The present study aimed to investigate whether targeting RPL27 could alter CRC progression and determine whether RPL27 gains an extra‑ribosomal function during CRC development. Human CRC cell lines HCT116 and HT29 were transfected with RPL27‑specific small interfering RNA and proliferation was assessed in vitro and in vivo using proliferation assays, fluorescence‑activated cell sorting (FACS) and a xenograft mouse model. Furthermore, RNA sequencing, bioinformatic analysis and western blotting were conducted to explore the underlying mechanisms responsible for RPL27 silencing‑induced CRC phenotypical changes. Inhibiting RPL27 expression suppressed CRC cell proliferation and cell cycle progression and induced apoptotic cell death. Targeting RPL27 significantly inhibited growth of human CRC xenografts in nude mice. Notably, polo‑like kinase 1 (PLK1), which serves an important role in mitotic cell cycle progression and stemness, was downregulated in both HCT116 and HT29 cells following RPL27 silencing. RPL27 silencing reduced the levels of PLK1 protein and G2/M‑associated regulators such as phosphorylated cell division cycle 25C, CDK1 and cyclin B1. Silencing of RPL27 reduced the migration and invasion abilities and sphere‑forming capacity of the parental CRC cell population. In terms of phenotypical changes in cancer stem cells (CSCs), RPL27 silencing suppressed the sphere‑forming capacity of the isolated CD133+ CSC population, which was accompanied by decreased CD133 and PLK1 levels. Taken together, these findings indicated that RPL27 contributed to the promotion of CRC proliferation and stemness via PLK1 signaling and RPL27 may be a useful target in a next‑generation therapeutic strategy for both primary CRC treatment and metastasis prevention.
Collapse
Affiliation(s)
- So-Young Park
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Daekwan Seo
- Department of Bioinformatics, Psomagen Inc., Rockville, MD 20850, USA
| | - Eun-Hye Jeon
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jee Young Park
- Department of Immunology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
2
|
Qiu M, Wei W, Zhang J, Wang H, Bai Y, Guo DA. A Scientometric Study to a Critical Review on Promising Anticancer and Neuroprotective Compounds: Citrus Flavonoids. Antioxidants (Basel) 2023; 12:antiox12030669. [PMID: 36978916 PMCID: PMC10045114 DOI: 10.3390/antiox12030669] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Flavonoids derived from citrus plants are favored by phytomedicinal researchers due to their wide range of biological activities, and relevant studies have been sustained for 67 years (since the first paper published in 1955). In terms of a scientometric and critical review, the scientometrics of related papers, chemical structures, and pharmacological action of citrus flavonoids were comprehensively summarized. The modern pharmacological effects of citrus flavonoids are primarily focused on their anticancer activities (such as breast cancer, gastric cancer, lung cancer, and liver cancer), neuroprotective effects (such as anti-Alzheimer’s disease, Parkinson’s disease), and metabolic diseases. Furthermore, the therapeutic mechanism of cancers (including inducing apoptosis, inhibiting cell proliferation, and inhibiting cancer metastasis), neuroprotective effects (including antioxidant and anti-inflammatory), and metabolic diseases (such as non-alcoholic fatty liver disease, type 2 diabetes mellitus) were summarized and discussed. We anticipate that this review could provide an essential reference for anti-cancer and neuroprotective research of citrus flavonoids and provide researchers with a comprehensive understanding of citrus flavonoids.
Collapse
Affiliation(s)
- Mingyang Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanze Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxin Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
3
|
Hamad D, El-Sayed H, Ahmed W, Sonbol H, Ramadan MAH. GC-MS Analysis of Potentially Volatile Compounds of Pleurotus ostreatus Polar Extract: In vitro Antimicrobial, Cytotoxic, Immunomodulatory, and Antioxidant Activities. Front Microbiol 2022; 13:834525. [PMID: 35250951 PMCID: PMC8894875 DOI: 10.3389/fmicb.2022.834525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 01/28/2023] Open
Abstract
One strategy to manage resistant pathogens and develop potential anticancer drugs is the search for new, promising, and cost-effective medicinal benefits in the field of bioactive metabolites derived from mushrooms. In the current study, Egyptian cultivated Pleurotus ostreatus fruiting bodies polar extract was prepared to evaluate its antimicrobial activities as well as its cytotoxic effect on various cancer cell lines. The Pleurotus ostreatus polar extract (PoPE) was characterized by its phenolic and flavonoid content. The phenolics and flavonoids of PoPE were 6.94 and 0.15 mg/g, respectively. P. ostreatus polar extract showed potent antimicrobial activity against four pathogens, including Candida albicans, Staphylococcus aureus, Micrococcus luteus, and Escherichia coli. PoPE was found to inhibit Fusarium oxysporum (47%), Fusarium solani (28%) as well as Rhizoctonia solani (21%). PoPE was found to be 13 times more selective and toxic to MCF-7 cells than Vero normal cells, with the lowest IC50 value (4.5 μg/mL), so they were selected to examine the potential cytotoxic effects of PoPE. In MCF-7 cells, PoPE appeared to promote cell cycle arrest in the sub-G1 stage, as well as apoptosis. It significantly increased TNF-α production while decreasing IL-6 levels. PoPE’s total antioxidant capacity, lipid peroxide, and glutathione reductase activity were recorded 0.14 ± 0.02 mM/L, 15.60 ± 0.015 nmol/mL, and 9.50 ± 1.30 U/L, respectively. The existence of different bioactive metabolites was investigated via GC-MS, which confirmed the presence of 15 compounds with well-known biological activity.
Collapse
Affiliation(s)
- Doaa Hamad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Heba El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Helwan, Egypt
| | - Wafaa Ahmed
- Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- *Correspondence: Hana Sonbol,
| | | |
Collapse
|
4
|
Ghanbari-Movahed M, Jackson G, Farzaei MH, Bishayee A. A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies. Front Pharmacol 2021; 12:639840. [PMID: 33854437 PMCID: PMC8039459 DOI: 10.3389/fphar.2021.639840] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Natural product-based cancer preventive and therapeutic entities, such as flavonoids and their derivatives, are shown to have a noticeable capability to suppress tumor formation and cancer cell growth. Naringin, a natural flavanone glycoside present in various plant species, has been indicated to modulate different signaling pathways and interact with numerous cell signaling molecules, which allows for an extensive variety of pharmacological actions, such as amelioration of inflammation, oxidative stress, metabolic syndromes, bone disorders, and cancer. The purpose of this systematic review is to present a critical and comprehensive assessment of the antitumor ability of naringin and associated molecular targets in various cancers. Methods: Studies were identified through systematic searches of Science Direct, PubMed, and Scopus as well as eligibility checks according to predefined selection criteria. Results: Eighty-seven studies were included in this systematic review. There was strong evidence for the association between treatment with naringin alone, or combined with other drugs and antitumor activity. Additionally, studies showed that naringin-metal complexes have greater anticancer effects compared to free naringin. It has been demonstrated that naringin employs multitargeted mechanisms to hamper cancer initiation, promotion, and progression through modulation of several dysregulated signaling cascades implicated in cell proliferation, autophagy, apoptosis, inflammation, angiogenesis, metastasis, and invasion. Conclusion: The results of our work show that naringin is a promising candidate for cancer prevention and treatment, and might offer substantial support for the clinical application of this phytocompound in the future. Nevertheless, further preclinical and clinical studies as well as drug delivery approaches are needed for designing novel formulations of naringin to realize the full potential of this flavonoid in cancer prevention and intervention.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
5
|
Goudarzi M, Kalantar M, Sadeghi E, Karamallah MH, Kalantar H. Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:523-531. [PMID: 33057777 DOI: 10.1007/s00210-020-01991-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Methotrexate (MTX) is used as an effective chemotherapeutic agent against autoimmune diseases and tumors. Oxidative stress and inflammation are involved in the pathogenesis of MTX-induced damage. This study aimed at examining the ameliorating effects of apigenin (API) as a natural antioxidant on MTX-induced hepatotoxicity. The rats were classified into four groups: group I: normal saline-treated, group II: MTX-treated (20 mg/kg, ip, single dose at day 7), group III: MTX + API-treated (20 mg/kg, po), and group IV: API-treated. API was administrated for 9 days. Alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) were used as biochemical factors of MTX-induced hepatic injury. In hepatic tissues, the levels of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), and activities of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as oxidative stress markers along with inflammatory factors such as tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) were assessed. Our results showed that MTX administration significantly increased ALP, ASP, ALT, MDA, NO, TNF-α, and IL-1β levels and significantly decreased antioxidant factors such as GSH, CAT, GPx, and SOD. The API pretreatment group showed a significant rise in hepatic antioxidant markers, besides significant reductions in the serum levels of AST, ALT, and ALP and hepatic content of MDA, TNF-α, NO, and IL-1β. In addition, the hepatoprotective effect of API was confirmed by histological evaluation of the liver. API can prevent MTX-induced hepatotoxicity through mitigation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Kalantar
- Faculty of Medicine, Shoushtar University of Medical Sciences, Shoushtar, Iran
| | - Elahe Sadeghi
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadi Kalantar
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Structural and Spectral Investigation of a Series of Flavanone Derivatives. Molecules 2021; 26:molecules26051298. [PMID: 33670879 PMCID: PMC7957484 DOI: 10.3390/molecules26051298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/02/2022] Open
Abstract
Four flavanone Schiff bases (E)-1-(2-phenylchroman-4-ylidene)thiosemicarbazide (FTSC) (1), N′,2-bis((E)-2-phenylchroman-4-ylidene)hydrazine-1-carbothiohydrazide (FTCH) (2), (E)-N’-(2-phenylchroman-4-ylidene)benzohydrazide (FHSB) (3) and (E)-N′-(2-phenylchroman-4-ylidene)isonicotinohydrazide (FIN) (4) were synthesized and evaluated for their electronic and physicochemical properties using experimental and theoretical methods. One of them, (2), consists of two flavanone moieties and one substituent, the rest of the compounds (1, 3, 4) comprises of a flavanone-substituent system in relation to 1:1. To uncover the structural and electronic properties of flavanone Schiff bases, computational simulations and absorption spectroscopy were applied. Additionally, binding efficiencies of the studied compounds to serum albumins were evaluated using fluorescence spectroscopy. Spectral profiles of flavanone Schiff bases showed differences related to the presence of substituent groups in system B of the Schiff base molecules. Based on the theoretically predicted chemical descriptors, FTSC is the most chemically reactive among the studied compounds. Binding regions within human and bovine serum albumins of the ligands studied are in the vicinity of the Trp residue and a static mechanism dominates in fluorescence quenching.
Collapse
|
7
|
Matteucinol, isolated from Miconia chamissois, induces apoptosis in human glioblastoma lines via the intrinsic pathway and inhibits angiogenesis and tumor growth in vivo. Invest New Drugs 2019; 38:1044-1055. [PMID: 31781904 DOI: 10.1007/s10637-019-00878-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Gliomas account for nearly 70% of the central nervous system tumors and present a median survival of approximately 12-17 months. Studies have shown that administration of novel natural antineoplastic agents is been highly effective for treating gliomas. This study was conducted to investigate the antitumor potential (in vitro and in vivo) of Miconia chamissois Naudin for treating glioblastomas. We investigated the cytotoxicity of the chloroform partition and its sub-fraction in glioblastoma cell lines (GAMG and U251MG) and one normal cell line of astrocytes. The fraction showed cytotoxicity and was selective for tumor cells. Characterization of this fraction revealed a single compound, Matteucinol, which was first identified in the species M. chamissois. Matteucinol promoted cell death via intrinsic apoptosis in the adult glioblastoma lines. In addition, Matteucinol significantly reduced the migration, invasion, and clonogenicity of the tumor cells. Notably, it also reduced tumor growth and angiogenesis in vivo. Moreover, this agent showed synergistic effects with temozolomide, a chemotherapeutic agent commonly used in clinical practice. Our study demonstrates that Matteucinol from M chamissois is a promising compound for the treatment of glioblastomas and may be used along with the existing chemotherapeutic agents for more effective treatment.
Collapse
|
8
|
Wang X, House DW, Oroskar PA, Oroskar A, Oroskar A, Jameson CJ, Murad S. Molecular dynamics simulations of the chiral recognition mechanism for a polysaccharide chiral stationary phase in enantiomeric chromatographic separations. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1647360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoyu Wang
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | - Cynthia J. Jameson
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sohail Murad
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
9
|
Singhal SS, Horne D, Singhal J, Vonderfecht S, Salgia R, Awasthi S. Synergistic efficacy of RLIP inhibition and 2'-hydroxyflavanone against DMBA-induced mammary carcinogenesis in SENCAR mice. Mol Carcinog 2019; 58:1438-1449. [PMID: 31006917 DOI: 10.1002/mc.23026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Substantial evidence suggests that 7,12-dimethylbenzanthracene (DMBA)-induced mammary carcinogenesis in mice mimics human breast cancer (BC) in many respects. Therefore, it has been used extensively to evaluate preventive and therapeutic agents for human BC. Mammary carcinogenesis induced by DMBA administration in female SENsitive to CARcinogen (SENCAR) mice was characterized by histopathological analysis of the mammary glands and alterations to the phosphatidylinositol 3-kinase/protein kinase B/cyclin-dependent kinase 1 (PI3K/Akt/CDK1) pathway. We recently reported that 2'-hydroxyflavanone (2HF) is a promising diet-derived chemotherapeutic agent that suppresses BC growth in vitro and in vivo by targeting a 76 kDa ral-interacting protein (RLIP). The objective of the current study was to investigate the synergistic anticarcinogenic effects of RLIP inhibition/depletion and 2HF in an in vivo model of DMBA-induced mammary carcinogenesis in SENCAR mice. Mice were given 2HF (50 mg/kg, bw, orally on alternate days), RLIP antibody (Rab; 5 mg/kg, bw, ip weekly), RLIP antisense (RAS; 5 mg/kg, b.w., ip weekly), or a combination of 2HF + Rab + RAS. Animals were monitored daily, and 7 days after the first appearance of moribund behavior, tissues were harvested for morphological and immunohistological analysis. Western blot analyses were performed to determine the expression of anti- and proapoptotic proteins in the mammary glands. Our results reveal that 2HF, RAS, and Rab significantly prevented the carcinogenic effects of DMBA administration in the mammary glands and other organs. Further, mice treated with a combination of 2HF + RAS + Rab exhibited no carcinogenic effect of DMBA as compared to either or the single agent-treated mice. This study demonstrates for the first time the anticarcinogenic effects of 2HF and RLIP inhibition/depletion in vivo in a novel DMBA-induced model of BC in SENCAR mice and provides the rationale for further clinical investigation.
Collapse
Affiliation(s)
- Sharad S Singhal
- Departments of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - David Horne
- Molecular Medicine, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Jyotsana Singhal
- Departments of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California.,Molecular Medicine, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Steven Vonderfecht
- Pathology Core, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Ravi Salgia
- Departments of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
10
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
11
|
Singhal J, Chikara S, Horne D, Salgia R, Awasthi S, Singhal SS. RLIP inhibition suppresses breast-to-lung metastasis. Cancer Lett 2019; 447:24-32. [PMID: 30684594 DOI: 10.1016/j.canlet.2019.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/19/2019] [Indexed: 11/26/2022]
Abstract
Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast cancer (BC) cells frequently metastasize to the lungs, where they pose a formidable therapeutic challenge. In the current study, we evaluated the anti-proliferative and anti-metastatic effects of 2'-hydroxyflavanone (2HF) and RLIP inhibition in an array of triple-negative BC cell lines and an orthotopic mouse model of breast-to-lung metastasis. Compared to control treatment, RLIP inhibition reduced in-vitro cell viability and suppressed the migratory and invasive potential of BC cells. In-vitro studies showed that 2HF treatment reduced the expression of RLIP, KRAS, pERK, pSTAT3, and pP70S6K. Further, mice orthotopically implanted with lung-seeking luciferase-expressing TMD231 cells were treated with 2HF (50 mg/kg, b.w.), RLIP antisense (RAS; 5 mg/kg, b.w.), RLIP antibody (Rab; 5 mg/kg, b.w.) or a combination of 2HF + RAS + Rab. 2HF-, RAS-, and Rab-treated mice exhibited significantly lower primary tumor weight and reduced lung metastasis compared to control mice. Mice treated with a combination of 2HF + RAS + Rab exhibited no metastasis and significantly lower tumor weight than the single agent-treated mice. Collectively, our results suggest that 2HF has potential to be combined with RLIP inhibition/depletion to more effectively suppress primary breast tumor growth and metastasis to the lungs.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA; Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Shireen Chikara
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
12
|
Kim YS, Kim EK, Hwang JW, Kim WS, Shin WB, Natarajan SB, Moon SH, Jeon BT, Park PJ. Taurine Attenuates Doxorubicin-Induced Toxicity on B16F10 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1179-1190. [PMID: 28849532 DOI: 10.1007/978-94-024-1079-2_94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate the effect of doxorubicin co-treatment with taurine on B16F10 melanoma cells. Frequently, Doxorubicin is used in the treatments of many different kinds of cancers, some of which are soft tissue sarcomas, hematological malignancies and carcinomas. However, the clinical application of doxorubicin is compromised by its severe adverse effects, including cardiotoxicity. In the present study, the efficacy of doxorubicin co-treatment with taurine was investigated. B16F10 cell viability was evaluated using MTT assays, trypan blue dye exclusion assays, and fluorescent staining technique. Apoptotic cells were detected by flow cytometry and the proteins associated with apoptosis and cellular differentiations were assessed by immunoblotting. Doxorubicin inhibited cell growth and induced cell death in B16F10 cells. Interestingly, doxorubicin co-treatment with taurine inhibited apoptosis in B16F10 cells. These results indicate that doxorubicin co-treatment with taurine attenuates doxorubicin-induced cytotoxicity and reduces ROS production in B16F10 cells.
Collapse
Affiliation(s)
- Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, 27478, South Korea
- Korea Nokyong Research Center, Konkuk University, Chungju, 27478, South Korea
| | - Eun-Kyung Kim
- Division of Food Bio Science, Konkuk University, Chungju, 27478, South Korea
| | - Jin-Woo Hwang
- Department of Biotechnology, Konkuk University, Chungju, 27478, South Korea
| | - Won-Suk Kim
- Department of Pharmaceutical Engineering, Silla University, Busan, 46958, South Korea
| | - Woen-Bin Shin
- Department of Biotechnology, Konkuk University, Chungju, 27478, South Korea
| | | | - Sang-Ho Moon
- Korea Nokyong Research Center, Konkuk University, Chungju, 27478, South Korea
| | - Byong-Tae Jeon
- Korea Nokyong Research Center, Konkuk University, Chungju, 27478, South Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Konkuk University, Chungju, 27478, South Korea.
- Korea Nokyong Research Center, Konkuk University, Chungju, 27478, South Korea.
| |
Collapse
|
13
|
Singhal J, Singhal P, Horne D, Salgia R, Awasthi S, Singhal SS. Metastasis of breast tumor cells to brain is suppressed by targeting RLIP alone and in combination with 2'-Hydroxyflavanone. Cancer Lett 2018; 438:144-153. [PMID: 30223070 DOI: 10.1016/j.canlet.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022]
Abstract
Brain metastasis is an important cause of morbidity and mortality in cancer-patients. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. In the present study, we evaluated the anti-metastatic effects of 2'-hydroxyflavanone (2HF) alone and in combination with RLIP targeted therapy in a novel murine model of breast tumor metastasis. The MDA-MB231Br (brain-seeking) breast cancer (BC) cells stably-transfected with luciferase were injected into the left-ventricle of NSG mouse heart and the migration of cells to brain was monitored using a non-invasive bioluminescent imaging system. To evaluate the tumor growth suppressive effects, mice were given 2HF (50 mg/kg, b.w., alternate days orally), RLIP-antibody (Rab; 5 mg/kg, b.w., weekly i.p.) or combination of 2HF+Rab starting day1 after intra-cardiac injection. Our results reveal that 2HF and Rab significantly prevented the metastasis of BC cells to brain. Further, mice treated with combination of 2HF+Rab exhibited no metastasis as compared to either or the single agent-treated mice. This study for the first time demonstrates the anti-metastatic effects of 2HF and RLIP-inhibition in-vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA; Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Preeti Singhal
- Department of Medicine, University of Texas Health, San Antonio, TX, 78229, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
14
|
Abstract
Naringenin, a citrus flavonoid that possesses various biological activities, has emerged as a potential therapeutic agent for the management of a variety of diseases. Studies using cell culture system have shown that naringenin can inhibit inflammatory response in diverse cell types. Moreover, research using various animal models has further demonstrated therapeutic potentials of naringenin in the treatment of several inflammation-related disorders, such as sepsis, fulminant hepatitis, fibrosis and cancer. The mechanism of action of naringenin is not completely understood but recent mechanistic studies revealed that naringenin suppresses inflammatory cytokine production through both transcriptional and post-transcriptional mechanisms. Surprisingly, naringenin not only inhibits cytokine mRNA expression but also promotes lysosome-dependent cytokine protein degradation. This unique property of naringenin stands in sharp contrast with some widely-studied natural products such as apigenin and curcumin, which regulate cytokine production essentially at the transcriptional level. Therefore, naringenin may provide modality for the development of novel anti-inflammatory agent. This review article summarizes our recent studies in understanding how naringenin acts in cells and animal models. Particularly, we will discuss the anti-inflammatory activities of naringenin in various disease context and its potential use, as an immunomodulator, in the treatment of inflammatory related disease.
Collapse
|
15
|
Lian GY, Wang QM, Tang PMK, Zhou S, Huang XR, Lan HY. Combination of Asiatic Acid and Naringenin Modulates NK Cell Anti-cancer Immunity by Rebalancing Smad3/Smad7 Signaling. Mol Ther 2018; 26:2255-2266. [PMID: 30017880 DOI: 10.1016/j.ymthe.2018.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor β1 (TGF-β1) plays a promoting role in tumor growth via a mechanism associated with hyperactive Smad3 and suppressed Smad7 signaling in the tumor microenvironment. We report that retrieving the balance between Smad3 and Smad7 signaling with asiatic acid (AA, a Smad7 inducer) and naringenin (NG, a Smad3 inhibitor) effectively inhibited tumor progression in mouse models of invasive melanoma (B16F10) and lung carcinoma (LLC) by promoting natural killer (NK) cell development and cytotoxicity against cancer. Mechanistically, we found that Smad3 physically bound Id2 and IRF2 to suppress NK cell production and NK cell-mediated cytotoxicity against cancer. Treatment with AA and NG greatly inhibited Smad3 translation and phosphorylation while it restored Smad7 expression, and, therefore, it largely promoted NK cell differentiation, maturation, and cytotoxicity against cancer via Id2/IRF2-associated mechanisms. In contrast, silencing Id2 or IRF2 blunted the protective effects of AA and NG on NK cell-dependent anti-cancer activities. Thus, treatment with AA and NG produced an additive effect on inactivating TGF-β1/Smad3 signaling, and, therefore, it suppressed melanoma and lung carcinoma growth by promoting NK cell immunity against cancer via a mechanism associated with Id2 and IRF2.
Collapse
Affiliation(s)
- Guang-Yu Lian
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing-Ming Wang
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuang Zhou
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Patil VM, Masand N. Anticancer Potential of Flavonoids: Chemistry, Biological Activities, and Future Perspectives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00012-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Ji L, Zhong B, Jiang X, Mao F, Liu G, Song B, Wang CY, Jiao Y, Wang JP, Xu ZB, Li X, Zhan B. Actein induces autophagy and apoptosis in human bladder cancer by potentiating ROS/JNK and inhibiting AKT pathways. Oncotarget 2017; 8:112498-112515. [PMID: 29348843 PMCID: PMC5762528 DOI: 10.18632/oncotarget.22274] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Human bladder cancer is a common genitourinary malignant cancer worldwide. However, new therapeutic strategies are required to overcome its stagnated survival rate. Triterpene glycoside Actein (ACT), extracted from the herb black cohosh, suppresses the growth of human breast cancer cells. Our study attempted to explore the role of ACT in human bladder cancer cell growth and to reveal the underlying molecular mechanisms. We found that ACT significantly impeded the bladder cancer cell proliferation via induction of G2/M cycle arrest. Additionally, ACT administration triggered autophagy and apoptosis in bladder cancer cells, proved by the autophagosome formation, LC3B-II accumulation, improved cleavage of Caspases/poly (ADP-ribose) polymerase (PARP). Furthermore, reduction of reactive oxygen species (ROS) and p-c-Jun N-terminal kinase (JNK) could markedly reverse ACT-induced autophagy and apoptosis. In contrast, AKT and mammalian target of rapamycin (mTOR) were greatly de-phosphorylated by ACT, while suppressing AKT and mTOR activity could enhance the effects of ACT on apoptosis and autophagy induction. In vivo, ACT reduced the tumor growth with little toxicity. Taken together, our findings indicated that ACT suppressed cell proliferation, induced autophagy and apoptosis through promoting ROS/JNK activation, and blunting AKT pathway in human bladder cancer, which indicated that ACT might be an effective candidate against human bladder cancer in future.
Collapse
Affiliation(s)
- Lu Ji
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Bing Zhong
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Xi Jiang
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Fei Mao
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Gang Liu
- Department of Orthopaedics, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Bin Song
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Cheng-Yuan Wang
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Yong Jiao
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Jiang-Ping Wang
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Zhi-Bin Xu
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Xing Li
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Bo Zhan
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| |
Collapse
|
18
|
Caspase-dependent apoptosis induced by two synthetic halogenated flavanones, 3′,7-dichloroflavanone and 3′,6-dichloroflavanone, on human breast and prostate cancer cells. In Vitro Cell Dev Biol Anim 2017; 54:136-146. [DOI: 10.1007/s11626-017-0209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022]
|
19
|
Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Laganà G, Daglia M, Meneghini S, Nabavi SM. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017; 43:495-506. [PMID: 28497905 DOI: 10.1002/biof.1363] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/26/2022]
Abstract
Citrus fruit and juices represent one of the main sources of compounds with a high potential for health promoting properties. Among these compounds, flavanones (such as hesperetin, naringenin, eriodictyol, isosakuranetin, and their respective glycosides), which occur in quantities ranging from ∼180 to 740 mg/L (depending on the Citrus species and cultivar) are responsible for many biological activities. These compounds support and enhance the body's defenses against oxidative stress and help the organism in the prevention of cardiovascular diseases, atherosclerosis, and cancer. Moreover, among other properties, they also show anti-inflammatory, antiviral, and antimicrobial activities. This review analyzes the biochemistry, pharmacology, and biology of Citrus flavanones, emphasizing the occurrence in Citrus fruits and juices and their bioavailability, structure-function correlations and ability to modulate signal cascades both in vitro and in vivo. © 2017 BioFactors, 43(4):495-506, 2017.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Silvia Meneghini
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Kumar D, Sharma P, Singh H, Nepali K, Gupta GK, Jain SK, Ntie-Kang F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Adv 2017. [DOI: 10.1039/c7ra05441f] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pyran-based heterocycles are promising for anticancer drug discovery.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
- Sri Sai College of Pharmacy Manawala
| | - Harmanpreet Singh
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry
- M. M. College of Pharmacy
- Maharishi Markandeshwer University
- Mullana
- India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences
- Guru Nanak Dev University
- Amritsar
- India
| | - Fidele Ntie-Kang
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea
- Cameroon
| |
Collapse
|
21
|
Jin H, Zhang X, Su J, Teng Y, Ren H, Yang L. RNA interference‑mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells. Mol Med Rep 2015; 12:6617-25. [PMID: 26328748 PMCID: PMC4626190 DOI: 10.3892/mmr.2015.4280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved, growth-associated and small molecule protein, which is highly expressed in various types of tumor cell. TCTP can promote the growth and suppress apoptosis of tumor cels. However, few studies have reported the effects of TCTP in gliomas. In the present study, a glioma cell line was established, which was stably transfected with TCTP short hairpin ribonucleic acid (shRNA), to investigate the impact of downregulated expression of TCTP on the proliferation, apoptosis and invasion of glioma cells. Western blot and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that TCTP shRNA effectively reduced the expression of TCTP in the U251 glioma cell line. MTT and colony formation assays revealed that downregulated expression of TCTP significantly inhibited glioma cell proliferation. Cell cycle analysis using flow cytometry revealed that the cells in the pRNA-H1.1-TCTP group were arrested in the G0/G1 phase of the cell cycle. Western blot analysis detected downregulated expression levels of cyclins, including Cyclin D1, Cyclin E and Cyclin B. Annexin V-fluorescein isothiocyanate/propidium iodide and Hoechst staining demonstrated that the apoptotic rate of the cells in the pRNA-H1.1-TCTP group was significantly higher than that of the cells in the pRNA-H1.1-control group, with upregulated expression levels of B-cell-associated X protein and cleaved-caspase-3 and downregulated expression of B-cell lmyphoma-2 in the apoptotic process. Wound healing and Transwell assays revealed that downregulated expression of TCTP significantly inhibited the migration and invasiveness of the glioma cells; and the expression levels and activities of matrix metalloproteinase (MMP)-2 and MMP-9 were also significantly affected. In conclusion, the present study demonstrated that downregulated expression of TCTP significantly inhibited proliferation and invasion, and induced apoptosis in the glioma cells. These results suggested that TCTP may be important in glioma development and metastasis. Therefore, TCTP is expected to become an effective target for glioma gene therapy.
Collapse
Affiliation(s)
- Hua Jin
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xuexin Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Jun Su
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Yueqiu Teng
- Stem Cell Research Institute, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lizhuang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
22
|
Singhal SS, Singhal J, Figarola JL, Riggs A, Horne D, Awasthi S. 2′-Hydroxyflavanone: A promising molecule for kidney cancer prevention. Biochem Pharmacol 2015; 96:151-8. [DOI: 10.1016/j.bcp.2015.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022]
|
23
|
Jia J, Dai S, Sun X, Sang Y, Xu Z, Zhang J, Cui X, Song J, Guo X. A preliminary study of the effect of ECRG4 overexpression on the proliferation and apoptosis of human laryngeal cancer cells and the underlying mechanisms. Mol Med Rep 2015; 12:5058-64. [PMID: 26165988 PMCID: PMC4581775 DOI: 10.3892/mmr.2015.4059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/03/2015] [Indexed: 12/18/2022] Open
Abstract
Human esophageal cancer-related gene 4 (ECRG4) is a potential tumor suppressor gene isolated from human esophageal epithelial cells. Studies have shown that ECRG4 effectively inhibits the proliferation of tumor cells and induces apoptosis. However, the role of ECRG4 in laryngeal cancer has not yet been clearly defined. In this study, a human laryngeal cancer cell line stably overexpressing ECRG4 was established. The effect of ECRG4 on the proliferation and apoptosis of laryngeal cancer cells and the associated mechanisms were investigated. The Hep-2 human laryngeal carcinoma cell line exhibited a low basal level of ECRG4 expression and was selected for the present study. The eukaryotic expression plasmid pcDNA3.1-ECRG4 was constructed and introduced into Hep-2 cells by transfection reagents. Western blot analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining confirmed high-level expression of ECRG4. The 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay showed that ECRG4 over-expression suppressed the proliferative capacity of laryngeal cancer cells in vitro. Cell cycle analysis showed that ECRG4 induced cell cycle arrest at the G0/G1 phase. Flow cytometric analysis and Hoechst staining demonstrated that overexpres-sion of ECRG4 significantly induced apoptosis. Western blot analysis confirmed that Bcl-2-associated X protein, cleaved-caspase-3 and cleaved-poly (ADP-ribose) polymerase were upregulated in the apoptotic process, whereas B-cell lymphoma 2 was downregulated. In conclusion, overexpression of ECRG4 inhibited laryngeal cancer cell proliferation and induced cancer cell apoptosis. Therefore, ECRG4 exhibits potential as an effective target in gene therapy for laryngeal cancer.
Collapse
Affiliation(s)
- Jianping Jia
- Department of Otolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Song Dai
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xinghe Sun
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Yuehong Sang
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Zhenming Xu
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Jie Zhang
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xiaofeng Cui
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Jinhui Song
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xing Guo
- Department of Otolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
24
|
Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus. Int J Biol Macromol 2015; 74:507-14. [DOI: 10.1016/j.ijbiomac.2014.12.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022]
|
25
|
Emami S, Ghanbarimasir Z. Recent advances of chroman-4-one derivatives: synthetic approaches and bioactivities. Eur J Med Chem 2015; 93:539-63. [PMID: 25743215 DOI: 10.1016/j.ejmech.2015.02.048] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Chroman-4-one scaffold is a privileged structure in heterocyclic chemistry and drug discovery. Also, chroman-4-ones are important intermediates and interesting building blocks in organic synthesis and drug design. The structural diversity found in the chroman-4-one family led to their division into several categories including benzylidene-4-chromanones, flavanones (2-phenyl-4-chromanones), isoflavanones (3-phenyl-4-chromanones), spirochromanones, and C-4 modified chroman-4-ones such as hydrazones and oxime derivatives. This review addresses the most significant synthetic methods reported on 4-chromanone-derived compounds and consequently emphasizes on the biological relevance of such compounds.
Collapse
Affiliation(s)
- Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Zahra Ghanbarimasir
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
26
|
Maggioni D, Nicolini G, Rigolio R, Biffi L, Pignataro L, Gaini R, Garavello W. Myricetin and Naringenin Inhibit Human Squamous Cell Carcinoma Proliferation and Migration In Vitro. Nutr Cancer 2014; 66:1257-67. [DOI: 10.1080/01635581.2014.951732] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8:122-46. [PMID: 25125885 PMCID: PMC4127821 DOI: 10.4103/0973-7847.134247] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/27/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are ubiquitous in nature. They are also in food, providing an essential link between diet and prevention of chronic diseases including cancer. Anticancer effects of these polyphenols depend on several factors: Their chemical structure and concentration, and also on the type of cancer. Malignant cells from different tissues reveal somewhat different sensitivity toward flavonoids and, therefore, the preferences of the most common dietary flavonoids to various human cancer types are analyzed in this review. While luteolin and kaempferol can be considered as promising candidate agents for treatment of gastric and ovarian cancers, respectively, apigenin, chrysin, and luteolin have good perspectives as potent antitumor agents for cervical cancer; cells from main sites of flavonoid metabolism (colon and liver) reveal rather large fluctuations in anticancer activity probably due to exposure to various metabolites with different activities. Anticancer effect of flavonoids toward blood cancer cells depend on their myeloid, lymphoid, or erythroid origin; cytotoxic effects of flavonoids on breast and prostate cancer cells are highly related to the expression of hormone receptors. Different flavonoids are often preferentially present in certain food items, and knowledge about the malignant tissue-specific anticancer effects of flavonoids could be purposely applied both in chemoprevention as well as in cancer treatment.
Collapse
Affiliation(s)
- Katrin Sak
- Non Government Organization Praeventio, Tartu, Estonia
| |
Collapse
|
28
|
Wang W, Chen K, Liu Q, Johnston N, Ma Z, Zhang F, Zheng X. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration. PLoS One 2014; 9:e102673. [PMID: 25029345 PMCID: PMC4100894 DOI: 10.1371/journal.pone.0102673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 06/22/2014] [Indexed: 01/29/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Weilan Wang
- Life Science and Technology, Xinjiang University, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Kaixu Chen
- Life Science and Technology, Xinjiang University, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Qing Liu
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | - Zhenghai Ma
- Life Science and Technology, Xinjiang University, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, China
| | - Fuchun Zhang
- Life Science and Technology, Xinjiang University, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, China
- * E-mail: (XZ); (FZ)
| | - Xiufen Zheng
- Life Science and Technology, Xinjiang University, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, China
- Department of Pathology, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- * E-mail: (XZ); (FZ)
| |
Collapse
|
29
|
Kim KN, Ahn G, Heo SJ, Kang SM, Kang MC, Yang HM, Kim D, Roh SW, Kim SK, Jeon BT, Park PJ, Jung WK, Jeon YJ. Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:39-46. [PMID: 23228706 DOI: 10.1016/j.etap.2012.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 05/24/2023]
Abstract
The present study was designed to evaluate the molecular mechanisms of fucoxanthin against melanoma cell lines (B16F10 cells). Fucoxanthin reduced the proliferation of B16F10 cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G(0)/G(1) phase and apoptosis. Fucoxanthin-induced G(0)/G(1) arrest was associated with a marked decrease in the protein expressions of phosphorylated-Rb (retinoblastoma protein), cyclin D (1 and 2) and cyclin-dependent kinase (CDK) 4 and up-regulation of the protein levels of p15(INK4B) and p27(Kip1). Fucoxanthin-induced apoptosis was accompanied with the down-regulation of the protein levels of Bcl-xL, an inhibitor of apoptosis proteins (IAPs), resulting in a sequential activation of caspase-9, caspase-3, and PARP. Furthermore, the anti-tumor effect of fucoxanthin was assessed in vivo in Balb/c mice. Intraperitoneal administration of fucoxanthin significantly inhibited the growth of tumor mass in B16F10 cells implanted mice.
Collapse
Affiliation(s)
- Kil-Nam Kim
- Marine Bio Research Team, Korea Basic Science Institute (KBSI), Jeju 690-140, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Safavi M, Esmati N, Ardestani SK, Emami S, Ajdari S, Davoodi J, Shafiee A, Foroumadi A. Halogenated flavanones as potential apoptosis-inducing agents: synthesis and biological activity evaluation. Eur J Med Chem 2012; 58:573-80. [PMID: 23174316 DOI: 10.1016/j.ejmech.2012.10.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/20/2012] [Accepted: 10/25/2012] [Indexed: 11/17/2022]
Abstract
A series of halogenated flavanones were synthesized from 2-hydroxychalcones and tested for their cytotoxicity against a panel of human cancer cell lines. Among the synthesized compounds, 3',7-dichloroflavanone (2d) showed the highest activity against MCF-7, LNCaP, PC3, Hep-G2, KB and SK-N-MC cells. However, 3',6-dichloroflavanone (2g) with IC(50) value of 2.9 ± 0.9 μM was the most potent compound against MDA-MB-231 cells, being approximately 12 times more active than etoposide as reference drug. According to the flow-cytometric analysis, compound 2g can induce apoptosis by 66.19 and 21.37% in PC3 and MDA-MB-231 cells, respectively. The results of acridine orange/ethidium bromide staining and TUNEL assay suggested that the cytotoxic activity of this compound in PC3 and MDA-MB-231 cells occurs via apoptosis.
Collapse
Affiliation(s)
- Maliheh Safavi
- Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Xue Y, Ren H, Xiao W, Chu Z, Lee JJ, Mao L. Antitumor activity of AZ64 via G2/M arrest in non-small cell lung cancer. Int J Oncol 2012; 41:1798-808. [PMID: 22948297 DOI: 10.3892/ijo.2012.1619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/06/2012] [Indexed: 11/05/2022] Open
Abstract
AZ64 is a novel antitumor agent designed as a tropomyosin-related kinase (Trk) inhibitor; however, its effect on lung cancer and its mechanism of action remain unclear. This study aimed to elucidate the antitumor activity of AZ64 and its mechanism of action against non-small cell lung cancer (NSCLC). Our results demonstrate that AZ64 has a potent anti-proliferative effect on NSCLC cells and acts in a dose- and time-dependent manner. We also demonstrate that AZ64 suppresses the anchorage-independent growth and invasion of NSCLC cells. In vivo experiments demonstrated that AZ64 significantly reduced the tumor growth of NSCLC xenografts in nude mice and was well-tolerated. Mechanistic experiments revealed that AZ64 induced the G2/M arrest of NSCLC cells by the accumulation of phospho-cdc2 (Tyr15) at the G2/M transition, following the downregulation of Cdc25C expression. Collectively, our data demonstrate that AZ64 is a potential antitumor drug that may be used for the treatment of NSCLC, which functions by targeting the G2/M transition via the inhibition of the dephosphorylation of phospho-cdc2 (Tyr15).
Collapse
Affiliation(s)
- Yuwen Xue
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Kim JH, Song M, Kang GH, Lee ER, Choi HY, Lee C, Kim JH, Kim Y, Koo BN, Cho SG. Combined treatment of 3-hydroxyflavone and imatinib mesylate increases apoptotic cell death of imatinib mesylate-resistant leukemia cells. Leuk Res 2012; 36:1157-64. [PMID: 22770910 DOI: 10.1016/j.leukres.2012.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 05/07/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
Abstract
Imatinib mesylate, a Bcr/Abl tyrosine kinase inhibitor, is widely used in treating chronic myeloid leukemia. However, drug-resistance of leukemia cells becomes an emergent problem. Herein, various flavonoids were screened for applicability in leukemia treatment, and 3-hydroxyflavone (3-HF) was found to be most effective in reducing cancer cell viability. The combination of 3-HF and imatinib mesylate resulted in significant apoptotic cell death in imatinib mesylate-resistant leukemia cells. Combined treatment resulted in apparent activation of caspases and decrease of the oncoprotein phosphor-Bcr/Abl in leukemia cells. Our results suggest that this combined treatment is beneficial in imatinib mesylate-resistant chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Animal Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Flavonoids Isolated from Korea Citrus aurantium L. Induce G2/M Phase Arrest and Apoptosis in Human Gastric Cancer AGS Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:515901. [PMID: 22194772 PMCID: PMC3238396 DOI: 10.1155/2012/515901] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/14/2011] [Indexed: 12/14/2022]
Abstract
Aim of the Study. Citrus species is used in traditional medicine as medicinal herb in several Asian countries including Korea. Flavonioids became known as various properties, such as anti-oxidants, anti-inflammation and anti-cancer, and so forth. The present study, the anti-cancer effect of flavonioids isolated from Citrus aurantium L. in human gastric cancer AGS cells has been investigated. Materials and Methods. The anti-proliferative activity was assayed using MTT assay. Cell cycle analysis was done using flow cytometry and apoptosis detection was done using by hoechst fluorescent staining and Annexin V-propidium iodide double staining. Western blot was used to detect the expression of protein related with cell cycle and apoptosis. Results. Flavonoids isolated from Citrus aurantium L. have the effect of anti proliferation on AGS cells with IC50 value of 99 μg/mL. Flavonoids inhibited cell cycle progression in the G2/M phase and decrease expression level of cyclin B1, cdc 2, cdc 25c. Flavonoids induced apoptosis through activate caspase and inactivate PARP. Conclusions. Flavonoids isolated from Citrus aurantium L. induced G2/M phase arrest through the modulation of cell cycle related proteins and apoptosis through activation caspase. These finding suggest flavonoids isolated from Citrus aurantium L. were useful agent for the chemoprevention of gastric cancer.
Collapse
|
34
|
Mondal R, Gupta AD, Mallik AK. Synthesis of flavanones by use of anhydrous potassium carbonate as an inexpensive, safe, and efficient basic catalyst. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Advanced analysis of nutraceuticals. J Pharm Biomed Anal 2011; 55:758-74. [DOI: 10.1016/j.jpba.2010.11.033] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 01/18/2023]
|
36
|
Cardioprotective Effects of Hesperetin against Doxorubicin-Induced Oxidative Stress and DNA Damage in Rat. Cardiovasc Toxicol 2011; 11:215-25. [DOI: 10.1007/s12012-011-9114-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
CariÑo-Cortés R, Álvarez-González I, Martino-Roaro L, Madrigal-Bujaidar E. Effect of Naringin on the DNA Damage Induced by Daunorubicin in Mouse Hepatocytes and Cardiocytes. Biol Pharm Bull 2010; 33:697-701. [DOI: 10.1248/bpb.33.697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Raquel CariÑo-Cortés
- Laboratorio de Farmacología, Instituto de Ciencias de la Salud, UAEH. Exhacienda de la Concepción
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, IPN. Unidad Profesional Adolfo López Mateos
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, IPN. Unidad Profesional Adolfo López Mateos
| | - Laura Martino-Roaro
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, IPN. Unidad Profesional Adolfo López Mateos
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, IPN. Unidad Profesional Adolfo López Mateos
| |
Collapse
|
38
|
Wang SC, Lu MC, Chen HL, Tseng HI, Ke YY, Wu YC, Yang PY. Cytotoxicity of calotropin is through caspase activation and downregulation of anti-apoptotic proteins in K562 cells. Cell Biol Int 2009; 33:1230-6. [PMID: 19732845 DOI: 10.1016/j.cellbi.2009.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/26/2008] [Accepted: 08/17/2009] [Indexed: 11/19/2022]
Abstract
Calotropin is one of cardenolides isolated from milkweed used for medicinal purposes in many Asian countries. Whereas calotropin possesses cytotoxicity against several cancer cells, the mechanisms of action remain unclear. We set out to evaluate the cytotoxic mechanism of calotropin on human chronic myeloid leukemia K562 cells. Calotropin inhibited the growth of K562 cells in a time- and dose-dependent manner by G(2)/M phase arrest. It upregulated the expression of p27 leading to this arrest by downregulating the G2/M regulatory proteins, cyclins A and B, and by upregulating the cdk inhibitor, p27. Furthermore, it downregulated anti-apoptotic signaling (XIAP and survivin) and survival pathways (p-Akt and NFkappaB), leading to caspase-3 activation which resulted in the induction of apoptosis. In all, calotropin exerted its anticancer activity on K562 cells by modulating the pro-survival signaling that leads to induction of apoptosis.
Collapse
Affiliation(s)
- Shih-Chung Wang
- Department of Pediatrics, Changhua Christian Hospital, Changhua 500, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Saito T, Abe D, Sekiya K. Flavanone exhibits PPARgamma ligand activity and enhances differentiation of 3T3-L1 adipocytes. Biochem Biophys Res Commun 2009; 380:281-5. [PMID: 19167359 DOI: 10.1016/j.bbrc.2009.01.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/13/2009] [Indexed: 10/25/2022]
Abstract
Flavanones are class of polyphenolic compounds, some of which are found in foods and provide health benefits. In this study, we show that flavanone significantly enhances differentiation of 3T3-L1 preadipocytes. During adipogenesis, flavanone enhanced expression of genes and accumulation of proteins that are involved in adipocyte function. Some reports have indicated that flavanone inhibits proliferation of mammalian cells, and down-regulates expression of growth-related proteins. Such proteins include phosphorylated ERK1/2, cyclins, and Cdks that are important for an early event in adipogenesis, mitotic clonal expansion (MCE). We demonstrated that flavanone did not inhibit MCE or expression of MCE-related proteins, except for a modest inhibition of cyclin D1 expression. Using luciferase reporter assays, we found that flavanone acted as a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand in a dose-dependent manner. Together, our results suggest that flavanone enhances adipogenesis, at least in part, through its PPARgamma ligand activity.
Collapse
Affiliation(s)
- Takeshi Saito
- National Agricultural Research Center for Western Region, 1-3-1 Senyu-cho, Zentsuji 765-8508, Japan
| | | | | |
Collapse
|
40
|
Youn MJ, Kim JK, Park SY, Kim Y, Park C, Kim ES, Park KI, So HS, Park R. Potential anticancer properties of the water extract of Inonotus [corrected] obliquus by induction of apoptosis in melanoma B16-F10 cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:221-228. [PMID: 19041933 DOI: 10.1016/j.jep.2008.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 09/24/2008] [Accepted: 10/03/2008] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus obliquus (Chaga mushroom), one of the widely known medicinal mushrooms, has been used to treat various cancers in Russia and most of Baltic countries for many centuries. AIM OF THE STUDY To examine the anti-proliferative effects of Inonotus obliquus extract on melanoma B16-F10 cells. Furthermore, to assess the anti-tumor effect of Inonotus obliquus extract in vivo in Balb/c mice. MATERIALS AND METHODS The water extract of Inonotus obliquus was studied for anti-proliferative effects on the growth and morphology of B16-F10 melanoma cells and for anti-tumor effect using in vivo in Balb/c mice. RESULTS Inonotus obliquus extract not only inhibited the growth of B16-F10 cells by causing cell cycle arrest at G(0)/G(1) phase and apoptosis, but also induced cell differentiation. These effects were associated with the down-regulation of pRb, p53 and p27 expression levels, and further showed that Inonotus obliquus extract resulted in a G(0)/G(1) cell cycle arrest with reduction of cyclin E/D1 and Cdk 2/4 expression levels. Furthermore, the anti-tumor effect of Inonotus obliquus extract was assessed in vivo in Balb/c mice. Intraperitoneal administration of Inonotus obliquus extract significantly inhibited the growth of tumor mass in B16-F10 cells implanted mice, resulting in a 3-fold (relative to the positive control, (*)p<0.05) inhibit at dose of 20mg/kg/day for 10 days. CONCLUSION This study showed that the water extract of Inonotus obliquus mushroom exhibited a potential anticancer activity against B16-F10 melanoma cells in vitro and in vivo through the inhibition of proliferation and induction of differentiation and apoptosis of cancer cells.
Collapse
Affiliation(s)
- Myung-Ja Youn
- VestibuloCochlear Research Center and Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen KS, Hsiao YC, Kuo DY, Chou MC, Chu SC, Hsieh YS, Lin TH. Tannic acid-induced apoptosis and -enhanced sensitivity to arsenic trioxide in human leukemia HL-60 cells. Leuk Res 2008; 33:297-307. [PMID: 18790533 DOI: 10.1016/j.leukres.2008.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/03/2008] [Accepted: 08/04/2008] [Indexed: 01/29/2023]
Abstract
Tannic acid (TA), a glucoside of gallic acid polymer, has been shown to possess anti-bacterial, anti-enzymatic, anti-tumor and astringent properties. However, the anti-cancer activity of TA in leukemia is still obscure. In this study, we showed TA-induced apoptotic death in acute myeloid leukemia (AML) HL-60 cells via dose- and time-dependent manner as well as increase of sub-G1 fraction, chromosome condensation, and DNA fragmentation. Further analysis demonstrated the involvement of activation of caspase cascade, cleavage of poly (ADP-ribose) polymerase (PARP), disruption of mitochondrial membrane potential, and release of Cytochrome C, in TA-induced apoptosis. These effects were probably associated with the increase of intracellular superoxide in mitochondrial signaling pathway which attributed to the down-regulation of superoxide dismutase (SOD). Notably, a low dose of TA is sufficient to aggravate arsenic trioxide (As(2)O(3))-induced cytotoxicity in HL-60 cells. Altogether, this study suggested the effects of TA to induce apoptosis in HL-60 and therapeutic potential in AML by being an adjunct to As(2)O(3).
Collapse
Affiliation(s)
- Kuo-Shuen Chen
- Institute of Medicine, Chung Shan Medical University, No. 110 Section 1, Chien Kuo N. Road, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 2008; 52:507-26. [PMID: 18435439 DOI: 10.1002/mnfr.200700326] [Citation(s) in RCA: 460] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prevention of cancer through dietary intervention recently has received an increasing interest, and dietary polyphenols have become not only important potential chemopreventive, but also therapeutic, natural agents. Polyphenols have been reported to interfere at the initiation, promotion and progression of cancer. They might lead to the modulation of proteins in diverse pathways and require the integration of different signals for the final chemopreventive or therapeutic effect. Polyphenols have been demonstrated to act on multiple key elements in signal transduction pathways related to cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis; however, these molecular mechanisms of action are not completely characterized and many features remain to be elucidated. The aim of this review is to provide insights into the molecular basis of potential chemopreventive and therapeutic activities of dietary polyphenols with emphasis in their ability to control intracellular signalling cascades considered as relevant targets in a cancer preventive approach.
Collapse
Affiliation(s)
- Sonia Ramos
- Department of Metabolism and Nutrition, Instituto del Frío, Consejo Superior de Investigaciones Científicas(CSIC), Ciudad Universitaria, Madrid, Spain.
| |
Collapse
|
43
|
Two newly synthesized 5-methyltetrahydrofolate-like compounds inhibit methionine synthase activity accompanied by cell cycle arrest in G1/S phase and apoptosis in vitro. Anticancer Drugs 2008; 19:697-704. [DOI: 10.1097/cad.0b013e32830317f2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
The Vignette for V14N1 Issue. J Biomed Sci 2006. [DOI: 10.1007/s11373-006-9138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|