1
|
Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A, Taha D, Zengin G, Hasan MM, Bibi S, Bouyahya A. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev 2024; 40:3408-3437. [PMID: 36123811 DOI: 10.1080/02648725.2022.2122303] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/20/2022] [Indexed: 11/02/2022]
Abstract
Quinic acid is a cyclohexanecarboxylic acid contained in the extracts of several parts of medicinal plants including Haematocarpus validus, Hypericum empetrifolium, Achillea pseudoaleppica, Rumex nepalensis, Phagnalon saxatile subsp. saxatile, Coffea arabica, Ziziphus lotus L, and Artemisia annua L … etc. Currently, in vitro and in vivo pharmacological studies showed that quinic acid exhibits various biological activities, such as antioxidant, antidiabetic, anticancer activity, antimicrobial, antiviral, aging, protective, anti-nociceptive and analgesic effects. Indeed, QA possesses an important antibacterial effect which could be explained by the fact that this molecule modules the functions of ribosomes and the synthesis of aminoacyl-tRNAs, modifications the levels of glycerophospholipids and fatty acids and disruption of the oxidative phosphorylation pathway thereby causing interference with membrane fluidity. The antidiabetic activity of AQ is achieved by stimulation of insulin secretion via the mobilization of Ca2+ from intracellular reserves and the increase in the NAD(P)H/NAD(P)+ ratio. Its anticancer effect is through the promotion of apoptosis, inhibition of activator protein 1 (AP-1) and signaling pathways involving protein kinase C (PKC) and certain mitogen-activated protein kinases (MAPKs), resulting in the downregulation of matrix metallopeptidase 9 (MMP-9) expression. Therefore, this review describes the main research work carried out on the biological properties of AQ and the mechanism of action underlying some of these effects, as well as the investigations of the main pharmacokinetic studies.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Saad Bakrim
- Molecular Engineering, Valorization, and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr 19 University, Agadir, Morocco
| | - Rokaia Ghchime
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Nisrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Doaue Taha
- Department 16 of Chemistry, Faculty of Sciences, Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory institution, Mohammed V University in Rabat, Rabat, Morocco
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center 11 of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Tanaka N, Takahashi S, Yoshino Y, Nakatani M, Ahmed FA, Hossain GM, Chen CH, Lee KH, Kashiwada Y. Tigliane-Type Diterpene Esters from the Fruits of Shirakiopsis indica and Their Anti-HIV Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:2687-2693. [PMID: 36378070 DOI: 10.1021/acs.jnatprod.2c00752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Four new diterpene esters, shirakindicans A-D (1-4), along with eight related known diterpene esters (5-12), were isolated from the fruits of the Bangladeshi medicinal plant Shirakiopsis indica. The structures of 1-4 were elucidated by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Shirakindican A (1) was assigned as a tigliane-type diterpene ester possessing an unusual 6β-hydroxy-1,7-dien-3-one structure, while shirakindican B (2) exhibits a tiglia-1,5-dien-3,7-dione structure. The anti-HIV activities of the isolated diterpene esters were evaluated and showed significant activities for sapintoxins A (5) and D (11), with EC50 values of 0.0074 and 0.044 μM, respectively, and TI values of 1 100 and 5 290. Sapatoxin A (12) also exhibited anti-HIV activity with an EC50 value of 0.13 μM and a TI value of 161.
Collapse
Affiliation(s)
- Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Sakura Takahashi
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Yuki Yoshino
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Megumi Nakatani
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Fakhruddin Ali Ahmed
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Gazi Mosharof Hossain
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Chin-Ho Chen
- Medical Center, Duke University, Durham, North Carolina 27710, United States
| | - Kuo-Hsiung Lee
- Natural Products Laboratory, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
3
|
Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals (Basel) 2022; 15:ph15091149. [PMID: 36145370 PMCID: PMC9502241 DOI: 10.3390/ph15091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a group of natural compounds that have been described in the literature as having anti-inflammatory, antioxidant, and neuroprotective compounds. Although they are considered versatile molecules, little has been discussed about their antiviral activities for neurotropic viruses. Hence, the present study aimed to investigate the pharmacological potential of flavonoids in the face of viruses that can affect the central nervous system (CNS). We carried out research from 2011 to 2021 using the Pubmed platform. The following were excluded: articles not in the English language, letters to editors, review articles and papers that did not include any experimental or clinical tests, and papers that showed antiviral activities against viruses that do not infect human beings. The inclusion criteria were in silico predictions and preclinical pharmacological studies, in vitro, in vivo and ex vivo, and clinical studies with flavonoids, flavonoid fractions and extracts that were active against neurotropic viruses. The search resulted in 205 articles that were sorted per virus type and discussed, considering the most cited antiviral activities. Our investigation shows the latest relevant data about flavonoids that have presented a wide range of actions against viruses that affect the CNS, mainly influenza, hepatitis C and others, such as the coronavirus, enterovirus, and arbovirus. Considering that these molecules present well-known anti-inflammatory and neuroprotective activities, using flavonoids that have demonstrated both neuroprotective and antiviral effects could be viewed as an alternative for therapy in the course of CNS infections.
Collapse
|
4
|
Tsiftsoglou OS, Stefanakis MK, Kalpourtzi EN, Hadjipavlou-Litina DI, Lazari DM. Chemical constituents isolated from the aerial parts of Helleborus cyclophyllus (A. Braun) Boiss. (Ranunculaceae), evaluation of their antioxidant and anti-inflammatory activity in vitro and virtual screening of molecular properties and bioactivity score. Nat Prod Res 2022; 36:6031-6038. [DOI: 10.1080/14786419.2022.2041009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Olga St. Tsiftsoglou
- Laboratory of Pharmacognosy, Faculty of Health sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michalis K. Stefanakis
- Laboratory of Organic Chemistry, School of Sciences and Engineering, Department of Chemistry, University of Crete, Heraklion, Greece
| | - Eirini N. Kalpourtzi
- Laboratory of Pharmacognosy, Faculty of Health sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra I. Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, Greece
| | - Diamanto M. Lazari
- Laboratory of Pharmacognosy, Faculty of Health sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Gao Q, Wei Z, Liu Y, Wang F, Zhang S, Serrano C, Li L, Sun B. Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030678. [PMID: 35163945 PMCID: PMC8840448 DOI: 10.3390/molecules27030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves.
Collapse
Affiliation(s)
- Qian Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Zongmin Wei
- School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang 110016, China;
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222069, China
| | - Yun Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Carmo Serrano
- Unidade de Tecnologia e Inovação, Instituto National de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal;
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| |
Collapse
|
6
|
Liu R, Liu J, Huang Q, Liu S, Jiang Y. Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol 2021; 74:296-320. [PMID: 34718669 DOI: 10.1093/jpp/rgab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Moringa oleifera (M. oleifera) Lam (Moringaceae) is a perennial plant broadly used in South Asia and Africa as a traditional folk medicine to treat many ailments such as paralysis, helminthiasis, sores and skin infections. The review provides a critical and comprehensive evaluation of the botany, traditional uses, phytochemistry, pharmacology, toxicity, agricultural economy and dietary benefit of M. oleifera and its future perspectives. KEY FINDINGS In this review, the entire plant of M. oleifera, containing diverse phytochemicals, is summarized. The 163 chemical components, included flavonoids, carbamates, glucosinolates, phenols, and so on with various bioactivities, such as anti-tumour, antioxidant, anti-inflammatory, and so on. Additionally, M. oleifera is toxic at certain doses; and overuse can cause genotoxicity. SUMMARY Although M. oleifera has been widely used in traditional medicine, the pharmacological studies that have been conducted so far are not sufficient for its use in the setting of evidence-based medicine. Little relevant data from clinical trials of M. oleifera have been reported. The majority of studies of its constituents, such as carbamates and glucosinolates, have been conducted only in vitro. Owing to a lack of available data, the pharmacology, toxicity, agricultural economy and dietary benefit of its constituents and extracts require further evaluation.
Collapse
Affiliation(s)
- Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
El-Mekkawy S, Hassan AZ, Abdelhafez MA, Mahmoud K, Mahrous KF, Meselhy MR, Sendker J, Abdel-Sattar E. Cytotoxicity, genotoxicity, and gene expression changes induced by methanolic extract of Moringa stenopetala leaf with LC-qTOF-MS metabolic profile. Toxicon 2021; 203:40-50. [PMID: 34610271 DOI: 10.1016/j.toxicon.2021.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022]
Abstract
Moringa stenopetala (Baker f.) Cuf.and other Moringa species have traditionally been used to treat various diseases. The purpose of this study was to determine the cytotoxic and genotoxic effects of the methanolic extract of M. stenopetala leaf and its fractions on selected tumor cells. Cytotoxicity was determined by MTT assay. The comet assay was used toassess DNA damage, and gel electrophoresis was used to determine DNA fragmentation. Gene expression was analyzed by qPCR using two specific genes for each cancer cell line. Fractionation of the methanolic extract (E-1) on Diaion HP-20 yielded five fractions (Fr-2 to Fr-6); only Fr-4 and Fr-6 were cytotoxic to breast cancer cells (MCF-7; IC50 = 58.3 ± 0.93 and 35.8 ± 2.44 μg/mL, respectively), human hepatocellular carcinoma cells (HepG2; IC50 = 57.8 ± 1.57 and 39.3 ± 1.90 μg/mL, respectively), and Fr-4 was cytotoxic to human colon cancer cells (HCT-116; IC50 = 94.2 ± 4.9 μg/mL). In addition, exposure of the cancer cells to Fr-4 and Fr-6 resulted in a high level of DNA damage. Moreover, relative expression of MTAP and CDKN2A in MCF-7 were increased, whereas expression of p21 and p53 in HCT-116, and APC and TERT in HepG2 were decreased, similar to that of doxorubicin. LC-qTOF-MS was used to identify metabolites in E-1, the majority of which were enriched in Fr-4. Two terpenes (loliolide and dihydroactinidiolide), the majority of the flavonoids, and niazirin were about two fold enriched in Fr-4, whereas the majority of the lipids were 4-10 fold enriched. However, Fr-6 hardly showed compounds other than the two terpenes that were enriched 1.5 and 7 fold. The findings suggest that Fr-4 and Fr-6 are promising sources of compounds possessing cytotoxic and genotoxic properties.
Collapse
Affiliation(s)
- Sahar El-Mekkawy
- Department of Chemistry of Natural Compounds, National Research Centre, Giza, 12622, Egypt
| | - Amal Z Hassan
- Department of Chemistry of Natural Compounds, National Research Centre, Giza, 12622, Egypt
| | | | - Khaled Mahmoud
- Pharmacognosy Department, National Research Centre, Giza, 12622, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, Giza, 12622, Egypt
| | - Meselhy R Meselhy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Jandirk Sendker
- Institute of Pharmaceutical Biology and Phytochemistry,University of Münster, Münster, Germany
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Fombang EN, Nobossé P, Mbofung CMF, Singh D. Impact of post harvest treatment on antioxidant activity and phenolic profile of Moringa oleifera lam leaves. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Moringa oleifera leaves are an important source of dietary phytochemicals, such as flavonoids with high antioxidant activity (AOA). These components are however influenced by the post-harvest treatments applied as well as the processing conditions. Hence, it is crucial to determine the most appropriate post-harvest treatment that preserves or enhances AOA. To this effect the influence of steam blanching, fermentation / oxidation, oven drying and roasting of fresh Moringa leaves on their AOA was investigated. Processing conditions of time and temperature for each treatment were optimised using response surface methodology. The effect of the different treatments at optimal conditions on phenolic profile and AOA were compared. Roasting achieved the most significant (p < 0.05) improvement in phenolics (43%) and AOA (22–31%), which was accompanied by the formation of 2 new compounds, quercetin-3-O-acetylglucoside and Quercetine-3-O-rhamnoside. Steam blanching had the most deleterious effect on phenolics (− 31%) and AOA. Post-harvest treatments qualitatively and quantitatively affect phytochemical profile of Moringa leaves.
Graphical abstract
Collapse
|
9
|
Tanaka N, Kashiwada Y. Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies. J Nat Med 2021; 75:762-783. [PMID: 34255289 PMCID: PMC8397699 DOI: 10.1007/s11418-021-01545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
Traditional herbal medicines, which have been used in the matured traditional medical systems as well as those have been used in ethnic medical systems, are invaluable resources of drug seeds. Ethnobotanical and ethnopharmacological survey may provide useful information of these herbal medicines, which are valuable for searching new bioactive molecules. From this viewpoint, we have been performing the ethnobotanical and ethnopharmacological field studies in Yunnan Province and Guangxi Zhuang Autonomous Region, China, and Mongolia. Phytochemical studies on traditional herbal medicines were performed based on the information obtained by our ethnobotanical survey. Herbal medicines used in Uzbekistan and Bangladesh were also investigated on the basis of the ethnopharmacological information obtained from collaborative researchers in the respective regions. Some studies were carried out for searching active substance(s) based on bioassay-guided fractionation and isolation. Over 150 new molecules were isolated in these studies, and their various biological activities were also demonstrated. This review summarizes the results of phytochemical studies of those traditional herbal medicines as well as biological activities of the isolated molecules.
Collapse
Affiliation(s)
- Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
10
|
Kim S, Lee EY, Hillman PF, Ko J, Yang I, Nam SJ. Chemical Structure and Biological Activities of Secondary Metabolites from Salicornia europaea L. Molecules 2021; 26:2252. [PMID: 33924656 PMCID: PMC8069253 DOI: 10.3390/molecules26082252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022] Open
Abstract
Salicornia europaea L. is a halophyte that grows in salt marshes and muddy seashores, which is widely used both as traditional medicine and as an edible vegetable. This salt-tolerant plant is a source of diverse secondary metabolites with several therapeutic properties, including antioxidant, antidiabetic, cytotoxic, anti-inflammatory, and anti-obesity effects. Therefore, this review summarizes the chemical structure and biological activities of secondary metabolites isolated from Salicornia europaea L.
Collapse
Affiliation(s)
- Sojeong Kim
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (P.F.H.)
| | - Prima F. Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (P.F.H.)
| | - Jaeyoung Ko
- AMOREPACIFIC Research and Development Center, Yongin 17074, Korea;
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (P.F.H.)
| |
Collapse
|
11
|
Liu W, Li J, Zhang X, Zu Y, Yang Y, Liu W, Xu Z, Gao H, Sun X, Jiang X, Zhao Q. Current Advances in Naturally Occurring Caffeoylquinic Acids: Structure, Bioactivity, and Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10489-10516. [PMID: 32846084 DOI: 10.1021/acs.jafc.0c03804] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Caffeoylquinic acids (CQAs) are a broad class of secondary metabolites that have been found in edible and medicinal plants from various families. It has been 100 years since the discovery of chlorogenic acid in 1920. In recent years, a number of naturally derived CQAs have been isolated and structurally elucidated. Accumulated evidence demonstrate that CQAs have a wide range of biological activities, such as antioxidation, antibacterial, antiparasitic, neuroprotective, anti-inflammatory, anticancer, antiviral, and antidiabetic effects. Up to date, some meaningful progresses on the biosynthesis and total synthesis of CQAs have also been made. Therefore, it is necessary to comprehensively summarize the structure, biological activity, biosynthesis, and chemical synthesis of CQAs. This review provides extensive coverage of naturally occurring CQAs discovered from 1990 until 2020. Modern isolation techniques, chemical data (including structure, biosynthesis, and total synthesis), and bioactivity are summarized. This would be helpful for further research of CQAs as potential pharmaceutical agents.
Collapse
Affiliation(s)
- Wenwu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Jingda Li
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Xuemei Zhang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yuxin Zu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Yue Yang
- School of Life Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Wenjie Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Huan Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xue Sun
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning 110840, People's Republic of China
| |
Collapse
|
12
|
Souid G, Sfar M, Timoumi R, Romdhane MH, Essefi SA, Majdoub H. Protective effect assessment of Moringa oleifera against cadmium-induced toxicity in HCT116 and HEK293 cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23783-23792. [PMID: 32297115 DOI: 10.1007/s11356-020-08730-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The cadmium (Cd) is considered one of the widespread toxic metals in the aquatic and terrestrial environments, which is due to its long half-life, non-degradable characteristic, and toxicity. Aqueous extract of freeze-dried Moringa oleifera (Moringaceae family) leaves was examined for protective effect and antioxidant power against Cd toxicity. The results revealed that Moringa aqueous extract (MAE) has contents of total polyphenols and flavonoids about 30.14 mg GAE/g and 18.35 mg QE/g respectively. Furthermore, phenolic compounds in leaves of Moringa were studied using a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Results showed that the largest number of phenolic compounds determined in leaves of Moringa belongs to flavonoids. Moreover, biological properties were determined by radical scavenging capacity (DPPH) and ferric-reducing power (FRAP). Cytoprotective effect and antioxidant power of Moringa extract were assessed using the mitochondrial activity testing method (MTT test), malondialdehyde (MDA), and reactive oxygen species (ROS) production. Results indicate that Moringa aqueous extract have a significant (i) proliferative, (ii) antioxidant, and (iii) cytoprotective effect on HCT116 and HEK293 cells against metal toxicity.
Collapse
Affiliation(s)
- Ghada Souid
- Viral Genomic and Antiviral Strategy (VR17ES30), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, 5000, Monastir, Tunisia
| | - Manel Sfar
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC: LR01SE17), Faculty of Dental Medicine, University of Monastir, 5000, Monastir, Tunisia
| | - Mariem Hadj Romdhane
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia
| | - Salwa Abid Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC: LR01SE17), Faculty of Dental Medicine, University of Monastir, 5000, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Sciences of Monastir, University of Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia.
| |
Collapse
|
13
|
Langeder J, Grienke U, Chen Y, Kirchmair J, Schmidtke M, Rollinger JM. Natural products against acute respiratory infections: Strategies and lessons learned. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112298. [PMID: 31610260 DOI: 10.1016/j.jep.2019.112298] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A wide variety of traditional herbal remedies have been used throughout history for the treatment of symptoms related to acute respiratory infections (ARIs). AIM OF THE REVIEW The present work provides a timely overview of natural products affecting the most common pathogens involved in ARIs, in particular influenza viruses and rhinoviruses as well as bacteria involved in co-infections, their molecular targets, their role in drug discovery, and the current portfolio of available naturally derived anti-ARI drugs. MATERIALS AND METHODS Literature of the last ten years was evaluated for natural products active against influenza viruses and rhinoviruses. The collected bioactive agents were further investigated for reported activities against ARI-relevant bacteria, and analysed for the chemical space they cover in relation to currently known natural products and approved drugs. RESULTS An overview of (i) natural compounds active in target-based and/or phenotypic assays relevant to ARIs, (ii) extracts, and (iii) in vivo data are provided, offering not only a starting point for further in-depth phytochemical and antimicrobial studies, but also revealing insights into the most relevant anti-ARI scaffolds and compound classes. Investigations of the chemical space of bioactive natural products based on principal component analysis show that many of these compounds are drug-like. However, some bioactive natural products are substantially larger and have more polar groups than most approved drugs. A workflow with various strategies for the discovery of novel antiviral agents is suggested, thereby evaluating the merit of in silico techniques, the use of complementary assays, and the relevance of ethnopharmacological knowledge on the exploration of the therapeutic potential of natural products. CONCLUSIONS The longstanding ethnopharmacological tradition of natural remedies against ARIs highlights their therapeutic impact and remains a highly valuable selection criterion for natural materials to be investigated in the search for novel anti-ARI acting concepts. We observe a tendency towards assaying for broad-spectrum antivirals and antibacterials mainly discovered in interdisciplinary academic settings, and ascertain a clear demand for more translational studies to strengthen efforts for the development of effective and safe therapeutic agents for patients suffering from ARIs.
Collapse
Affiliation(s)
- Julia Langeder
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Ya Chen
- University of Hamburg, Center for Bioinformatics (ZBH), Bundesstraße 43, 22763, Hamburg, Germany
| | - Johannes Kirchmair
- Department of Chemistry, University of Bergen, N-5020, Bergen, Norway; Computational Biology Unit (CBU), University of Bergen, N-5020, Bergen, Norway
| | - Michaela Schmidtke
- Section of Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, Jena, 07745, Germany
| | - Judith M Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
14
|
A novel design to screen chlorogenic acid-producing microbial strains from the environment. Sci Rep 2018; 8:14756. [PMID: 30283150 PMCID: PMC6170458 DOI: 10.1038/s41598-018-32968-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to develop a plate-screening method, based on the specific color development of complexes formed between chlorogenic acid, a valuable plant-derived compound, and aluminum (III), to detect chlorogenic acid-producing microbial strains. Modified media with 0.75 mM aluminum chloride were developed to identify CGA-producing bacteria (based on beef extract agar medium) or fungi (based on the potato dextrose agar medium). Compared with conventional screening, the modified media let to 3.3 times more CGA producers from plants, at 90.9% selective accuracy. Novel chlorogenic acid-biosynthesizing strains included Brevibacillus borstelensis B14, Bacillus amyloliquefaciens B17, Bacillus badius B19, Sphingomonas yabuuchiae N21, Enterobacter tabaci N22, and Lodderomyces elongisporus S216 and P212. Strain S216 produced the highest chlorogenic acid yield (23.39 mg L−1). This study provides a highly efficient and low-cost tool for quick detection and subsequent identification of several newly isolated strains with chlorogenic acid-producing potential.
Collapse
|
15
|
Sugahara S, Chiyo A, Fukuoka K, Ueda Y, Tokunaga Y, Nishida Y, Kinoshita H, Matsuda Y, Igoshi K, Ono M, Yasuda S. Unique antioxidant effects of herbal leaf tea and stem tea from Moringa oleifera L. especially on superoxide anion radical generation systems. Biosci Biotechnol Biochem 2018; 82:1973-1984. [PMID: 29993353 DOI: 10.1080/09168451.2018.1495552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aimed to investigate the unique antioxidative effects of Japanese moringa products, herbal leaf tea and stem tea, using established free radical assays, focusing on superoxide anion (O2-) radical generation systems. Hot-water extracts from moringa teas resulted in different but lower scavenging activities than Trolox in four synthetic free radical models. Interestingly, these extracts further showed higher O2- radical scavenging effects than Trolox in the phenazine methosulfate-NADH-nitroblue tetrazolium and xanthine oxidase assay systems. Incubating human neutrophils in the presence of these tea extracts rather than Trolox effectively suppressed cellular O2- radical generation. Among the eight known phenolic constituents of moringa leaves, caffeic acid and chlorogenic acid may be responsible for the O2-specific radical scavenging capacity stronger than that of Trolox. These results suggest that moringa herbal teas are a good source of natural antioxidants for preventing O2- radical-mediated disorders. Abbreviations: O2-: superoxide anion; ROS: reactive oxygen species; H2O2: hydrogen peroxide; XOD: xanthine oxidase; DPPH: 1,1-diphenyl-2-picrylhydrazyl; ABTS+: 2,2'-azinobis(2-ethylbenzothiazoline-6-sulfonic acid) cation; CPZ+: chlorpromazine cation; PMS: phenazine methosulfate; NBT: nitroblue tetrazolium; PMA: phorbol 12-myristate 13-acetate.
Collapse
Affiliation(s)
- Shintaro Sugahara
- a Graduate School of Bioscience , Tokai University , Kumamoto City , Japan
| | - Akihiro Chiyo
- b School of Agriculture , Tokai University , Kumamoto City , Japan
| | - Koki Fukuoka
- b School of Agriculture , Tokai University , Kumamoto City , Japan
| | - Yuto Ueda
- a Graduate School of Bioscience , Tokai University , Kumamoto City , Japan
| | - Yuki Tokunaga
- c Graduate School of Agriculture , Tokai University , Kumamoto City , Japan
| | - Youichirou Nishida
- d Research and Development Division , Aso Pharmaceutical Co., Ltd , Kumamoto , Japan
| | - Hideki Kinoshita
- b School of Agriculture , Tokai University , Kumamoto City , Japan.,c Graduate School of Agriculture , Tokai University , Kumamoto City , Japan
| | - Yasushi Matsuda
- b School of Agriculture , Tokai University , Kumamoto City , Japan.,c Graduate School of Agriculture , Tokai University , Kumamoto City , Japan
| | - Keiji Igoshi
- b School of Agriculture , Tokai University , Kumamoto City , Japan
| | - Masateru Ono
- a Graduate School of Bioscience , Tokai University , Kumamoto City , Japan.,b School of Agriculture , Tokai University , Kumamoto City , Japan.,c Graduate School of Agriculture , Tokai University , Kumamoto City , Japan
| | - Shin Yasuda
- a Graduate School of Bioscience , Tokai University , Kumamoto City , Japan.,b School of Agriculture , Tokai University , Kumamoto City , Japan.,c Graduate School of Agriculture , Tokai University , Kumamoto City , Japan
| |
Collapse
|
16
|
Godinez-Ov A, Guemes-Ver N, Acevedo-Sa O. Nutritional and Phytochemical Composition of Moringa oleifera Lam and its Potential Use as Nutraceutical Plant: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/pjn.2016.397.405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2015; 14:57-80. [PMID: 26567957 DOI: 10.1586/14787210.2016.1120670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications.
Collapse
Affiliation(s)
| | - Hamid Reza Sodagari
- b Young Researchers and Elite Club , Karaj Branch, Islamic Azad University , Karaj , Iran
| | - Mohammad Hosein Farzaei
- c Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amir Hossein Abdolghaffari
- e Medicinal Plants Research Center , Institute of Medicinal Plants, ACECR , Karaj , Iran.,f International Campus, ICTUMS, Tehran University of Medical Sciences , Tehran , Iran
| | - Maziar Gooshe
- g Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- h Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,i Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,j Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
18
|
Yu Y, Jiang Z, Song W, Yang Y, Li Y, Jiang J, Shi J. Glucosylated caffeoylquinic acid derivatives from the flower buds of Lonicera japonica. Acta Pharm Sin B 2015; 5:210-4. [PMID: 26579448 PMCID: PMC4629231 DOI: 10.1016/j.apsb.2015.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/04/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022] Open
Abstract
Three new glucosylated caffeoylquinic acid isomers (1–3), along with six known compounds, have been isolated from an aqueous extract of the flower buds of Lonicera japonica. Structures of the new compounds were determined by spectroscopic and chemical methods as (−)-4-O-(4-O-β-d-glucopyranosylcaffeoyl)quinic acid (1), (−)-3-O-(4-O-β-d-glucopyranosylcaffeoyl)quinic acid (2), and (−)-5-O-(4-O-β-d-glucopyranosylcaffeoyl)quinic acid (3), respectively. In the preliminary in vitro assays, two known compounds methyl caffeate and 2ʹ-O-methyladenosine showed inhibitory activity against Coxsackie virus B3 with IC50 values of 3.70 μmol/L and 6.41 μmol/L and SI values of 7.8 and 12.1, respectively.
Collapse
|
19
|
Miltiorins A–D, diterpenes from Radix Salviae miltiorrhizae. Fitoterapia 2015; 102:49-55. [DOI: 10.1016/j.fitote.2015.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 11/17/2022]
|
20
|
Silva-Beltrán NP, Ruiz-Cruz S, Chaidez C, Ornelas-Paz JDJ, López-Mata MA, Márquez-Ríos E, Estrada MI. Chemical constitution and effect of extracts of tomato plants byproducts on the enteric viral surrogates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2015; 25:299-311. [PMID: 25059828 DOI: 10.1080/09603123.2014.938030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Byproducts of tomato are known to include phenolic compounds but have not been studied in depth. In this study, the phenolic compositions of (stem, leaf, root, and whole plant) of two tomato cultivars, Pitenza and Floradade, were analyzed by HPLC-DAD. In parallel, the antiviral effects of crude extracts on viral surrogates, the bacteriophages MS2 and Av-05 were evaluated. The leaf extracts from the two varieties showed the highest concentration of phenolic compounds. The compounds identified were gallic acid, chlorogenic acid, ferulic acid, cafeic acid, rutin, and quercetin, and they represented 3174.3 and 1057.9 mg/100 g dried weight of the Pitenza and Floradade cultivars, respectively. MS2 and Av-05 titers at 5 mg/mL were reduced by 3.47 and 5.78 log10 PFU/mL and 3.78 and 4.93 log10 PFU/mL by Pitenza and Floradade cultivar leaf extract, respectively. These results show that tomato extracts are natural sources of bioactive substances with antiviral activity.
Collapse
Affiliation(s)
- Norma Patricia Silva-Beltrán
- a Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias , Ciudad Obregón , Mexico
| | | | | | | | | | | | | |
Collapse
|
21
|
Jaiswal R, Müller H, Müller A, Karar MGE, Kuhnert N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn. PHYTOCHEMISTRY 2014; 108:252-263. [PMID: 25236695 DOI: 10.1016/j.phytochem.2014.08.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/15/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
The chlorogenic acids, chlorogenic acid glycosides and flavonoids of the leaves of Lonicera henryi L. (Caprifoliaceae) were investigated qualitatively by liquid chromatography tandem mass spectrometry. Thirty-one chlorogenic acids and their glycosides were detected and characterized to their regioisomeric level on the basis of their unique fragmentation pattern in the negative ion mode tandem MS spectra. All of them were extracted for the first time from this source and thirteen of them were not reported previously in nature. For the positive identification of chlorogenic acid glycosides by LC-MS(n), multiple reaction monitoring and targeted MS(n) experiments were performed. We have developed an LC-MS(n) method for the systematic identification of chlorogenic acid glycosides and were also able to discriminate between chlorogenic acids and their isobaric glycosides. It was also possible to discriminate between 5-O-(3'-O-caffeoyl glucosyl)quinic acid and 5-O-(4'-O-caffeoyl glucosyl)quinic acid by LC-MS(n). This method can be applied for the rapid and positive identification of chlorogenic acids and their glycosides in plant materials, food and beverages.
Collapse
Affiliation(s)
- Rakesh Jaiswal
- School of Engineering and Science, Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Heiko Müller
- School of Engineering and Science, Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Anja Müller
- School of Engineering and Science, Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | - Nikolai Kuhnert
- School of Engineering and Science, Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
22
|
Ncube EN, Mhlongo MI, Piater LA, Steenkamp PA, Dubery IA, Madala NE. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Cent J 2014; 8:66. [PMID: 25426160 PMCID: PMC4242998 DOI: 10.1186/s13065-014-0066-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/30/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chlorogenic acids (CGAs) are a class of phytochemicals that are formed as esters between different derivatives of cinnamic acid and quinic acid molecules. In plants, accumulation of these compounds has been linked to several physiological responses against various stress factors; however, biochemical synthesis differs from one plant to another. Although structurally simple, the analysis of CGA molecules with modern analytical platforms poses an analytical challenge. The objective of the study was to perform a comparison of the CGA profiles and related derivatives from differentiated tobacco leaf tissues and undifferentiated cell suspension cultures. RESULTS Using an UHPLC-Q-TOF-MS/MS fingerprinting method based on the in-source collision induced dissociation (ISCID) approach, a total of 19 different metabolites with a cinnamic acid core moiety were identified. These metabolites were either present in both leaf tissue and cell suspension samples or in only one of the two plant systems. Profile differences point to underlying biochemical similarities or differences thereof. CONCLUSION Using this method, the regio- and geometric-isomer profiles of chlorogenic acids of the two tissue types of Nicotiana tabacum were achieved. The method was also shown to be applicable for the detection of other related molecules containing a cinnamic acid core.
Collapse
Affiliation(s)
- Efficient N Ncube
- />Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | - Msizi I Mhlongo
- />Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | - Lizelle A Piater
- />Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | - Paul A Steenkamp
- />Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
- />CSIR Biosciences, Natural Products and Agroprocessing Group, Pretoria, 0001 South Africa
| | - Ian A Dubery
- />Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | - Ntakadzeni E Madala
- />Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| |
Collapse
|
23
|
Jaiswal R, Halabi EA, Karar MGE, Kuhnert N. Identification and characterisation of the phenolics of Ilex glabra L. Gray (Aquifoliaceae) leaves by liquid chromatography tandem mass spectrometry. PHYTOCHEMISTRY 2014; 106:141-155. [PMID: 25086488 DOI: 10.1016/j.phytochem.2014.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 05/25/2023]
Abstract
The phenolics of the leaves of Ilex glabra L. Gray (Aquifoliaceae) were investigated qualitatively by LC-MS(n). Thirty-two phenolics were detected and characterised on the basis of their unique fragmentation pattern in the negative ion mode tandem MS spectra. All of them were extracted for the first time from this source and fifteen of them were not reported previously in nature. For the positive identification of phenolic glucosides by LC-MS(n) a series of authentic standards and experiments were carried out. This is the first report of a full characterisation of 3,4-dihydroxybenzoyl glucosides, 3,4-dihydroxybenzyl glucosides, 4-hydroxybenzoyl glucosides, chlorogenic acid glucosides and vanillic acid glucosides by LC-MS(2-4).
Collapse
Affiliation(s)
- Rakesh Jaiswal
- School of Engineering and Science, Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Elias A Halabi
- School of Engineering and Science, Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | - Nikolai Kuhnert
- School of Engineering and Science, Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
24
|
Maldini M, Maksoud SA, Natella F, Montoro P, Petretto GL, Foddai M, De Nicola GR, Chessa M, Pintore G. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:900-910. [PMID: 25230187 DOI: 10.1002/jms.3437] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera.
Collapse
Affiliation(s)
- Mariateresa Maldini
- University of Sassari, Department of Chemistry and Pharmacy via F. Muroni, 23/b, 07100, Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kashiwada Y, Omichi Y, Kurimoto SI, Shibata H, Miyake Y, Kirimoto T, Takaishi Y. Conjugates of a secoiridoid glucoside with a phenolic glucoside from the flower buds of Lonicera japonica Thunb. PHYTOCHEMISTRY 2013; 96:423-9. [PMID: 24120297 DOI: 10.1016/j.phytochem.2013.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 05/21/2023]
Abstract
Secoiridoid glucosides, including two conjugates with a phenolic and two conjugates with a nicotinic acid derivative (3 and 4), together with seven known secoiridoid derivatives, were isolated from flower buds of Lonicera japonica. The structures were elucidated by spectroscopic analyses. Anti-influenza activities of six isolated compounds were also evaluated by plaque assay and neuraminidase inhibitory assay.
Collapse
Affiliation(s)
- Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1-78, Tokushima 770-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Xie Y, Huang B, Yu K, Shi F, Liu T, Xu W. Caffeic acid derivatives: A new type of influenza neuraminidase inhibitors. Bioorg Med Chem Lett 2013; 23:3556-60. [DOI: 10.1016/j.bmcl.2013.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/09/2013] [Accepted: 04/13/2013] [Indexed: 01/23/2023]
|